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Abstract. In the face of intensifying market competition, department stores are
increasingly focused on understanding consumer characteristics and behaviors,
as well as evaluating their value. User profiling emerges as a crucial method for
comprehending customer needs and preferences, enabling the development of
targeted marketing strategies to enhance customer loyalty and improve user expe-
rience. This study employs the k-means clustering algorithm for user profiling in
department stores. By utilizing the Calinski-Harabasz index and the elbow method,
users are grouped based on three features, resulting in optimal clustering and the
division of users into four distinct clusters. Each cluster represents a unique user
profile, reflecting diverse characteristics and behaviors. User profiling facilitates
the understanding of target customer segments, thereby enabling the implemen-
tation of effective personalized marketing strategies. Additionally, it promotes
the integration of online and offline experiences and facilitates the prediction of
future demand trends. The advancements in big data and artificial intelligence
technologies make user profiling an essential tool in the retail industry.

Keywords: k-means - user profiling - Calinski-Harabasz index - department
store

1 Introduction

Department stores play a vital role in the retail industry, facing increasingly fierce market
competition. Given the diverse consumer groups and wide product range, understanding
consumer characteristics, behaviors, and assessing their value is of utmost importance.
In order to adapt to evolving market demands, department stores need to delve into
consumer needs and preferences, formulate targeted marketing strategies, and enhance
customer loyalty and user experience. User profiling, which involves detailed descrip-
tions and categorizations of users, aids businesses in comprehending user characteristics,
needs, and behaviors.

In the context of department stores, constructing user profiles holds particular sig-
nificance. Firstly, it helps businesses identify distinct user groups and develop person-
alized marketing strategies to improve promotional effectiveness. Secondly, user pro-
filing assists in identifying high-value users who contribute the most to the department
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store, enabling the implementation of strategies to enhance their loyalty and purchase
frequency, ultimately fostering sustainable business growth.

This study utilizes Python as a tool, leveraging its excellent data processing and
analysis capabilities, to perform various tasks, including data cleaning, feature extrac-
tion, and cluster analysis on user data. The k-means clustering method is employed to
cluster department store users, and user profiles are constructed for each cluster to gain
a deeper understanding of user characteristics, behaviors, and value assessment. The
research objectives are divided into two parts: first, understanding the clustering status
of department store users through clustering analysis, and second, constructing user pro-
files for each cluster as the basis for precise marketing and recommendation systems in
future department store endeavors.

2 Related Work

2.1 K-Means

The k-means clustering algorithm is a widely used unsupervised learning technique that
partitions a dataset into K distinct clusters [1-3]. Each cluster exhibits similar features,
with high similarity among samples within the cluster and low similarity between clus-
ters. The algorithm aims to determine the optimal cluster partition by minimizing the
distance between each sample point and its corresponding cluster center. The k-means
algorithm involves the following steps:

1.Initialization: Select K initial cluster center points, which can be chosen randomly
or manually specified.

2.Assignment: Calculate the distance between each sample point and each cluster
center point and assign the sample to the nearest cluster. The Euclidean distance is
commonly used for this calculation.

3.Update cluster centers: Calculate the mean of all sample points within each cluster
and use the mean as the new cluster center.

4 Repeat steps 2 and 3 until the cluster center points no longer change or reach a
predetermined number of iterations. Each iteration involves recalculating cluster center
points and reassigning sample points, leading to continuous optimization of the cluster
partition. The final clustering result is chosen based on the minimum total error (loss
function), which represents the sum of distances between each sample point and its cor-
responding cluster center point. The loss function can be calculated using the following
formula:

K

J=) ) dee )’ (M

i=1 xeC;

where K represents the number of clusters, C; represents the i-th cluster, d(x, ;) repre-
sents the distance between sample x and the center point of the i-th cluster. By minimizing
the total error J, the cluster partition is optimized to maximize the similarity within clus-
ters and minimize the similarity between clusters. The Calinski-Harabasz index [4, 5] is
often used to evaluate the effectiveness of clustering, while the elbow method [6, 7] is
employed to determine the optimal number of clusters, K.
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Let’s consider an example with four points: (1,1), (2,1), (4,3), and (5,4). Our objective
is to divide this data into two clusters by choosing K = 2.

Initialization: To begin, we select two data points as the initial cluster centers. Let’s
go with (1,1) and (5,4). Therefore, we have cl = (1,1) and c2 = (5,4).

Assignment: Next, we assign each data point to the cluster center that is closest to
it. In this case, (1,1) and (2,1) are closer to c;, while (4,3) and (5,4) are closer to c,.
Consequently, we obtain two clusters: S1 = {(1,1), (2,1)} and S, = {(4,3), (5,4)}.

Update cluster centers: We then calculate the new center for each cluster, which is
determined as the average of all points within that cluster. Thus, the updated c¢; = [(1 +
2)/2, (1 + 1)/2] = (1.5, 1), and the updated co = [(4 + 5)/2, 3 + 4)/2] = (4.5, 3.5).

Repeat steps 2 and 3: The loss function can be calculated as [(1 — 1.52 + (1 =13
+[2 =152 +1 =D +[4—-45>+ 3B =35 1+[(5—-45%+ 4 —35)?]
= 1.5. We reassign the data points to the nearest cluster center and update the cluster
centers again. If the cluster centers no longer change (or the change is negligible) or if
we have reached a predetermined number of iterations, we stop the process.

In this particular example, performing one additional iteration would not result in
any changes to the cluster centers, signaling that we can conclude the algorithm. The
final outcome consists of two clusters: S; = {(1,1), (2,1)} and Sy = {(4,3), (5,4)}, with
their respective cluster centers as c; = (1.5, 1) and ¢, = (4.5, 3.5).

2.2 User Profiling

User profiling is the process of extracting, integrating and identifying the keyword based
information to generate a structured profile and then visualizing the knowledge out
of these findings [8—10]. This approach transforms abstract user groups into concrete
entities with explicit features and behaviors, aiding businesses in understanding and
serving their customers accurately.

User profiles are constructed based on multidimensional user information derived
from various sources, including user behavior data from websites, apps, social media,
as well as offline consumption data. The goal of user profiling is to depict authentic and
comprehensive user characteristics and behavioral patterns. By understanding users’
actual needs through user profiling, businesses can identify differences among users
and develop personalized marketing strategies and improve the quality of products or
services accordingly.

User profiling also helps identify high-value users, who contribute the most value
to the company. By conducting in-depth analysis of this user segment, companies can
implement effective strategies to enhance user loyalty and increase consumption fre-
quency, thereby achieving sustainable business growth. User profiling is an essential tool
for businesses in the era of big data, playing a crucial role in enhancing user experience,
fostering customer loyalty, and improving competitiveness.
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3 Method

3.1 Dataset

The dataset used in this study comprises a member information table and a sales trans-
action table. The member information table includes basic information of registered
members in the department store, such as member 1D, date of birth, gender, and registra-
tion time. It consists of 194,760 entries and 4 features. The sales transaction table records
sales data in the department store, including both member and non-member transactions,
with 1,893,532 entries and 12 features such as member ID, product code, and product
price. The data spans from January 1, 2015, to January 3, 2018.

3.2 Procedure

1. Data preprocessing: Clean the data in both datasets and merge them.

2. Building member features: Select member records, consolidate purchase records for
each member, and construct 12 labels representing various aspects such as age,
age group, membership duration, gender, point level, number of purchases, pur-
chase frequency, total expenditure, consumption level, value attribute, time since
last purchase, and shopping preferences. These labels encompass basic user features,
business-related features, and interest-related features.

3. 3.Perform k-means clustering analysis on user age, number of purchases, and expen-
diture. Evaluate the optimal clustering results using Calinski-Harabasz index and the
elbow method.

4. 4.Visualize the clustering results using the WordCloud library.

4 Results

4.1 Clustering Results

In this study, the k-means algorithm was applied to perform clustering analysis on three
features of department store users: age, number of purchases, and expenditure. The
Calinski-Harabasz index (Fig. 1) and the elbow method (Fig. 2) were employed to
determine the optimal number of clusters, which was found to be 4 (Fig. 3). The resulting
clusters consisted of 13,404 users in Cluster 0, 15,016 users in Cluster 1, 230 users in
Cluster 2, and 2,651 users in Cluster 3 (Table 1). Cluster 2 exhibited the highest number of
purchases and expenditure, followed by Cluster 3. Cluster 0 and Cluster 1 had relatively
lower numbers of purchases and expenditure, with the main difference being the age
distribution. Cluster O comprised older members, while Cluster 1 consisted of relatively
younger members.

4.2 User Profiles of Each Cluster

User profiles were constructed by selecting one user from each cluster and visualizing
them using the WordCloud library. Figure 4 depicts a member from Cluster 0 with the
user code “ae32c400,” aged 52, and a member for only 34 days. They made a single
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Table 1. Coordinates of each cluster center

Cluster No. of users Age No. of Purchases Expenditure
Cluster 0 13,404 0.8536 —0.2202 —0.1489
Cluster 1 15,016 — 0.8062 — 0.2641 —0.2131
Cluster 2 230 0.3722 5.9170 7.7893
Cluster 3 2,651 0.2184 2.0961 1.2843

Note: The values have been normalized

purchase with a total expenditure of 2,625 CNY. Figure 5 represents a member from
Cluster 1 with the user code “003f9494,” aged 27, and a member for 1,071 days. They
also made a single purchase with a total expenditure of 1,220 CNY. Figure 6 represents
a member from Cluster 2 with the user code “02ccbbbd,” aged 28, and a member for
1,097 days. They made 81 purchases, with a total expenditure of 234,085 CNY. Figure 7
represents a member from Cluster 3 with the user code “ae80ec8b,” aged 43, and a
member for 1,055 days. They made 10 purchases, with a total expenditure of 65,521
CNY. These user profiles provide clear insights into the characteristics of each cluster,
facilitating customer loyalty programs and targeted marketing efforts.
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Fig. 5. User profiling of cluster 1
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5 Conclusion

The k-means clustering method is employed to effectively cluster department store users,
allowing for the construction of user profiles that provide a comprehensive understanding
of user characteristics, behaviors, and value assessment. Through the utilization of eval-
uation measures such as the Calinski-Harabasz index and the elbow method, an optimal
clustering outcome is achieved, resulting in the identification of four distinct clusters.
Each cluster is accompanied by a user profile that emphasizes significant differences
among them.

The practice of user profiling empowers department stores to comprehend target
customer segments, enabling the implementation of personalized marketing strategies
tailored to individual preferences. Moreover, it fosters the integration of online and offline
experiences, creating a seamless customer journey, and facilitates accurate prediction
of future demand trends. Given the advancements in big data and artificial intelligence
technologies, user profiling has become an indispensable tool within the retail indus-
try, contributing to improved decision-making processes and the delivery of enhanced
customer experiences.
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