
Making Data Analysis Easier: A Case Study
on Credit Card Fraud Detection Based

on PyCaret

Chang Huang, Pao-Min Tu(B), and Chun-You Lin

Dongguan University of Technology, Dongguan, China
daiyea231125@163.com, paomin.tu@dgut.edu.cn, 15821393167@139.com

Abstract. As credit card usage surges globally, associated security challenges,
particularly credit card fraud, come into sharp focus. The prevailing method of
frauddetection entails employingmachine learning algorithms—askillset necessi-
tating specialized programming and algorithmic training. This research endeavors
to mitigate this complexity by harnessing PyCaret—a streamlined data analysis
tool—for credit card fraud detection. The study constructed ten distinct machine
learning classificationmodels, leveraging Kaggle’s credit card transaction dataset,
to compare diverse models’ performance in fraud detection. Notably, the Random
Forest Classifier exhibited superior performance metrics, with an accuracy of
0.9996, an AUC of 0.9439, a recall rate of 0.8022, a precision rate of 0.9423,
an F1 score of 0.8654, and an AUPRC of 0.79, thereby indicating commend-
able performance amid severely imbalanced data. This research further highlights
PyCaret’s user-friendly programming environment and rich visualization capabil-
ities, achievable with a mere twelve lines of code. This potential for simplicity
has significant implications for reducing data analysis barriers for non-technical
practitioners while offering preliminary data exploration tools for professional
data analysts.

Keywords: data analysis · machine learning · credit card fraud detection ·
PyCaret · random forest classifier

1 Introduction

In spite of the convenience and deferred payment features offered by credit cards, they
often pose security issues, such as fraud and data breaches. To address these prob-
lems, many countries have strengthened credit card regulations, and issuing banks have
intensified their efforts to detect credit card fraud early in order to minimize losses.

Currently, there are generally three types of data analysis methods used for credit
card fraud detection. The first involves data mining methods [1, 2], the second utilizes
machine learning algorithms [3–8], and the third employs more complex deep learning
algorithms [5, 9, 10]. These three categories of algorithms have found wide applica-
tion in various credit card-related areas, including risk assessment, anti-fraud measures,
and credit scoring. However, deep learning outperforms traditional machine learning

© The Author(s) 2024
S. H. B. D. M. Zailani et al. (Eds.): ICMSEM 2023, 259, pp. 1203–1211, 2024.
https://doi.org/10.2991/978-94-6463-256-9_122

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-256-9_122&domain=pdf
https://doi.org/10.2991/978-94-6463-256-9_122

1204 C. Huang et al.

by alleviating the need for extensive feature design and enhancing modeling capabili-
ties. Nevertheless, it comes with greater requirements for computational resources and
training time.

Data analysis requires proficient programming skills and algorithm training. To mit-
igate the barriers associated with data analysis, this study aims to employ a user-friendly
data analysis tool called PyCaret to analyze credit card fraud. Compare to Sklearn, which
is designed to provide a consistent and user-friendly API catering to users who require
fine-grained control over algorithms andprocesses, PyCaret simplifies themachine learn-
ing process through a high-level API, making it well-suited for rapid prototyping and
iterative experiments [11, 12].

In this study,we constructed ten popularmachine learning classificationmodels using
a credit card transaction dataset obtained fromKaggle. By comparing the performance of
these different models in credit card fraud detection, we aimed to identify any anomalous
transaction behavior. The study has two main objectives: first, to explore the simplicity
of programming machine learning algorithms with PyCaret; and second, to investigate
the comprehensive output results offered by PyCaret.

2 Methods

2.1 Dataset

The dataset used in this study is sourced from a European credit card company and con-
sists of transaction data spanning twodays inSeptember 2013,which is publicly available
on Kaggle (https://www.kaggle.com/mlg-ulb/creditcardfraud). The dataset comprises
284,807 samples and includes 30 features. Features V1 to V28 correspond to principal
components derived through PCA, while the remaining features, namely “Time” and
“Amount,” have not undergone any PCA transformation. The “Time” feature represents
the number of seconds elapsed since the first transaction, while the “Amount” feature
denotes the transaction amount. The binary “Class” label indicates whether a transaction
is fraudulent, with 1 denoting a fraudulent transaction and 0 denoting a legitimate one.
There are a total of 492 fraudulent transactions, accounting for 0.172% of the dataset,
highlighting a significant class imbalance between the positive (fraudulent) and negative
(legitimate) classes.

2.2 Classification Algorithms

Theprimary objective ofmachine learning classification algorithms is to identify patterns
and rules within training data, facilitating the classification of previously unseen data.
Prominent classification algorithms include logistic regression, decision tree, support
vector machine, naive bayes, K-nearest neighbors, ridge regression classifier, random
forest classifier, gradient boosting classifier, adaptive boosting classifier, and LightGBM.
These algorithms employ a range of strategies and optimization techniques during the
training process, enabling the selection of a suitable classifier based on the dataset’s
characteristics and the desired performance criteria.

https://www.kaggle.com/mlg-ulb/creditcardfraud

Making Data Analysis Easier: A Case Study … 1205

3 Results

3.1 Comparison of Various Classification Algorithms

We applied ten machine learning classification algorithms, including logistic regression,
decision trees, and others, to address the classification problem. By utilizing PyCaret, we
accomplished all analyseswith a concise twelve lines of code (Appendix 6.1). Our exper-
iment encompassed a range of significant algorithms, each possessing unique strengths
suitable for different types of data and problems. Through thorough testing, we observed
that each classifier exhibited its own set of strengths and weaknesses.

Among the classifiers, the Random Forest classifier outperformed the others
(Table 1). This ensemble learning method combines multiple decision trees to enhance
classification performance. The Random Forest classifier achieved an accuracy of
0.9996, an AUC of 0.9439, a recall of 0.8022, a precision of 0.9423, an F1 score of
0.8654, a Kappa coefficient of 0.8652, and an MCC of 0.8686. These results demon-
strate high accuracy, good AUC, recall, and precision, as well as a high F1 score, Kappa
coefficient, and MCC. Based on these findings, we conclude that the Random Forest
classifier delivered the best performance for this particular task.

Random Forest classifier is an ensemble learning algorithm that combines multiple
decision trees to perform classification tasks. Each decision tree is built on random
subsets of training data and features. The Gini coefficient, also known as Gini impurity,
is an important metric used in random forests to measure the purity or impurity of a node.
It quantifies the distribution of samples across different classes within a given node.

Table 1. Comparison of ten models

Model1 Accuracy AUC Recall Precision F1 Kappa MCC

rf 0.99962 0.9439 0.8022 0.9424 0.8654 0.8652 0.8686

gbc 0.9994 0.8584 0.7386 0.8816 0.8009 0.8006 0.8052

ada 0.9993 0.9795 0.7259 0.8491 0.7812 0.7808 0.7840

lr 0.9992 0.9524 0.6623 0.8278 0.7345 0.7341 0.7394

dt 0.9991 0.8628 0.7261 0.7448 0.7331 0.7327 0.7338

ridge 0.9989 0.0000 0.4240 0.8435 0.5635 0.5630 0.5971

knn 0.9984 0.6015 0.0534 0.9250 0.1000 0.0998 0.2167

svm 0.9981 0.0000 0.0152 0.0300 0.0202 0.0199 0.0209

lightgbm 0.9963 0.7223 0.5405 0.2368 0.3257 0.3242 0.3540

nb 0.9934 0.9680 0.6499 0.1588 0.2552 0.2531 0.3191

Note: 1. rf (Random Forest Classifer); gbc (Gradient Boosting Classifier); ada (Ada Boost
Classifier);
lr (Logistic Regression); dt (Decision Tree Classifier); ridge (Ridge Classifier);
knn (K Neighbors Classifier); svm (SVM - Linear Kernel);
lightgbm (Light Gradient Boosting Machine); nb (Naive Bayes).
2. The yellow background represents the highest score for this item.

1206 C. Huang et al.

For a node with K classes, denoted as C1,C2, ...,CK , and a total of N samples in
the node, the Gini coefficient is calculated using the following formula:

Gini(p) = 1−
∑K

k=1
p2k (1)

Here, pk represents the proportion of samples belonging to class Ck with the node.
By computing the squared proportions for each class and summing them up, the result
is subtracted from 1 to obtain the Gini coefficient.

A lower Gini coefficient indicates higher purity of the node, implying that samples
within the node are more likely to belong to the same class. Random forests classifier
utilize the Gini coefficient to construct decision trees that maximize purity for each tree
and overall model performance.

The Random Forest classifier can be represented by the following formula:

Y
∧

= 1

T

T∑

t=1

ft(X) (2)

Here, Y
∧

represents the final prediction, T is the number of decision trees, and ft(X) is
the prediction of the t-th decision tree for the input feature X.

Another classifier, for example Ridge regression, is a popular regression analy-
sis method used to handle multicollinearity, where predictors are highly correlated. It
addresses the problem of overfitting by introducing a regularization term.

The goal of ridge regression is to minimize the following cost function:

J (θ) =
m∑

i=1

(yi − hθ (xi))
2 + α

n∑

j=1

θ2j (3)

Here, m is the number of samples, n is the number of features, yi is the target value for
the i-th sample, xi is the feature vector for the i-th sample, θ represents the regression
coefficients, and α is the regularization parameter.

PyCaret not only allows for the comparison of multiple models at once, but also
enables training and testing of individual models. Taking ridge regression as an exam-
ple, this study utilized the same parameter settings as shown in Table 1 and accom-
plished model training and evaluation (excluding visualization) in just five lines of code
(Appendix 6.2). The execution results are presented in Table 2.

In conclusion, Random Forest classifier is an ensemble learning algorithm that com-
bines multiple decision trees by introducing randomness. It offers improved accuracy
and robustness, making it widely used for classification tasks.

3.2 Visualization

We have visually presented the results of the Random Forest classifier using various
visualization techniques. Figure 1 showcases the ROC curve, which demonstrates the
classifier’s ability to differentiate between positive and negative classes, with an out-
standing AUC value of 0.92. Figure 2 depicts the learning curve for both the training

Making Data Analysis Easier: A Case Study … 1207

Table 2. Results of ridge regression

Fold1 Accuracy AUC Recall Precision F1 Kappa MCC

0 0.9990 0.00002 0.4744 0.8605 0.6116 0.6111 0.6385

1 0.9989 0.0000 0.4177 0.8462 0.5593 0.5588 0.5941

2 0.9987 0.0000 0.3544 0.7568 0.4828 0.4822 0.5174

3 0.9989 0.0000 0.4557 0.8372 0.5902 0.5897 0.6172

4 0.9989 0.0000 0.4177 0.9167 0.5739 0.5735 0.6184

Mean 0.9989 0.0000 0.4240 0.8435 0.5635 0.5630 0.5971

Std 0.0001 0.0000 0.0411 0.0514 0.0440 0.0440 0.0423

Note: 1. Five-fold cross-validation
2. Models that do not support the “predict_proba” attribute cannot be used for calculating the

“AUC”.

and test sets throughout the training process. The accuracy of the training set approaches
100%after 70,000 iterations,while the test set reaches its peak performance after 140,000
iterations, indicating a slight degree of overfitting.

In Fig. 3, the PR curve [13] illustrates the classifier’s balanced performance of 0.79
when confronted with an extremely imbalanced dataset, where only 0.172% of the trans-
actions are fraudulent. Figure 4 showcases the influence of discrimination threshold
variations on precision, recall, and the F1 score. It is evident that the optimal discrimi-
nation threshold is 0.48, underscoring the significance of thresholds in addressing class
imbalance issues.

The confusion matrix, presented in Fig. 5, reveals the distribution of predictions,
showing 56,856 true negatives, 66 true positives, 32 false negatives, and 8 false positives.
Figure 6 provides an overview of the classifier’s performance in both the positive and
negative classes.

Fig. 1. The ROC curve

1208 C. Huang et al.

Fig. 2. The learning curve

Fig. 3. The PR curve

Fig. 4. The discrimination threshold

Making Data Analysis Easier: A Case Study … 1209

Fig. 5. The confusion matrix

Fig. 6. The classification report

4 Conclusion

We conducted an evaluation of the classification task using ten different machine learn-
ing algorithms, and the Random Forest classifier emerged as the top performer. This
ensemble learning method, which combines predictions from multiple decision trees,
exhibited high accuracy, exceptional classification capability, and effectively balanced
precision and recall for positive cases.

Furthermore, this study highlights the user-friendly nature and comprehensive output
capabilities of PyCaret. With just twleve lines of code, analysts can seamlessly imple-
ment various classification algorithms and generate visualizations, streamlining the data
analysis process significantly.

PyCaret serves two main application scenarios. Firstly, it offers a convenient model
deployment solution for practitioners without extensive training, lowering the entry bar-
rier for data analysis. Secondly, it provides rapid data exploration tools for professional
data analysts. If the results are satisfactory, more complex machine learning frameworks
like sklearn can be employed for further optimization. Conversely, if the results fall
short of expectations, analysts can explore more intricate deep learning models for fur-
ther analysis. This approach greatly saves time during preliminary data exploration and
allows analysts to allocate more attention to subsequent analysis tasks.

1210 C. Huang et al.

Appendix

Code for Credit Card Fraud Detection Based on PyCaret

import pandas as pd
from pycaret.classification import *
input dataset
df = pd.read_csv(’./data/creditcard.csv’)
setup parameters
clf1 = setup(data=df,

target= ‘Class’,
fold= 5,
session_id= 123,
train_size= 0.8

)

create and compare allmodels.

best = compare_models()

#create random forest classifier.

rf = create_model(’rf’)
Visualization
plot_model(rf, plot=’auc’)
plot_model(rf, plot=’learning’)
plot_model(rf, plot=’pr’)
plot_model(rf, plot=’threshold’)
plot_model(rf, plot=’confusion_matrix’)
plot_model(rf, plot=’class_report’)

Code for Ridge Regression Based on PyCaret

import pandas as pd
from pycaret.classification import *
input dataset
df = pd.read_csv(’./data/creditcard.csv’)
setup parameters

clf2 = setup(data= df,
target= ‘Class’,
fold= 5,
session_id= 123,
train_size= 0.8

)

createridge regression model.

ridge = create_model(’ridge’)

Making Data Analysis Easier: A Case Study … 1211

References

1. Beigi, S., Naseri, M.R.A. (2020) Credit card fraud detection using data mining and statis-
tical methods. Shahrood University of Technology, 2. https://doi.org/10.22044/JADM.2019.
7506.1894.

2. Bhusari,V., Patil, S. (2011)Application of hiddenMarkovmodel in credit card fraud detection.
International Journal of Distributed and Parallel Systems, 2(6): 203–211.

3. Maniraj, S.P., Saini, A., Ahmed, S., Sarkar, S.D. (2019) Credit card fraud detection using
machine learning and data science. International Journal of Engineering and Technical
Research, 08(9). https://doi.org/2019.10.17577/IJERTV8IS090031.

4. Husejinović, A. (2020) Credit card fraud detection using naive Bayesian and C4.5 decision
tree classifiers. Periodicals of Engineering and Natural Sciences, 8(1): 1–5.

5. Sharma, P., Banerjee, S., Tiwari, D., Patni, J.C. (2021) Machine learning model for credit
card fraud detection- A comparative analysis. The International Arab Journal of Information
Technology, 18(6): 789–796.

6. Khatri, S., Arora, A., Agrawal, A.P. (2020) Supervised machine learning algorithms for credit
card fraud detection:A comparison. 10th International Conference onCloudComputing,Data
Science & Engineering.

7. Rezapour, M. (2019) Anomaly detection using unsupervised methods: Credit card fraud case
study. International Journal of Advanced Computer Science and Applications, 10(11): 1–8.

8. Carcillo, F., Borgne, Y.-A.L., Caelen, O., Kessaci, Y., Oblé, F., Bontempi, G. (2021) Combin-
ing unsupervised and supervised learning in credit card fraud detection. Information Sciences,
557: 317–331. https://doi.org/10.1016/j.ins.2019.05.042.

9. Fiore, U., Santis, A.D. Perla, F., Zanetti, P., Palmieri, F. (2019) Using generative adversarial
networks for improving classification effectiveness in credit card fraud detection. Information
Sciences, 479: 448–455.

10. Murli, D., Jami, S., Jog, D., Nath, S. (2014) Credit card fraud detection using neural networks.
International Journal of Students Research in Technology & Management, 2(2): 84–88.

11. Gain, U., Hotti, V. (2020) Low-code autoML-augmented data pipeline – A review and exper-
iments. Journal of Physics: Conference Series, 1828 012015. https://doi.org/10.1088/1742-
6596/1828/1/012015 .

12. Sarangpure, N., Dhamde, V., Roge, A., Doye, J., Patle, S., Tamboli, S. (2023). Automat-
ing the machine learning process using PyCaret and streamlit. 2023 2nd International Con-
ference for Innovation in Technology (INOCON). https://doi.org/10.1109/INOCON57975.
2023.10101357.

13. Davis, J. Goadrich, M. (2006). The relationship between precision-recall and ROC curves. in
Proceedings of the 23rd International Conference on Machine learning, 2006.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.22044/JADM.2019
https://doi.org/2019.10.17577/IJERTV8IS090031
https://doi.org/10.1016/j.ins.2019.05.042
https://doi.org/10.1088/1742-6596/1828/1/012015
https://doi.org/10.1109/INOCON57975
http://creativecommons.org/licenses/by-nc/4.0/

	Making Data Analysis Easier: A Case Study on Credit Card Fraud Detection Based on PyCaret
	1 Introduction
	2 Methods
	2.1 Dataset
	2.2 Classification Algorithms

	3 Results
	3.1 Comparison of Various Classification Algorithms
	3.2 Visualization

	4 Conclusion
	Appendix
	Code for Credit Card Fraud Detection Based on PyCaret
	Code for Ridge Regression Based on PyCaret

	References

