q

Check for
updates

Research on Deep Learning Vulnerability
Detection Method Based on Fusion Features

Shuai Liu® and Guan Wang

School of Information Security, University of Technology of Beijing, Beijing, China
netomark@126.com, wangguan@bjut.edu.cn

Abstract. Software security flaw is one of the most important security problems
nowadays. It may cause incalculable loss. However, today’s vulnerability detection
technologies mostly rely on a single method, such as expert rules or deep learning,
which has low scalability and fails to achieve better detection effect in the face
of complex situations. In order to achieve better results of vulnerability detection,
this paper proposes a vulnerability detection method named MF-TD based on the
combination of neural network and expert rules and fusion of two characteristics.
This method uses the combination of expert rules to highlight the semantic relation
information, deeply understand the code logic structure based on the expert rules,
and use the operation diagram to capture the statistical form and internal relation
between the codes, and finally fuse the features for detection. The effectiveness
of MF-TD was demonstrated in two different data sets.

Keywords: vulnerability detection - Neural network - Expert rules - Fusion
Features

1 Introduction

Software vulnerability detection technology is used to find software vulnerabilities, but
also an important means to ensure system security. However, since there is no uniform
attribute of software vulnerability, most cases in detecting software vulnerability are
undeterminable [1]. And through research, it is found that most software vulnerability
detection methods can only play a certain role in some cases and have certain limitations.

The most common vulnerability detection method is static vulnerability detection
based on expert rules. But this approach relies too heavily on human experts to define
characteristics. Recent studies have used deep learning to infer program structure to
identify potential software vulnerabilities in source code [2]. For example, [3] designed
a deep learning vulnerability detection system named VulDeePecker, and used the bidi-
rectional Long Short-Term Memory (LSTM) neural network for vulnerability detec-
tion, proving that the timing model has a significant effect on code semantic analysis
and extraction. Based on VulDeePecker, [4] proposed . VulDeePecker, which improves
VulDeePecker to capture only data dependent defects, and achieves higher efficiency in
multi-classification vulnerability detection by increasing control dependency. However,
for the vulnerability detection method based on deep learning, whether it can accurately

© The Author(s) 2024
P. Qi and Z. Chen (Eds.): ICBDIE 2023, AISR 178, pp. 909-914, 2024.
https://doi.org/10.2991/978-94-6463-238-5_117

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-238-5_117&domain=pdf
https://doi.org/10.2991/978-94-6463-238-5_117

910 S. Liu and G. Wang

identify the logic and semantics of complex code cannot be verified. For the detection
of complex and changeable vulnerabilities, more information should be combined to
reduce the poor detection effect caused by information loss.

Therefore, in order to improve the performance of vulnerability detection and deal
with complex and changeable vulnerabilities, a new vulnerability detection scheme
named MF-TD is proposed, which includes automatic code processing and segmentation
based on expert rules, automatic extraction of tree logical features and morphological
features dual-dimensional features, and joint modeling detection by integrating sequen-
tial model and spatial model. It can solve the problem of low detection accuracy caused
by information loss and improve the detection and recognition of covert threats.

2 Proposed Method

This paper proposes a vulnerability detection method based on a combination of neural
networks and expert rules, called MF-TD (Fusion Feature Vulnerability Detection),
which can automatically construct detection rule features by deeply understanding the
logical structure and statistical morphology of the code. This method utilizes expert
rules to construct code slice segmentation methods and build features to capture logical
relationships between codes, improve the accuracy of identifying known vulnerabilities,
and further use a high-precision deep network architecture to automatically obtain fusible
features. Extract control operation and data operation semantics from code slices, and
construct operation graph features to capture statistical patterns and internal relationships
between codes, improving the accuracy of identifying hidden vulnerabilities. MF-TD
consists of four modules, namely, Data Processing Module, Logic Feature Construction
Module, Shape Feature Learning Module, and Feature Fusion Detection Module. The
overall structure of this method is shown in Fig. 1.

2.1 Data Processing Module Based on Expert Rules

According to expert rules, attacks due to vulnerabilities often occur in the misuse of
library functions. Therefore, this paper uses a pattern extraction and data preprocessing

Data Processing Module Logic Feature | Logic Hidden
Construction Module : Feature
! Feature Fusion

i
i
|
Raw !
Codes : A - = Detection Module
,)
i |

Tree Sequential
l Structure neural
network

i
LI
: Shape Feature
i
'
.

Code Partition Based Learning Module

i
i
1
i
1
i
1
i
!
\
i
on Experts Rules }

C
C
@
@
o
@
@
C

Weight layer

| Shape Hidden
Feature

| GraphFeamre
|| construction

Fig. 1. Overall structure of MF-TD

ID-CNN

Research on Deep Learning Vulnerability Detection Method 911

void test(char *sty | | rmmen

i test()

1

2

3 int MAXSIZE=40;

:f char buf[MAXSIZE]; void test(char *str)
; if(!buf) main0) |1 3 int MAXSIZE=40;
7

8

1

return; 3

!4 char buf[MAXSIZE]:
5
3

strepy(buf, str); Fistrost theLikeary

Function calls

== 9 strcpy(buf, str) d

5 if(*buf)
strepy(buf, str);

9 int main(int arge, char **argv)

{
11 char *userstr;
12 iftarge > 1) {
13 user str = argv(1];
14 test(user str);
)

i 9 int main(int arge, char **argv) !
i 11 char *user str; H
P13 userstr=argv[l];

i 14 test(user str);

16 return 0; i

Example of Raw source code Generate the Process of slices of Code
Library Function

Fig. 2. Process example of data processing module based on expert rules

method based on library functions to extract code slices and track suspicious operation
flows. Figure 2 illustrates the basic flow of this module. First, scan the input source code
for library function calls. Secondly, match the calling parameters or variables of the
library function, find the corresponding statements, and build the flow process. Finally,
relevant statements are cut and pieced together to form a code slice for subsequent input.

2.2 Logic Feature Construction Module

The logic feature construction module takes code slice samples as input, and the specific
implementation process is as follows: First, extract the execution tree of the code slice. In
order to obtain execution logic that can understand code slices and extract the jump order
of execution, the code AST tool is used to construct an execution tree for the code slices
during the process, with operators in the root node of the execution tree. For example:
function identification, variable definition, invocation, etc. Secondly, use a language
library to define an operation command dictionary and assign command values. It is
necessary to use a language manipulation library to establish a corresponding numerical
dictionary in the form of neural network operability analysis. After that, traverse the root
node of the tree to obtain the execution logic, path, and corresponding label. Traverse the
root nodes of the tree according to the construction method of the execution tree, without
traversing the leaf nodes to remove the noise caused by different variable definitions
in different programs, and use the operation command dictionary to obtain sequence
features that have execution logic and paths and are operable by the neural network.

Finally, a sequence based neural network is constructed. This paper constructs a
BiLSTM neural network based on sequence characteristics. The sequential neural net-
work constructed in this paper consists of multiple BILSTM layers, a dense layer, and a
softmax layer. The softmax layer takes the low-dimensional vectors received from the
dense layer as input, and is responsible for the representation and formatting of classi-
fication results, providing feedback for the update of neural network parameters during
the learning phase. The output of the learning stage is a BLSTM neural network with
finely tuned model parameters. The output of this stage is the output of softmax which
is called execution logic features Ly.

912 S. Liu and G. Wang

| Operation Graph

void test(char *str)

int MAXSIZE-40;
char buf(MAXSIZE]:
if{!bul)

N 2 arge arg o
str):
6 le
7o) P¢ Casual Node .\mu;m ac

Fig. 3. Structure of shape feature learning module

2.3 Shape Feature Learning Module

Figure 3 shows the structure of the shape feature learning module based on the code
operation diagram. This module takes code slice samples as input, extracts the semantics
of control operations and data operations, constructs the features of operation graph, and,
based on the characteristics of statistical information, highlights the structural features
of key node information screening, builds the neural network model, and outputs the
fusing result features. To build the sufficient neural network, CNN can well identify
simple patterns in data and then use these patterns to form more complex patterns at
higher layers. The 1D-CNN model is proven to be effective when potential features are
obtained from shorter segments of the overall dataset and the positional correlation of
the features in the segments is not high. The present invention uses 1D-CNN in the Keras
library to establish a model, which consists of three layers of 1D-CNN, pooling layer,
activation layer, and softmax. Input the classification labels of the features and samples
predicted by the model, and output the neural network connection layer results which is
called operation diagram feature Ry.

2.4 Fusion Feature Detection Module

Combining expert rule execution logic features and operation diagram features: After
obtaining expert rule execution logic features Ly and operation diagram feature Ry, the
invention combines two dimensional features:

Xy =L ®Ry (1)

Transfer to the feedforward neural network to obtain the detection results: According
to the combined characteristics of step 31, transfer to the feedforward network composed
of two fully connected layers and one sigmoid layer, and the process is expressed as
follows:

5 = sigmoid (FC(Xy)) 2)

3 Experimental Result

This section conducts experiments on MF-TD in the context of conventional software
security vulnerability scenarios and firstly compares the experimental results with the
Flawfinder and Checkmarx, the currently popular static code vulnerability detection

Research on Deep Learning Vulnerability Detection Method 913

tools. The method in this paper is further compared with other advanced deep learning
related works Lin [5] and Vuldeepecker [3]. NVD and SARD, two data set sources com-
monly used in the field of vulnerability detection, are used for experiments on MF-TD.
Two common vulnerability types buffer error (CWE-119) and Resource management
error (CWE-399) were extracted from two sources, a total of 3330 samples. In this paper,
four metrics are commonly used in the field of vulnerability detection to evaluate the
detection performance of MF-TD. Model test performance evaluation metrics includ-
ing: accuracy rate, accuracy rate, recall rate and F1-Measure. The comparison results
are shown in Fig. 4.

As shown in Fig. 4, Fig. 4(a) and (b) respectively show the results of MF-TD and
two static code vulnerability detection tools on four detection metrics of vulnerability
CWE-199 and vulnerability CWE-399. Figure 4(c) shows the comparison of detection
effects on total samples. In the experiment of the code data set of conventional software
security vulnerabilities, the method Flawfinder and Checkmarx, a static code identifi-
cation tool based on expert rules, are also compared in this paper. The method MF-TD
proposed in this paper Flawfinder is a comparison of four metrics of the identification of
key vulnerability buffers and resource management errors. Or comprehensive software
security vulnerability data inspection, have reflected the great effect of improvement.

Figure 4(d), (e) and (f) respectively show the comparison of two kinds of vulnerabil-
ities and comprehensive detection effects of MF-TD and two advanced related works. In
the experiment of conventional software security vulnerability code data set, the method
MF-TD proposed by Lin showed 3.08%, 5.51%, 2.57% and 2.28% improvement in
accuracy, precision, recall and F1-Measure, respectively. Compared with Vuldeepecker
baseline method, there are 1.74%, 2.04, 1.72 and 1.95% improvements in the four detec-
tion indexes, respectively. Thanks to the extraction form of fusion features in this paper,
the detection effect of MF-TD has been improved in comparison with related work.

@ (b) ©

Thepicies i P Keeiss o e permo
(d) (e) U]

Fig. 4. Comparison results of MF-TD

914 S. Liu and G. Wang
4 Conclusion

Compared to existing intrusion detection systems, MF-TD (Fusion Feature Vulnerability
Detection) proposed in this paper has the following two advantages. First, it has a code
slice segmentation mode that combines expert rules, which can accurately locate vulner-
abilities and reduce false positives. Secondly, it has a dual dimensional feature extraction
method that can automatically capture the logical relationships of code execution and
the morphological and endogenous relationships of code semantics, solving the prob-
lem of low detection accuracy caused by information loss. Thirdly, it can jointly model
two dimensional features, in-depth analyze the knowledge learned from deep network
structures, and utilize the representation capabilities of neural networks to improve the
detection and recognition of hidden threats.

And the experimental results show that the method proposed in this paper has better
accuracy and effectiveness compared to traditional vulnerability detection methods.

References

1. H. G. Rice. Classes of recursively enumerable sets and their decision problems[J]. Journal of
Symbolic Logic, 1954, 19(2): 358-122.

2. N. Jovanovic, C. Kruegel, E. Kirda. Pixy: A static analysis tool for detecting web application
vulnerabilities[C]//In Proceeding of IEEE Symposium on Security and Privacy. 2006

3. Z.Li, D. Zou, S. Xu, et al. VulDeePecker: A Deep Learning-Based System for Vulnerability
Detection[J]. arXiv preprint arXiv: 1801.01681, 2018.

4. D.Zou, S. Wang, S. Xu, et al. wVulDeePecker: A Deep Learning-Based System for Multiclass
Vulnerability Detection[J]. IEEE Transactions on Dependable and Secure Computing, 2021,
18(5): 2224-2236.

5. G. Lin, J. Zhang, W. Luo, et al. Cross-project transfer representation learning for vulnerable
function discovery[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3289-3297.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	Research on Deep Learning Vulnerability Detection Method Based on Fusion Features
	1 Introduction
	2 Proposed Method
	2.1 Data Processing Module Based on Expert Rules
	2.2 Logic Feature Construction Module
	2.3 Shape Feature Learning Module
	2.4 Fusion Feature Detection Module

	3 Experimental Result
	4 Conclusion
	References

