
Teaching Reform and Practice of Software
Architecture for Postgraduates in Universities

Le Wei(B) and Qiuyun Zhao

School of Software Engineering, Chengdu University of Information Technology,
Chengdu 610225, China
weile@cuit.edu.cn

Abstract. Software architecture is a core course for postgraduates of the first-
level discipline of software engineering,with a high degree of abstraction, complex
content and strong practicality. Aiming at the current problems of outdated course
content, disconnection between theory and practice, and difficulty in achieving
course objectives in teaching, as required by academic/professional degree gradu-
ate core curriculum guidelines, the course content is optimized from five aspects:
software architecture overview, software architecture style, software architecture
description and documentation, software architecture design and software archi-
tecture evaluation, designing teaching cases of course, and giving case-driven
teaching implementation method.

Keywords: Software Architecture · Software Architecture Design · Teaching
Case Design · Case-driven teaching

1 Introduction

With the rise of software definition and the deep convergence of software and indus-
try, the scale of the software system is expanding, and the complexity is also increasing
rapidly. This has led to increasing difficulty in developing software products thatmeet the
functional and non-functional requirements of users, which is reflected in the difficulty in
ensuring the quality of software products, the continuous lengthening of software devel-
opment cycles, the high cost of software development, and the persistence of software
crises. Software architecture, also known as software architecture, is a prefabricated and
reconfigurable software framework structure, which provides a high-level abstraction
of the structure, behavior and properties of the software system. As an early design
decision of software system, software architecture plays an important role in the whole
software life cycle. For example, in the system design stage, software architecture is the
basis for system design decomposition, implementation and verification; in the project
implementation phase, software architecture is the basis for division of work, person-
nel arrangement, organization and coordination, and performance management; in the
project testing phase, the software architecture is the basis for performance testing and
review; in the maintenance and upgrade phase, the software architecture is the basic

© The Author(s) 2023
L. F. Ying et al. (Eds.): ICELA 2022, ASSEHR 730, pp. 468–474, 2023.
https://doi.org/10.2991/978-2-38476-004-6_58

http://crossmark.crossref.org/dialog/?doi=10.2991/978-2-38476-004-6_58&domain=pdf
https://doi.org/10.2991/978-2-38476-004-6_58


Teaching Reform and Practice of Software Architecture 469

model for software system modification, expansion and upgrade. Therefore, the train-
ing of software architects with the ability to build the core architecture of the system,
clarify technical details, and clear major difficulties [1] has become an important goal
of the professional talents training in software engineering in China. In the short term,
the training of software architects can help software enterprises improve the quality of
software products, reduce development costs, promote the timely delivery of projects,
and improve the rationality of project management. Academic education provides the
necessary and systematic knowledge system for software architects, and is the main way
to train software architects. Therefore, it is of great significance to carry out in-depth
research on the training methods and approaches of software architects in academic edu-
cation. It is beneficial to cultivate talents needed by the industry, improve the software
design ability, promote high-end software research and development, and promote the
development of the software industry.

Postgraduate education plays an important role in cultivating high-level specialized
talentswith innovative ability, entrepreneurial ability and practical ability. Therefore, it is
important to cultivate advanced engineering and technical talents with applied software
architecture design ability to adapt to the development needs of software industry. In
2020, the Office of the Academic Degrees Committee of the State Council organized
public publication Core Course Guide for Academic Degree Postgraduates (Trial) and
Core Course Guide for Professional Degree Postgraduates (Trial), clearly pointing out
that the software architecture course should be offered by themaster students of software
engineering, and preliminarily clarifying the teaching objectives and contents of the
course. Currently, domestic universities have carried out relevant research on how to
improve the teaching quality of software architecture courses and have gained a series
of experiences. Tongji University [2] gives software architecture curriculum construction
plan, from three aspects: content, course practice project, and teaching effect evaluation;
Zhejiang Normal University [3] practices the teaching method of flipped classroom in
the course of software architecture; Nanjing Audit University [4] practices cross-case
practice teaching method in software architecture course; Xidian University [5] has
carried out the teaching exploration and practice of software architecture course based
onmutual assistance; ShandongAgriculturalUniversity [6] applies the theory of learning
transfer to the teaching of software architecture; University of Science and Technology
of China [7] proposes a methodology for teaching software architecture based on agile
software development. National University of Defense Technology [8] has proposed and
implemented a software architecture curriculum teaching programs based on case-based
teaching, flipping of classrooms and open source software.

Taken together, many universities have carried out a series of research and prac-
tice in the teaching of software architecture courses, and have achieved some results.
However, duo to the software architecture course has the characteristics of high degree
of abstraction, complex content, strong practicality, as well as the short duration of the
course, the problem that the course teaching cannot meet the requirements of the indus-
try for software architects always exists, and shows a trend of gradually increasing the
gap. Hence, this paper aims at the training of master’s students majoring in software
engineering in ordinary universities, combined with the core course guide of academic



470 L. Wei and Q. Zhao

(professional) degree graduates, to conduct research on the teaching content and teach-
ing methods of software architecture courses, and explores effective ways to cultivate
software architects who meet the needs of the industry.

2 Reform of Course Content

Software architecture involves software engineering, network, database, operating sys-
tem and many other knowledge, and the course content is complex; the course also
lacks mature and classical teaching materials and teaching cases. Considering the few
credit hours allocated to the course at the postgraduate level, universities must com-
bine their own professional talent cultivation objectives and positions, referring to the
core curriculum guidelines for academic (professional) degree postgraduates, and rea-
sonably design the course content under the premise of cultivating qualified software
architects. The purpose of the software architecture course is to introduce the princi-
ples and methods of software architecture connotation, software architecture modeling,
software architecture design methods, analysis and evaluation, and through case studies,
students are cultivated with the ability to design and analyze the architecture of software
systems of a certain scale, so that the students can make the best architecture design
decisions for realistic concrete systems, thus adequately develop the students’ ability to
think abstractly, analyze and design global-oriented systems, apply knowledge to solve
practical problems, and think independently and innovatively[9]. As a consequence,
the software architecture course of our university mainly covers five aspects: software
architecture overview, software architecture style, software architecture description and
archiving, software architecture design and software architecture evaluation.

2.1 Software Architecture Overview

This part startingwith the software crisis, the definition of software architecture, develop-
ment history, research content, role, research significance, research status, development
direction and responsibilities of software architects are introduced, so that students can
have a preliminary understanding of software architecture, understanding that software
architecture has an important impact on the success or failure of software projects, and
understanding the knowledge required for software architects.

2.2 Software Architecture Style

Software architecture style describes the customary pattern of how families of software
systems are organized in a particular domain, reflecting the structural and semantic
characteristics common to many systems in the domain, and guiding how modules and
subsystems can be effectively organized into a complete system, so software architec-
ture style is one of the key elements of the course. This part includes classic architec-
ture style and mainstream architecture style, where classic architecture styles include
data flow style (batch processing sequence; pipeline/filter), call/return style (main pro-
gram/subprogram, object-oriented style, hierarchical structure), independent compo-
nent style (process communication, event system), virtual machine style (interpreter,



Teaching Reform and Practice of Software Architecture 471

rule-based system) and repository style (database system, hypertext system, black-
board system). Mainstream architecture styles include network-based software archi-
tecture style, platform/plug-in architecture style, client/server style, service-oriented
architecture style, cloud architecture style, big data architecture style and microservice
architecture style (Serverless, ServiceMesh).

2.3 Software Architecture Description and Archiving

Themain function of software architecture description is to use graphics, text, mathemat-
ical expressions, etc. to describe the main characteristics of software, mainly including
graphical visualizationmethods andADLmethods. This part first introduces the software
architecture description method, then introduces the software architecture description
language ADL, the use of UML to describe the software architecture, and the use of 4
+ 1 model to describe the software architecture, and finally introduces the method of
writing software architecture documents.

2.4 Software Architecture Design

Software architecture design is the key to software development, so this part is also
one of the main contents of the course. This part first introduces the characteristics of
software bad design and the basic principles of software design; then focus on object-
oriented design methods, object-oriented design principles and common design pat-
terns(Abstract Factory, Factory Method, Singleton, Adapter, Composite, Façade, Proxy,
Command, Iterator, Observe, Strategy) will be explained; subsequently, based on a
brief introduction of artifact-driven, use-case-driven, pattern-driven, and domain-driven
approaches, key quality attribute-driven architecture design approach (ADD, Attribute
Driven Design) will be explained emphatically, and the key quality attributes are sum-
marized as Availability, Modifiability, Performance, Security, Testability, and Usability,
with descriptions of key quality attribute scenarios and related strategies for improving
key quality attributes, and analysis of software architecture design steps driven by key
quality attributes with cases.

2.5 Software Architecture Evaluation

Evaluation of the software architecture is the key to determining whether the chosen
architecture for the software system is appropriate and to ensure that a successful software
product can be developed successfully according to the chosen architecture. This part
first introduces themain approaches to software architecture evaluation, and then focuses
on the specific implementation steps of the ATAM evaluation methodology.

3 Reform of Case-Driven Course Teaching Methods

The basic concepts, principles and methods of software architecture are the extraction
and sublimation of common features of software systems inmany different domains [10].
Comparing with the software engineering courses that students are usually exposed to,



472 L. Wei and Q. Zhao

the content is more abstract and difficult for students to understand and comprehend.
Meanwhile, software architecture is a course with strong practicality. So, it is difficult
for students who is in the absence of practical software project design experience to
understand abstract principles and methods, and far from the application of theoretical
knowledge to complete the architecture design of a large complex software system.
Case-driven course teaching is an open and interactive new teaching method, which
incorporates students into case scenarios by simulating and reproducing some scenarios
in life, so that the connotation andvalue of the learnedknowledgepoints [4]will be deeply
appreciated by students. As a consequence, the introduction of the case study method
into the teaching of software architecture will promote students’ mastery of theoretical
knowledge on the one hand, and help students to clarify how theory is integrated into
practice through cases on the other hand, so as to improve students’ engineering practice
ability.

3.1 Design of Teaching Cases

The teaching cases are designed according to the principle of “moderate difficulty, inclu-
sive theory and hierarchical progression”. Moderate difficulty means that the designed
cases should meet the actual knowledge level of most students, because master students
come from different undergraduate universities, and the curriculum system at the under-
graduate level is not the same, so it is necessary to design targeted teaching cases on the
basis of researching students’mastery of knowledge, and cases that are too difficult or too
easy will not achieve the expected effect. Inclusive theory means that the teaching case
should be able to cover the main theoretical knowledge involved in the course, because
the course explains the general knowledge of software architecture, so it is unrealistic to
design a case that covers all the knowledge points, but if the case covers too few knowl-
edge points, it cannot play the role of combining the theory and practice of the case.
Hierarchical progression means that the designed cases should cover the three levels of
“point-line-surface”, including cases covering single knowledge points, cases covering
multiple knowledge points, and comprehensive cases covering most of the knowledge
points. In particular, it should be pointed out that through case is a comprehensive case,
which can be decomposed to achieve the integration of “point-line-surface”. According
to the design principles, a series of teaching cases had been designed, such as for each
software design pattern, relevant design cases were designed, including the use of system
operation logger cases suitable for factory method mode, skin library cases suitable for
abstract factory mode, toy car control software cases suitable for adapter mode, antivirus
software cases suitable for combination mode, etc.; a case of a communication business
system supporting coalmine safety production and a case of a garage door control system
were designed for the architecture design method driven by key quality attributes. The
case of “key word in context (KWIC)” was designed according to the classic architec-
ture style; MapReduce cases were designed for big data architecture styles; the Alibaba
Cloud cases were designed for the cloud computing architecture style; industrial APP
cases were designed for the microservice style; online shopping system was designed
for client/server style; academic Management System and Library Management System
cases were designed for software architecture description.



Teaching Reform and Practice of Software Architecture 473

3.2 The Practice of Case-Driven Teaching Method

Based on the designed cases, the case-driven teaching method had been adopted in the
software architecture lectures as follows:

1. Grouping of students
The whole class will form a group of 3–5 students on a voluntary basis, and each
group will elect a leader. The group will be divided into different roles such as
requirements analyst, architect, module developer, document writer and architecture
evaluator according to the practice of software engineering projects.

2. Case-driven theory teaching session
In the theoretical classes, teachers combined case studies to explain the relevant
knowledge. The lectures focus on the guidance of students, and through questions,
group discussions, flipped classroom methods to increase the degree of student par-
ticipation in teaching, inspiring students to think, closing the gap between the class-
room and the real project. Outside of class, similar cases would be issued to students
as practice tasks, and students would be asked to work in groups to complete the
analysis of the cases, thus deepening their mastery of the theoretical knowledge.

3. Case-driven practical teaching session
Considering that our software architecture course only has 32 h, there are no ded-
icated practical hours in the course. However, in response to the fact that stu-
dents had already completed their undergraduate level courses, we put the prac-
tical sessions outside of class and require students to complete a software architec-
ture design in groups, including tasks such as requirements analysis, architecture
style selection, top-level architecture design, enhancement strategies for key quality
attributes, class/package/service design and database design, writing relevant docu-
ments, describing them according to the 4 + 1 view or UML, evaluating each other
by cross-evaluation between groups, and presenting a defense, which is counted in
the examination. The project is completed by students themselves. Teachers only
need to control the overall direction and provide necessary guidance for answering
questions, but will not involve details. Through the introduction of cases in the prac-
tice link, enthusiasm and initiative of students in learning can be brought into full
play and their engineering practice ability could be improved.

4 Conclusion

Software architecture design is an important software design decision made by software
architects from a macro and global perspective in software life cycle activities. Software
architecture is a course on the design and analysis of the overall high-level structure of
large and complex software systems. In accordance with the requirements of the core
curriculum guidelines for academic/professional degree graduate students and the actual
situation of Chengdu University of Information Technology, the teaching contents of the
software architecture course were optimized, the design principles of teaching cases and
typical cases were given, and the case-driven course teaching method was practiced.
Through the reform of the course, the abstract thinking ability, engineering practice
ability and innovation ability of students were cultivated, and a favorable technical



474 L. Wei and Q. Zhao

foundation was laid for students to work in software enterprises and engage in scientific
research in the field of software engineering.

Acknowledgement. This work was support by the 2021 Graduate education reform project by
Chengdu University of Information Technology (CUITGOKP202106).

References

1. Y. Sun, S. G. Chen, Z. G.Wang, et al. The course construction of “Software System Architec-
ture” based on real project cases, Journal of Jinling Institute of Technology (Social Science),
vol. 32, pp. 58-62, 2018.

2. Y. Shen, L. Zhang. Teaching practice of Software architecture for graduate courses, Computer
Education, pp. 140-144, 2017.

3. Z. G. Ding. The practice of flipped classroom in Software Architecture course teaching,
Computer Education, pp. 68–71, 2017.

4. J. J. Huang, P. W. Li. The application of penetrating case and practical teaching method in
Software Architecture course, Software Guide, vol. 19, pp. 249-251, 2020.

5. Y. S. Lin, Q. S. Li, L. Bao, et al. Exploration and practice of teaching method of Software
Architecture based on mutual learning and application, Software Guide, vol. 21, pp. 11-13,
2022.

6. Q. Zhou, Z. J. Wang. The application of learning transfer theory in Software architecture
teaching, Computer Education, pp. 175–178, 2019.

7. J. Ding. Research on SoftwareArchitecture Teaching based onAgile Development, Computer
Education, pp. 59–62, 2018.

8. T. Li, Y. J. Wen, W. W. Liu, et al. Software Architecture course teaching reform planning and
implementation, Computer Education, pp. 19-21, 2015.

9. National Professional Degree Graduate Education Steering Committee. Core Curriculum
Guide for Professional Degree PostGraduates (I) (Trial), Beijing: Higher Education Press,
2020, pp. 419-421.

10. T. K. Li. Teaching content design of applied undergraduate Software Architecture course,
Computer Education, pp. 120–123, 2018.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	Teaching Reform and Practice of Software Architecture for Postgraduates in Universities
	1 Introduction
	2 Reform of Course Content
	2.1 Software Architecture Overview
	2.2 Software Architecture Style
	2.3 Software Architecture Description and Archiving
	2.4 Software Architecture Design
	2.5 Software Architecture Evaluation

	3 Reform of Case-Driven Course Teaching Methods
	3.1 Design of Teaching Cases
	3.2 The Practice of Case-Driven Teaching Method

	4 Conclusion
	References




