Symmetry Functions with Respect to Any Point in \boldsymbol{R}^{n} and Their Properties

Firdaus Ubaidillah*

Department of Mathematics Faculty of Mathematics and Natural Sciences
University of Jember - Jember 68121 Indonesia
*Corresponding author. Email: firdaus_u@yahoo.com

Abstract

A function $f: R \rightarrow R$ is said to be an odd function if $f(-x)=-f(x)$ for every x in R. The graph of an odd function is symmetric with respect to the origin, that is the point $(0,0)$. The aims of this paper are to generalize odd functions on R^{n} and introduce symmetry functions with respect to any point in R^{n}. Further, this paper discusses some properties of odd functions on R^{n} and symmetry functions with respect to any point in R^{n}.

Keywords: Odd function, Symmetry function, Symmetric graph.

1. INTRODUCTION

A real-valued function $f: R \rightarrow R$ is said to be odd (respectively, even) on R if $f(-x)=-f(x)$ (respectively, $f(-x)=f(x)$) for all x in R. The graph of a odd (respectively, even) function is symmetric with respect to the origin (respectively, yaxis). In 2009, Bo Lin and Men gave several basic properties of odd functions [1]. In 2011, Balaich and Ondrus generalized odd and even complex-valued functions [2]. Ubaidillah generalized even real-valued functions on R^{n} [3].

In this paper, I will present definitions of an odd function on R^{n} and a symmetry function with respect to any point in R^{n}, some properties and examples of odd functions on R^{n} and symmetry functions with respect to any point in R^{n}.

2. PRELIMINARIES

The notations and terminologies used in this section from [4]. R and N denote the set of all real numbers and positive integer numbers, respectively. For every $n \in \mathrm{~N}$, let R^{n} denote the n -fold Cartesian product of R with itself; i.e.,

$$
R^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in R \text { for } i=1,2, \ldots, n\right\}
$$

The positive integer n is called the dimension of R^{n}, an element $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of R^{n} is called point or vector, and the numbers x_{i} are called components, of \boldsymbol{x}. Two vectors $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$ and $\boldsymbol{y}=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in R^{n}$ are said to be equal if and only if
$x_{i}=y_{i}$ for every $i=1,2, \ldots, n$. The zero vector is the vector $\mathbf{0}:=(0,0, \ldots, 0)$. When $n=2$, we usually denote the components of \boldsymbol{x} by x and y.

We have already encountered the sets R^{n} for small $n . R^{1}=R$ is the real line; we shall call its elements scalars. R^{2} is the $x y$ plane used to graph functions of the form $y=f(x)$. And R^{3} is the $x y z$ space used to graph functions of the form $z=f(x, y)$.

In this section, we begin to study functions of several variables by examining the algebraic structure of R^{n}. That structure is described in the following definition.

Definition 1. Let $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$ and $\boldsymbol{y}=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in R^{n}$ be vectors and $\alpha \in R$ be a scalar.
(i) The addition of \boldsymbol{x} and \boldsymbol{y} is the vector

$$
\boldsymbol{x}+\boldsymbol{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)
$$

(ii) The subtraction of \boldsymbol{x} and \boldsymbol{y} is the vector

$$
\boldsymbol{x}-\boldsymbol{y}=\left(x_{1}-y_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}\right) .
$$

(iii) The product of a scalar α and a vector \boldsymbol{x} is the vector

$$
\alpha \boldsymbol{x}=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right) .
$$

(iv) The scalar product or multiplication of \boldsymbol{x} and \boldsymbol{y} is the scalar

$$
\boldsymbol{x} \cdot \boldsymbol{y}=\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right) .
$$

The properties in following theorem are direct consequences of Definition 1 and corresponding properties of real numbers.
Theorem 2. On the R^{n}, two operations addition (+) and multiplication (\cdot) and a product of scalar satisfy the following properties:
(i) $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{x}$ for every $\boldsymbol{x}, \boldsymbol{y} \in R^{n}$;
(ii) $(x+y)+z=x+(y+z)$ for every $x, y, z \in$ R^{n}
(iii) $\mathbf{0}+\boldsymbol{x}=\boldsymbol{x}+\mathbf{0}=\boldsymbol{x}$ for every $x \in R^{n}$;
(iv) $\boldsymbol{x}+(-\boldsymbol{x})=(-\boldsymbol{x})+\boldsymbol{x}=\mathbf{0}$;
(v) $\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{y} \cdot \boldsymbol{x}$ for every $\boldsymbol{x}, \boldsymbol{y} \in R^{n}$;
(vi) $\alpha(\beta \boldsymbol{x})=\beta(\alpha \boldsymbol{x})=(\alpha \beta) \boldsymbol{x}$ for every $\boldsymbol{x} \in R^{n}$ and $\alpha, \beta \in R$;
(vii) $\alpha(\boldsymbol{x}+\boldsymbol{y})=\alpha \boldsymbol{x}+\alpha \boldsymbol{y}$ for every $\boldsymbol{x}, \boldsymbol{y} \in R^{n}$ and $\alpha \in R$;
(viii) $\alpha(\boldsymbol{x} \cdot \boldsymbol{y})=(\alpha \boldsymbol{x}) \cdot \boldsymbol{y}$ for every $\boldsymbol{x}, \boldsymbol{y} \in R^{n}$ and $\alpha \in R$;
(ix) $1 \boldsymbol{x}=\boldsymbol{x} 1=\boldsymbol{x}$ for every $\boldsymbol{x} \in R^{n}$;
(x) for each $\boldsymbol{x} \neq \mathbf{0}$ in R^{n} there exitsts an element $x^{-1} \in R^{n}$ such that $x \cdot x^{-1}=x^{-1} \cdot x=1 ;$
(xi) $\boldsymbol{x} \cdot(\boldsymbol{y}+\boldsymbol{z})=\boldsymbol{x} \cdot \boldsymbol{y}+\boldsymbol{x} \cdot \boldsymbol{z}$ for every $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in$ R^{n};

The following definition is a norm in R^{n} and distance between two points in R^{n}.

Definition 3. Let $\boldsymbol{x}, \boldsymbol{y} \in R^{n}$.
(i) The norm of \boldsymbol{x} is the scalar

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

(ii) The distance between two points \boldsymbol{x} and \boldsymbol{y} is the scalar

$$
d(\boldsymbol{x}, \boldsymbol{y})=\|\boldsymbol{x}-\boldsymbol{y}\|
$$

The analogy between the absolute value and the norm is further reinforced by the following result.

Theorem 4. Let $\boldsymbol{x}, \boldsymbol{y} \in R^{n}$. Then
(i) $\|x\| \geq 0$ and $\|x\|=0$ if and only if $\boldsymbol{x}=\mathbf{0}$;
(ii) $\|\alpha x\|=|\alpha|\|x\|$ for every scalars $\alpha \in R$.
(iii) $\|x+y\| \leq\|x\|+\|y\|$.

3. RESULTS AND DISCUSSION

We begin to introduce a terminology of an odd function on R^{n}.
Definition 5. A function $f: R^{n} \rightarrow R$ is said to be odd on R^{n} if $f(-\boldsymbol{x})=-f(\boldsymbol{x})$ for every \boldsymbol{x} in R^{n}.

For instance, a function $f: R^{2} \rightarrow R$ defined by $f(\boldsymbol{x})=$ $f(x, y)=2 x y^{2}-x^{2} y$ is an odd function on R^{2}, because

$$
\begin{aligned}
& f(-x)=f(-x,-y) \\
& =2(-x)(-y)^{2}-(-x)^{2}(-y) \\
& =-2 x y^{2}+x^{2} y
\end{aligned}
$$

$$
\begin{aligned}
& =-\left[2 x y^{2}-x^{2} y\right] \\
& =-f(\boldsymbol{x})
\end{aligned}
$$

While the function $g: R^{3} \rightarrow R$ defined by $g(x)=$ $g(x, y, z)=3 x y^{2} z-x^{2} \sin (y+z)$ is not an odd function on R^{3}, because

$$
\begin{aligned}
g(-\boldsymbol{x}) & =g(-x,-y,-z) \\
& =3(-x)(-y)^{2}(-z)-(-x)^{2} \sin (-y-z) \\
& =3 x y^{2} z+x^{2} \sin (y+z) \\
& \neq-g(\boldsymbol{x}) .
\end{aligned}
$$

The graph of an odd function on R^{n} is symmetric with respect to the point $\boldsymbol{x}=\mathbf{0} \in R^{n}$. The graph of the odd function $f(\boldsymbol{x})=f(x, y)=2 x y^{2}-x^{2} y$ is illustrated in Figure 1.

Figure 1 The graph of the function $f(x, y)=2 x y^{2}-$ $x^{2} y$.

Theorem 6. If f is an odd function on R^{n}, then $f(\mathbf{0})=0$.

Proof. Since $\mathbf{0}=-\mathbf{0}$ and f is an odd function on R^{n}, we have

$$
f(\mathbf{0})=f(-\mathbf{0})=-f(\mathbf{0})
$$

Therefore, we have $2 f(\mathbf{0})=0$. Thus we conclude $f(\mathbf{0})=0$.

Theorem 7. If f and g are odd functions on R^{n}, then
(i) αf, for every $\alpha \in R$; and
(ii) $f+g$,
are odd functions on R^{n}.
Proof. (i) Suppose that f is an odd function on R^{n} and $\alpha \in R$. Then for every $\boldsymbol{x} \in R^{n}$, we obtain

$$
\begin{aligned}
(\alpha f)(-\boldsymbol{x})= & \alpha[f(-\boldsymbol{x})] \\
& =\alpha[-f(\boldsymbol{x})] \\
& =-\alpha[f(\boldsymbol{x})]
\end{aligned}
$$

$$
=-(\alpha f)(\boldsymbol{x})
$$

Thus, αf is an odd function on R^{n}.
(ii). Suppose that f and g are odd functions on R^{n}.

Then, for every $\boldsymbol{x} \in R^{n}$, we obtain

$$
\begin{aligned}
(f+g)(-\boldsymbol{x}) & =f(-\boldsymbol{x})+g(-\boldsymbol{x}) \\
& =-f(\boldsymbol{x})-g(\boldsymbol{x}) \\
& =-(f(\boldsymbol{x})+g(\boldsymbol{x})) \\
& =-(f+g)(\boldsymbol{x})
\end{aligned}
$$

Then, $f+g$ is an odd function on R^{n}.
Theorem 8. Let $D=\left\{\boldsymbol{x} \in R^{n}:\|x\| \leq r\right\}$ be a closed ball centered at $\mathbf{0}$ of radius r and let $f: D \rightarrow R$ be a function that integrable on D. If f is an odd function on R^{n}, then
$\int_{D} f(\boldsymbol{x}) d \boldsymbol{x}=0$.
As illustrations of the Theorem 8, given two examples integral of odd function that defined on closed ball centered at $\mathbf{0}$ of radius $r>0$.
Example 9. Let $D=\left\{\boldsymbol{x} \in R^{2}:\|x\| \leq 1\right\}$ and let $f: D \rightarrow R$ be a function that defined by $f(x, y)=$ $\sin (x+y)$.

It is clear that f is an odd function on R^{2} and is integrable on D. By changing the order of integration and a property of odd function, that is $\int_{-r}^{r} f(x) d x=$ 0 , we obtain

$$
\begin{aligned}
& \int_{D} f(\boldsymbol{x}) d \boldsymbol{x}=\int_{D} f(\boldsymbol{x}) d A \\
& =\int_{x=-1}^{1}\left(\int_{y=-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sin (x+y) d y\right) d x \\
& =\int_{x=-1}^{1}\left(\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}[\sin x \cos y+\cos x \sin y] d y\right) d x \\
& =\int_{x=-1}^{1}\left(\int_{y=-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sin x \cos y d y\right) d x \\
& =\int_{y=-1}^{1}\left(\int_{x=-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \sin x \cos y d x\right) d y \\
& =\int_{y=-1}^{1} 0 d y=0
\end{aligned}
$$

Example 10. Let $D=\left\{\boldsymbol{x} \in R^{3}:\|\boldsymbol{x}\| \leq a\right\}$ and let $g: D \rightarrow R$ be a function that defined by $g(x, y, z)=$ $\mathrm{x}+\mathrm{yz}^{2}$.
Denote $\quad g=g_{1}+g_{2} \quad$ with $\quad g_{1}(x, y, z)=x \quad$ and $g_{2}(x, y, z)=y z^{2}$. It is clear that g_{1} and g_{2} are odd functions on R^{2}. By changing the order of integration, we obtain

$$
\begin{aligned}
& \int_{D} g(x, y, z) d x=\int_{D} g(x, y, z) d V \\
& =\int_{D}\left[g_{1}(x, y, z)+g_{2}(x, y, z)\right] d V \\
& =\int_{-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \int_{-\sqrt{a^{2}-x^{2}+y^{2}}}^{\sqrt{a^{2}-x^{2}-y^{2}}}\left[x+y z^{2}\right] d z d y d x \\
& =\int_{-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \int_{-\sqrt{a^{2}-\left(x^{2}+y^{2}\right)}}^{\sqrt{a^{2}-\left(x^{2}+y^{2}\right)}} x d z d y d x \\
& +\int_{-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \int_{-\sqrt{a^{2}-\left(x^{2}+y^{2}\right)}}^{\sqrt{a^{2}-\left(x^{2}+y^{2}\right)}} y z^{2} d z d y d x \\
& =\int_{z=-a}^{a} \int_{-\sqrt{a^{2}-z^{2}}}^{\sqrt{a^{2}-z^{2}}}\left(\int_{-\sqrt{a^{2}-\left(y^{2}+z^{2}\right)}}^{\sqrt{a^{2}-\left(y^{2}+z^{2}\right)}} x d x\right) d y d z \\
& +\int_{x=-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}}\left(\int_{-\sqrt{a^{2}-\left(x^{2}+z^{2}\right)}}^{\sqrt{a^{2}-\left(x^{2}+z^{2}\right)}} y z^{2} d y\right) d z d x \\
& =\int_{z=-a}^{a} \int_{-\sqrt{a^{2}-z^{2}}}^{\sqrt{a^{2}-z^{2}}} 0 d y d z \\
& +\int_{x=-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} 0 d z d x \\
& =0+0=0 \text {. }
\end{aligned}
$$

We now introduce a terminology of a symmetry function with respect to any point in R^{n} and its properties. We begin with a definition.
Definition 11. Let $\boldsymbol{a} \in R^{n}$ and let $f: R^{n} \rightarrow R$ be a function. Function f is said to be symmetry with respect to the point \boldsymbol{a} in R^{n} if there is a function h on R^{n} that defined by

$$
h(\boldsymbol{x})=f(\boldsymbol{x}+\boldsymbol{a}), \text { for all } \boldsymbol{x} \text { in } R^{n}
$$

such that h is an odd function on R^{n}.

For instance, a function $f: R^{3} \rightarrow R$ that defined by $f(\boldsymbol{x})=f(x, y, z)=x y^{2}-y^{2}-z+2$ is a symmetry function with respect to the point $\boldsymbol{a}=(1,0,2) \in R^{3}$, because

$$
\begin{aligned}
h(\boldsymbol{x}) & =f(\boldsymbol{x}+\boldsymbol{a}) \\
& =f(x+1, y, z+2) \\
& =(x+1) y^{2}-y^{2}-(z+2)+2 \\
& =x y^{2}-z
\end{aligned}
$$

is an odd function on R^{3}.
The graph of a symmetry function with respect to any point $\boldsymbol{a} \in R^{n}$ is symmetric with respect to the point $\boldsymbol{a} \in R^{n}$.

Theorem 12. If f is a symmetry function with respect to the point $\boldsymbol{a} \in R^{n}$, then $f(\boldsymbol{a})=0$.
Proof. Since f is a symmetry function with respect to $\boldsymbol{a} \in R^{n}$, based on Definition 11, there is h an odd function on R^{n} such that
$h(x)=f(x+a)$.
Based on the Theorem 6, we have $h(\mathbf{0})=0$. Then
$0=h(\mathbf{0})=f(\mathbf{0}+\boldsymbol{a})=f(\boldsymbol{a})$.
Thus, it satisfies $f(\boldsymbol{a})=0$.

Theorem 13. Let $\boldsymbol{a} \in R^{n}$, let $D=\left\{\boldsymbol{x} \in R^{n}: \| \boldsymbol{x}-\right.$ $\boldsymbol{a} \| \leq r\}$, and let $f: D \rightarrow R$ be a function that integrable on D. If f is a symmetry function with respect to the point $\boldsymbol{a} \in R^{n}$, then
$\int_{D} f(\boldsymbol{x}) d \boldsymbol{x}=0$.
Proof. Suppose that $\boldsymbol{x}-\boldsymbol{a}=\boldsymbol{u}$. Then, we have $d \boldsymbol{x}=$ $d \boldsymbol{u}, D^{\prime}=\left\{\boldsymbol{u} \in R^{n}:\|\boldsymbol{u}\| \leq r\right\}$, and $f(\boldsymbol{x})=f(\boldsymbol{u}+\boldsymbol{a})$. Since f is a symmetry function with respect to the point $\boldsymbol{a} \in R^{n}$, based on the Definition 11, there is an odd function h on R^{n} such that $h(\boldsymbol{u})=f(\boldsymbol{u}+\boldsymbol{a})$. Therefore, we have
$\int_{D} f(\boldsymbol{x}) d \boldsymbol{x}=\int_{D^{\prime}} f(\boldsymbol{u}+\boldsymbol{a}) d \boldsymbol{u}=\int_{D^{\prime}} h(\boldsymbol{u}) d \boldsymbol{u}$.
Based on the Theorem 8, we obtain
$\int_{D^{\prime}} h(\boldsymbol{u}) d \boldsymbol{u}=0$.
Thus, we conclude $\int_{D} f(\boldsymbol{x}) d \boldsymbol{x}=0$.

ACKNOWLEDGMENT

I would like to thank to the head of LP2M University of Jember Indonesia for Stimulus Penelitian number 14737/UN25/LT/2021.

REFERENCES

[1] Bo Li and Y. Men, Basic Properties of Even and Odd Functions, Formalized Mathematics Vol. 17, No. 2, 2009, pp. 187-192 DOI: https://10.2478/v10037-009-0022-x
[2] M. Balaich and M. Ondrus, A generalization of even and odd functions, Involve vol. 4 no. 1, 2011, pp. 91-102. DOI: https://doi.org/10.2140/involve.2011.4.91
[3] F. Ubaidillah, Fungsi simetri terhadap garis $x=a$ dan sifat-sifatnya, Majalah Ilmiah Matematika dan Statistika vol. 20 no 2, 2020, pp.45-52. DOI: https://doi.org/10.19184/mims.v20i2.19623
[4] W. R. Wade, An Introduction to Analysis, $4^{\text {th }}$ Edition, Pearson Prentice Hall, 2014

