

Advances in Computer Science Research, volume 96 Proceedings of the International Conference on Mathematics, Geometry, Statistics, and Computation (IC-MaGeStiC 2021)

Symmetry Functions with Respect to Any Point in *Rⁿ* and Their Properties

Firdaus Ubaidillah*

Department of Mathematics Faculty of Mathematics and Natural Sciences University of Jember – Jember 68121 Indonesia *Corresponding author. Email: firdaus_u@yahoo.com

ABSTRACT

A function $f : R \to R$ is said to be an odd function if f(-x) = -f(x) for every x in R. The graph of an odd function is symmetric with respect to the origin, that is the point (0,0). The aims of this paper are to generalize odd functions on R^n and introduce symmetry functions with respect to any point in R^n . Further, this paper discusses some properties of odd functions on R^n and symmetry functions with respect to any point in R^n .

Keywords: Odd function, Symmetry function, Symmetric graph.

1. INTRODUCTION

A real-valued function $f: R \to R$ is said to be *odd* (respectively, *even*) on R if f(-x) = -f(x) (respectively, f(-x) = f(x)) for all x in R. The graph of a odd (respectively, even) function is symmetric with respect to the origin (respectively, y-axis). In 2009, Bo Lin and Men gave several basic properties of odd functions [1]. In 2011, Balaich and Ondrus generalized odd and even complex-valued functions [2]. Ubaidillah generalized even real-valued functions on R^n [3].

In this paper, I will present definitions of an odd function on \mathbb{R}^n and a symmetry function with respect to any point in \mathbb{R}^n , some properties and examples of odd functions on \mathbb{R}^n and symmetry functions with respect to any point in \mathbb{R}^n .

2. PRELIMINARIES

The notations and terminologies used in this section from [4]. R and N denote the set of all real numbers and positive integer numbers, respectively. For every $n \in \mathbb{N}$, let R^n denote the n-fold Cartesian product of Rwith itself; i.e.,

$$R^n = \{(x_1, x_2, \dots, x_n) : x_i \in R \text{ for } i = 1, 2, \dots, n\}.$$

The positive integer *n* is called the *dimension* of \mathbb{R}^n , an element $\mathbf{x} = (x_1, x_2, ..., x_n)$ of \mathbb{R}^n is called *point* or *vector*, and the numbers x_i are called *components*, of \mathbf{x} . Two vectors $\mathbf{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and $\mathbf{y} = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$ are said to be *equal* if and only if $x_i = y_i$ for every i = 1, 2, ..., n. The *zero vector* is the vector **0** := (0,0, ..., 0). When n = 2, we usually denote the components of x by x and y.

We have already encountered the sets R^n for small n. $R^1 = R$ is the real line; we shall call its elements *scalars*. R^2 is the *xy* plane used to graph functions of the form y = f(x). And R^3 is the *xyz* space used to graph functions of the form z = f(x, y).

In this section, we begin to study functions of several variables by examining the algebraic structure of R^n . That structure is described in the following definition.

Definition 1. Let $\mathbf{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and $\mathbf{y} = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$ be vectors and $\alpha \in \mathbb{R}$ be a scalar.

(i) The *addition* of x and y is the vector

 $x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$

(ii) The subtraction of x and y is the vector

$$x - y = (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n).$$

(iii) The *product* of a scalar α and a vector \mathbf{x} is the vector

$$\alpha \mathbf{x} = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$$

(iv) The scalar product or multiplication of x and y is the scalar

$$\boldsymbol{x} \cdot \boldsymbol{y} = (x_1 y_1, x_2 y_2, \dots, x_n y_n).$$

The properties in following theorem are direct consequences of Definition 1 and corresponding properties of real numbers.

Theorem 2. On the \mathbb{R}^n , two operations addition (+) and multiplication (·) and a product of scalar satisfy the following properties:

- (i) x + y = y + x for every $x, y \in \mathbb{R}^n$;
- (ii) (x + y) + z = x + (y + z) for every $x, y, z \in \mathbb{R}^n$;
- (iii) $\mathbf{0} + \mathbf{x} = \mathbf{x} + \mathbf{0} = \mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^n$;
- (iv) x + (-x) = (-x) + x = 0;
- (v) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$;
- (vi) $\alpha(\beta x) = \beta(\alpha x) = (\alpha \beta)x$ for every $x \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$;
- (vii) $\alpha(x + y) = \alpha x + \alpha y$ for every $x, y \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$;
- (viii) $\alpha(\mathbf{x} \cdot \mathbf{y}) = (\alpha \mathbf{x}) \cdot \mathbf{y}$ for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$;
- (ix) $1\mathbf{x} = \mathbf{x}1 = \mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^n$;
- (x) for each $x \neq 0$ in \mathbb{R}^n there exists an element $x^{-1} \in \mathbb{R}^n$ such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$;
- (xi) $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$ for every $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$;

The following definition is a norm in \mathbb{R}^n and distance between two points in \mathbb{R}^n .

Definition 3. Let $x, y \in \mathbb{R}^n$.

(i) The *norm* of \boldsymbol{x} is the scalar

$$\|\boldsymbol{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2};$$

(ii) The *distance* between two points *x* and *y* is the scalar

$$d(\mathbf{x},\mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|.$$

The analogy between the absolute value and the norm is further reinforced by the following result.

Theorem 4. Let $x, y \in \mathbb{R}^n$. Then (i) $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0; (ii) $||\alpha x|| = |\alpha|||x||$ for every scalars $\alpha \in \mathbb{R}$. (iii) $||x + y|| \le ||x|| + ||y||$.

3. RESULTS AND DISCUSSION

We begin to introduce a terminology of an odd function on \mathbb{R}^n .

Definition 5. A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be *odd* on \mathbb{R}^n if $f(-\mathbf{x}) = -f(\mathbf{x})$ for every \mathbf{x} in \mathbb{R}^n .

For instance, a function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(\mathbf{x}) = f(x, y) = 2xy^2 - x^2y$ is an odd function on \mathbb{R}^2 , because

$$f(-x) = f(-x, -y)$$

= 2(-x)(-y)² - (-x)²(-y)
= -2xy² + x²y

$$= -[2xy^2 - x^2y]$$
$$= -f(x).$$

While the function $g: R^3 \to R$ defined by $g(x) = g(x, y, z) = 3xy^2z - x^2 \sin(y + z)$ is not an odd function on R^3 , because g(-x) = g(-x, -y, -z)

$$(-x) = g(-x, -y, -z)$$

= 3(-x)(-y)²(-z) - (-x)² sin(-y - z)
= 3xy²z + x² sin(y + z)
\$\neq -g(x).\$

The graph of an odd function on \mathbb{R}^n is symmetric with respect to the point $\mathbf{x} = \mathbf{0} \in \mathbb{R}^n$. The graph of the odd function $f(\mathbf{x}) = f(x, y) = 2xy^2 - x^2y$ is illustrated in Figure 1.

Figure 1 The graph of the function $f(x, y) = 2xy^2 - x^2y$.

Theorem 6. If f is an odd function on \mathbb{R}^n , then $f(\mathbf{0}) = 0$.

Proof. Since $\mathbf{0} = -\mathbf{0}$ and f is an odd function on \mathbb{R}^n , we have

$$f(\mathbf{0}) = f(-\mathbf{0}) = -f(\mathbf{0}).$$

Therefore, we have $2f(\mathbf{0}) = 0$. Thus we conclude $f(\mathbf{0}) = 0$.

Theorem 7. If f and g are odd functions on \mathbb{R}^n , then

(i) αf , for every $\alpha \in R$; and

(ii) f + g,

are odd functions on \mathbb{R}^n .

Proof. (i) Suppose that f is an odd function on \mathbb{R}^n and $\alpha \in \mathbb{R}$. Then for every $\mathbf{x} \in \mathbb{R}^n$, we obtain

$$(\alpha f)(-\mathbf{x}) = \alpha[f(-\mathbf{x})]$$
$$= \alpha[-f(\mathbf{x})]$$
$$= -\alpha[f(\mathbf{x})]$$

J D

Thus, αf is an odd function on \mathbb{R}^n .

(ii). Suppose that f and g are odd functions on \mathbb{R}^n . Then, for every $\mathbf{x} \in \mathbb{R}^n$, we obtain

$$(f + g)(-x) = f(-x) + g(-x) = -f(x) - g(x) = -(f(x) + g(x)) = -(f + g)(x)$$

Then, f + g is an odd function on \mathbb{R}^n .

Theorem 8. Let $D = \{x \in \mathbb{R}^n : ||x|| \le r\}$ be a closed ball centered at **0** of radius *r* and let $f: D \to \mathbb{R}$ be a function that integrable on *D*. If *f* is an odd function on \mathbb{R}^n , then

$$\int_D f(\boldsymbol{x}) \, d\boldsymbol{x} = 0.$$

As illustrations of the Theorem 8, given two examples integral of odd function that defined on closed ball centered at **0** of radius r > 0.

Example 9. Let $D = \{x \in R^2 : ||x|| \le 1\}$ and let $f: D \to R$ be a function that defined by $f(x, y) = \sin(x + y)$.

It is clear that f is an odd function on R^2 and is integrable on D. By changing the order of integration and a property of odd function, that is $\int_{-r}^{r} f(x) dx =$ 0, we obtain

$$\int_{D} f(x) dx = \int_{D} f(x) dA$$

$$= \int_{x=-1}^{1} \left(\int_{y=-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sin(x+y) dy \right) dx$$

$$= \int_{x=-1}^{1} \left(\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} [\sin x \cos y + \cos x \sin y] dy \right) dx$$

$$= \int_{x=-1}^{1} \left(\int_{y=-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sin x \cos y dy \right) dx$$

$$= \int_{y=-1}^{1} \left(\int_{x=-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \sin x \cos y dx \right) dy$$

$$= \int_{y=-1}^{1} 0 dy = 0.$$

Example 10. Let $D = \{x \in R^3 : ||x|| \le a\}$ and let $g: D \to R$ be a function that defined by $g(x, y, z) = x + yz^2$.

Denote $g = g_1 + g_2$ with $g_1(x, y, z) = x$ and $g_2(x, y, z) = yz^2$. It is clear that g_1 and g_2 are odd functions on R^2 . By changing the order of integration, we obtain

$$g(x, y, z) dx = \int_{D} g(x, y, z) dV$$

$$= \int_{D} [g_{1}(x, y, z) + g_{2}(x, y, z)] dV$$

$$= \int_{-a}^{a} \int_{-\sqrt{a^{2} - x^{2}}}^{\sqrt{a^{2} - x^{2} - y^{2}}} \int_{-\sqrt{a^{2} - x^{2}}}^{\sqrt{a^{2} - x^{2} - y^{2}}} [x + yz^{2}] dz dy dx$$

$$= \int_{-a}^{a} \int_{-\sqrt{a^{2} - x^{2}}}^{\sqrt{a^{2} - x^{2} - y^{2}}} \int_{-\sqrt{a^{2} - (x^{2} + y^{2})}}^{\sqrt{a^{2} - (x^{2} + y^{2})}} x dz dy dx$$

$$= \int_{-a}^{a} \int_{-\sqrt{a^{2} - x^{2}}}^{\sqrt{a^{2} - x^{2}}} \int_{-\sqrt{a^{2} - (x^{2} + y^{2})}}^{\sqrt{a^{2} - (x^{2} + y^{2})}} yz^{2} dz dy dx$$

$$= \int_{-a}^{a} \int_{-\sqrt{a^{2} - x^{2}}}^{\sqrt{a^{2} - x^{2}}} \left(\int_{-\sqrt{a^{2} - (y^{2} + z^{2})}}^{\sqrt{a^{2} - (y^{2} + z^{2})}} x dx \right) dy dz$$

$$+ \int_{x=-a}^{a} \int_{-\sqrt{a^{2} - x^{2}}}^{\sqrt{a^{2} - x^{2}}} \left(\int_{-\sqrt{a^{2} - (x^{2} + z^{2})}}^{\sqrt{a^{2} - (x^{2} + z^{2})}} yz^{2} dy \right) dz dx$$

$$= \int_{x=-a}^{a} \int_{-\sqrt{a^{2} - x^{2}}}^{\sqrt{a^{2} - x^{2}}} 0 dy dz$$

$$+ \int_{x=-a}^{a} \int_{-\sqrt{a^{2} - x^{2}}}^{\sqrt{a^{2} - x^{2}}} 0 dz dx$$

$$= 0 + 0 = 0.$$

We now introduce a terminology of a symmetry function with respect to any point in \mathbb{R}^n and its properties. We begin with a definition.

Definition 11. Let $a \in \mathbb{R}^n$ and let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Function f is said to be *symmetry with respect to the point* a in \mathbb{R}^n if there is a function h on \mathbb{R}^n that defined by

 $h(\mathbf{x}) = f(\mathbf{x} + \mathbf{a})$, for all \mathbf{x} in \mathbb{R}^n

such that h is an odd function on \mathbb{R}^n .

For instance, a function $f: \mathbb{R}^3 \to \mathbb{R}$ that defined by $f(\mathbf{x}) = f(x, y, z) = xy^2 - y^2 - z + 2$ is a symmetry function with respect to the point $\mathbf{a} = (1,0,2) \in \mathbb{R}^3$, because

$$h(\mathbf{x}) = f(\mathbf{x} + \mathbf{a})$$

= f(x + 1, y, z + 2)
= (x + 1)y² - y² - (z + 2) + 2
= xy² - z

is an odd function on R^3 .

The graph of a symmetry function with respect to any point $a \in R^n$ is symmetric with respect to the point $a \in R^n$.

Theorem 12. If *f* is a symmetry function with respect to the point $\mathbf{a} \in \mathbb{R}^n$, then $f(\mathbf{a}) = 0$.

Proof. Since f is a symmetry function with respect to $a \in \mathbb{R}^n$, based on Definition 11, there is h an odd function on \mathbb{R}^n such that

$$h(x) = f(x+a).$$

Based on the Theorem 6, we have $h(\mathbf{0}) = 0$. Then

$$0 = h(\mathbf{0}) = f(\mathbf{0} + \mathbf{a}) = f(\mathbf{a}).$$

Thus, it satisfies f(a) = 0.

Theorem 13. Let $a \in \mathbb{R}^n$, let $D = \{x \in \mathbb{R}^n : ||x - a|| \le r\}$, and let $f: D \to \mathbb{R}$ be a function that integrable on *D*. If *f* is a symmetry function with respect to the point $a \in \mathbb{R}^n$, then

$$\int_D f(\boldsymbol{x}) \, d\boldsymbol{x} = 0.$$

Proof. Suppose that $\mathbf{x} - \mathbf{a} = \mathbf{u}$. Then, we have $d\mathbf{x} = d\mathbf{u}$, $D' = \{\mathbf{u} \in \mathbb{R}^n : \|\mathbf{u}\| \le r\}$, and $f(\mathbf{x}) = f(\mathbf{u} + \mathbf{a})$. Since *f* is a symmetry function with respect to the point $\mathbf{a} \in \mathbb{R}^n$, based on the Definition 11, there is an odd function *h* on \mathbb{R}^n such that $h(\mathbf{u}) = f(\mathbf{u} + \mathbf{a})$. Therefore, we have

$$\int_{D} f(\boldsymbol{x}) \, d\boldsymbol{x} = \int_{D'} f(\boldsymbol{u} + \boldsymbol{a}) \, d\boldsymbol{u} = \int_{D'} h(\boldsymbol{u}) \, d\boldsymbol{u}.$$

Based on the Theorem 8, we obtain

$$\int_{D'} h(\boldsymbol{u}) \, d\boldsymbol{u} = 0$$

Thus, we conclude $\int_{D} f(\mathbf{x}) d\mathbf{x} = 0$.

ACKNOWLEDGMENT

I would like to thank to the head of LP2M University of Jember Indonesia for Stimulus Penelitian number 14737/UN25/LT/2021.

REFERENCES

- Bo Li and Y. Men, Basic Properties of Even and Odd Functions, Formalized Mathematics Vol. 17, No. 2, 2009, pp. 187–192 DOI: https://10.2478/v10037-009-0022-x
- M. Balaich and M. Ondrus, A generalization of even and odd functions, Involve vol. 4 no. 1, 2011, pp. 91-102. DOI: https://doi.org/10.2140/involve.2011.4.91
- [3] F. Ubaidillah, Fungsi simetri terhadap garis x = a dan sifat-sifatnya, Majalah Ilmiah Matematika dan Statistika vol. 20 no 2, 2020, pp.45-52. DOI: https://doi.org/10.19184/mims.v20i2.19623
- W. R. Wade, An Introduction to Analysis, 4th Edition, Pearson Prentice Hall, 2014