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ABSTRACT 

A function  𝑓 ∶ 𝑅 → 𝑅 is said to be an odd function if 𝑓(−𝑥) = −𝑓(𝑥) for every 𝑥 in 𝑅. The graph of an odd function 

is symmetric with respect to the origin, that is the point (0,0). The aims of this paper are to generalize odd functions on 

𝑅𝑛 and introduce  symmetry functions with respect to any point in 𝑅𝑛. Further, this paper discusses some properties of 

odd functions on 𝑅𝑛 and symmetry functions with respect to any point in 𝑅𝑛. 
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1. INTRODUCTION 

A real-valued function 𝑓: 𝑅 → 𝑅  is said to be odd 

(respectively, even) on 𝑅  if  𝑓(−𝑥) = −𝑓(𝑥) 

(respectively, 𝑓(−𝑥) = 𝑓(𝑥 )) for all 𝑥  in 𝑅.  The 

graph of a odd (respectively, even) function is 

symmetric with respect to the origin (respectively, y-

axis). In 2009, Bo Lin and Men gave several basic 

properties of odd functions [1]. In 2011, Balaich and 

Ondrus generalized odd and even complex-valued 

functions [2]. Ubaidillah generalized even real-valued 

functions on 𝑅𝑛 [3].  

In this paper, I will present definitions of an odd 

function on  𝑅𝑛 and a symmetry function with respect 

to any point in 𝑅𝑛, some properties and examples of 

odd functions on  𝑅𝑛  and symmetry functions with 

respect to any point in 𝑅𝑛 .  

 

2. PRELIMINARIES 

The notations and terminologies used in this section 

from [4]. 𝑅 and 𝑁 denote the set of all real numbers 

and positive integer numbers, respectively. For every 

𝑛 ∈N, let 𝑅𝑛denote the n-fold Cartesian product of 𝑅 

with itself; i.e., 

𝑅𝑛 = {(𝑥1, 𝑥2, … , 𝑥𝑛): 𝑥𝑖 ∈ 𝑅  for i = 1,2, ... ,n}. 

The positive integer n is called the dimension of 𝑅𝑛, 

an element 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) of 𝑅𝑛 is called point or 

vector, and the numbers 𝑥𝑖 are called components, of 

x. Two vectors 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅𝑛  and 𝒚 =
(𝑦1, 𝑦2, … , 𝑦𝑛) ∈ 𝑅𝑛 are said to be equal if and only if 

𝑥𝑖 = 𝑦𝑖  for every i = 1,2, ... ,n. The zero vector is the 

vector 0 := (0,0, ... ,0). When n = 2, we usually denote 

the components of x by  𝑥 and 𝑦.  

We have already encountered the sets 𝑅𝑛 for small 

n. 𝑅1 = 𝑅 is the real line; we shall call its elements 

scalars. 𝑅2 is the xy plane used to graph functions of 

the form 𝑦 = 𝑓(𝑥). And 𝑅3  is the xyz space used to 

graph functions of the form 𝑧 = 𝑓(𝑥, 𝑦). 

In this section, we begin to study functions of 

several variables by examining the algebraic structure 

of 𝑅𝑛
. That structure is described in the following 

definition. 

Definition 1. Let 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅𝑛 and 𝒚 =
(𝑦1, 𝑦2, … , 𝑦𝑛) ∈ 𝑅𝑛 be vectors and 𝛼 ∈ 𝑅 be a scalar. 

(i) The addition of x and 𝒚 is the vector 

     𝒙 + 𝒚 = (𝑥1 + 𝑦1 , 𝑥2 + 𝑦2, … , 𝑥𝑛 + 𝑦𝑛). 

(ii) The subtraction of x and y is the vector 

        𝒙 − 𝒚 = (𝑥1 − 𝑦1 , 𝑥2 − 𝑦2, … , 𝑥𝑛 − 𝑦𝑛). 

(iii) The product of a scalar 𝛼 and a vector x is the 

vector  

         𝛼𝒙 = (𝛼𝑥1, 𝛼𝑥2, … , 𝛼𝑥𝑛). 

(iv) The scalar product or multiplication of  x and y 

is the scalar 

          𝒙 ⋅ 𝒚 = (𝑥1𝑦1, 𝑥2𝑦2, … , 𝑥𝑛𝑦𝑛). 
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The properties in following theorem are direct 

consequences of Definition 1 and corresponding 

properties of real numbers. 

Theorem 2. On the 𝑅𝑛, two operations addition (+) 

and multiplication (⋅) and a product of scalar satisfy 

the following properties: 

(i) 𝒙 + 𝒚 = 𝒚 + 𝒙 for every 𝒙, 𝒚 ∈ 𝑅𝑛; 

(ii) (𝒙 + 𝒚) + 𝒛 = 𝒙 + (𝒚 + 𝒛) for every 𝒙, 𝒚, 𝒛 ∈
𝑅𝑛; 

(iii) 𝟎 + 𝒙 = 𝒙 + 𝟎 = 𝒙 for every 𝑥 ∈ 𝑅𝑛; 

(iv) 𝒙 + (−𝒙) = (−𝒙) + 𝒙 = 𝟎; 

(v) 𝒙 ⋅ 𝒚 = 𝒚 ⋅ 𝒙 for every 𝒙, 𝒚 ∈ 𝑅𝑛; 

(vi) 𝛼(𝛽𝒙) = 𝛽(𝛼𝒙) = (𝛼𝛽)𝒙  for every 𝒙 ∈ 𝑅𝑛 

and 𝛼, 𝛽 ∈ 𝑅;  

(vii) 𝛼(𝒙 + 𝒚) = 𝛼𝒙 + 𝛼𝒚 for every 𝒙, 𝒚 ∈ 𝑅𝑛  and 

𝛼 ∈ 𝑅; 

(viii) 𝛼(𝒙 ⋅ 𝒚) = (𝛼𝒙) ⋅ 𝒚  for every 𝒙, 𝒚 ∈ 𝑅𝑛  and 

𝛼 ∈ 𝑅; 

(ix) 1𝒙 = 𝒙1 = 𝒙 for every 𝒙 ∈ 𝑅𝑛; 

(x) for each 𝒙 ≠ 𝟎 in 𝑅𝑛  there exitsts an element 

𝒙−1 ∈ 𝑅𝑛 such that 𝒙 ⋅ 𝒙−1 = 𝒙−1 ⋅ 𝒙 = 1; 

(xi) 𝒙 ⋅ (𝒚 + 𝒛) = 𝒙 ⋅ 𝒚 + 𝒙 ⋅ 𝒛  for every 𝒙, 𝒚, 𝒛 ∈
𝑅𝑛; 

 

The following definition is a norm in 𝑅𝑛 and distance 

between two points in 𝑅𝑛. 

Definition 3. Let 𝒙, 𝒚 ∈ 𝑅𝑛.  

(i) The norm of 𝒙 is the scalar 

‖𝒙‖ = √𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2 ; 

(ii) The  distance between two points 𝒙 and 𝒚 is the 

scalar  

𝑑(𝒙, 𝒚) = ‖𝒙 − 𝒚‖ . 

 

The analogy between the absolute value and the norm 

is further reinforced by the following result. 

Theorem 4. Let 𝒙, 𝒚 ∈ 𝑅𝑛. Then  

(i) ‖𝒙‖ ≥ 0 and ‖𝒙‖ = 0 if and only if 𝒙 = 𝟎; 

(ii) ‖𝛼𝒙‖ = |𝛼|‖𝒙‖ for every scalars 𝛼 ∈ 𝑅. 

(iii) ‖𝒙 + 𝒚‖ ≤ ‖𝒙‖ + ‖𝒚‖. 

 

 

3. RESULTS AND DISCUSSION 

We begin to introduce a terminology of an odd 

function on 𝑅𝑛 .   

Definition 5. A function 𝑓: 𝑅𝑛 → 𝑅 is said to be odd 

on 𝑅𝑛 if  𝑓(−𝒙) = −𝑓(𝒙) for every 𝒙 in 𝑅𝑛.  

 

For instance,  a function 𝑓: 𝑅2 → 𝑅 defined by 𝑓(𝒙) =
𝑓(𝑥, 𝑦) = 2𝑥𝑦2 − 𝑥2𝑦   is an odd function on  𝑅2 , 

because   

𝑓(−𝒙) = 𝑓(−𝑥, −𝑦) 

 = 2(−𝑥)(−𝑦)2 − (−𝑥)2(−𝑦) 

 = −2𝑥𝑦2 + 𝑥2𝑦 

 = −[2𝑥𝑦2 − 𝑥2𝑦] 

 = −𝑓(𝒙). 

While the function  𝑔: 𝑅3 → 𝑅  defined by 𝑔(𝒙) =
𝑔(𝑥, 𝑦, 𝑧) = 3𝑥𝑦2𝑧 − 𝑥2 sin(𝑦 + 𝑧) is not an odd 

function on  𝑅3, because 

 𝑔(−𝒙) = 𝑔(−𝑥, −𝑦, −𝑧) 

     = 3(−𝑥)(−𝑦)2(−𝑧) − (−𝑥)2 sin(−𝑦 − 𝑧) 

= 3𝑥𝑦2𝑧 + 𝑥2 sin(𝑦 + 𝑧) 

≠ −𝑔(𝒙). 

The graph of an odd function on 𝑅𝑛 is symmetric with 

respect to the point  𝒙 = 𝟎 ∈ 𝑅𝑛. The graph of the odd 

function 𝑓(𝒙) = 𝑓(𝑥, 𝑦) = 2𝑥𝑦2 − 𝑥2𝑦  is illustrated 

in Figure 1. 

 

Figure 1 The graph of the function 𝑓(𝑥, 𝑦) = 2𝑥𝑦2 −
𝑥2𝑦. 

 

Theorem 6. If 𝑓  is an odd function on 𝑅𝑛 , then  

𝑓(𝟎) = 0. 

Proof.  Since 𝟎 = −𝟎 and 𝑓 is an odd function on  𝑅𝑛, 

we have 

𝑓(𝟎) = 𝑓(−𝟎) = −𝑓(𝟎). 

Therefore, we have 2𝑓(𝟎) = 0.  Thus we conclude 

𝑓(𝟎) = 0.                ∎ 

Theorem 7. If 𝑓 and 𝑔 are odd functions on 𝑅𝑛, then 

(i) 𝛼𝑓, for every 𝛼 ∈ 𝑅; and 

(ii)  𝑓 + 𝑔, 

are odd functions on  𝑅𝑛 . 

Proof. (i) Suppose that 𝑓 is an odd function on 𝑅𝑛 and 

𝛼 ∈ 𝑅. Then for every  𝒙 ∈ 𝑅𝑛 , we obtain 

 (𝛼𝑓)(−𝒙) = 𝛼[𝑓(−𝒙)] 

= 𝛼[−𝑓(𝒙)] 

= −𝛼[𝑓(𝒙)] 
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= −(𝛼𝑓)(𝒙) 

Thus,  𝛼𝑓 is an odd function on 𝑅𝑛. 

(ii). Suppose that 𝑓  and 𝑔  are odd functions on 𝑅𝑛.  
Then, for every 𝒙 ∈ 𝑅𝑛 , we obtain 

(𝑓 + 𝑔)(−𝒙) = 𝑓(−𝒙) + 𝑔(−𝒙) 

= −𝑓(𝒙) − 𝑔(𝒙) 

 = −(𝑓(𝒙) + 𝑔(𝒙)) 

 = −(𝑓 + 𝑔)(𝒙) 

Then,  𝑓 + 𝑔  is an odd function on 𝑅𝑛.            ∎ 

Theorem 8. Let 𝐷 = {𝒙 ∈ 𝑅𝑛: ‖𝒙‖ ≤ 𝑟} be a closed 

ball centered at 𝟎  of radius 𝑟  and let 𝑓: 𝐷 → 𝑅  be a 

function that integrable on 𝐷. If 𝑓 is an odd function 

on 𝑅𝑛, then 

∫ 𝑓(𝒙)

𝐷

 𝑑𝒙 = 0. 

As illustrations of the Theorem 8, given two examples 

integral of odd function that defined on closed ball 

centered at 𝟎 of radius  𝑟 > 0. 

Example 9.  Let 𝐷 = {𝒙 ∈ 𝑅2: ‖𝒙‖ ≤ 1}  and let 

𝑓: 𝐷 → 𝑅  be a function that defined by 𝑓(𝑥, 𝑦) =
sin (𝑥 + 𝑦). 

It is clear that 𝑓  is an odd function on 𝑅2 and is 

integrable on 𝐷. By changing the order of integration 

and a property of  odd function, that is ∫ 𝑓(𝑥)
𝑟

−𝑟
 𝑑𝑥 =

0, we obtain 

∫ 𝑓(𝒙)

𝐷

 𝑑𝒙 = ∫ 𝑓(𝒙)

𝐷

 𝑑𝐴 

= ∫ ( ∫ sin(𝑥 + 𝑦) 𝑑𝑦 

√1−𝑥2

𝑦=−√1−𝑥2

) 𝑑𝑥

1

𝑥=−1

 

= ∫ ( ∫ [sin 𝑥 cos 𝑦 + cos 𝑥 sin 𝑦] 𝑑𝑦 

√1−𝑥2

−√1−𝑥2

) 𝑑𝑥

1

𝑥=−1

 

= ∫ ( ∫ sin 𝑥 cos 𝑦 𝑑𝑦 

√1−𝑥2

𝑦=−√1−𝑥2

) 𝑑𝑥

1

𝑥=−1

 

= ∫ ( ∫ sin 𝑥 cos 𝑦 𝑑𝑥 

√1−𝑦2

𝑥=−√1−𝑦2

) 𝑑𝑦

1

𝑦=−1

 

= ∫ 0
1

𝑦=−1
 𝑑𝑦 = 0.  

Example 10.  Let 𝐷 = {𝒙 ∈ 𝑅3: ‖𝒙‖ ≤ 𝑎}  and let 

𝑔: 𝐷 → 𝑅  be a function that defined by 𝑔(𝑥, 𝑦, 𝑧) =
x + yz2. 

Denote 𝑔 = 𝑔1 + 𝑔2  with 𝑔1(𝑥, 𝑦, 𝑧) = 𝑥 and 

𝑔2(𝑥, 𝑦, 𝑧) = 𝑦𝑧2 . It is clear that 𝑔1  and 𝑔2  are odd 

functions on 𝑅2. By changing the order of integration, 

we obtain 

∫ 𝑔(𝑥, 𝑦, 𝑧)

𝐷

 𝑑𝒙 = ∫ 𝑔(𝑥, 𝑦, 𝑧)

𝐷

 𝑑𝑉 

= ∫[𝑔1(𝑥, 𝑦, 𝑧) + 𝑔2(𝑥, 𝑦, 𝑧)]

𝐷

 𝑑𝑉 

= ∫ ∫ ∫ [𝑥 + 𝑦𝑧2]

√𝑎2−𝑥2−𝑦2

−√𝑎2−𝑥2+𝑦2

√𝑎2−𝑥2

−√𝑎2−𝑥2

𝑎

−𝑎

𝑑𝑧𝑑𝑦𝑑𝑥 

= ∫ ∫ ∫ 𝑥

√𝑎2−(𝑥2+𝑦2)

−√𝑎2−(𝑥2+𝑦2)

√𝑎2−𝑥2

−√𝑎2−𝑥2

𝑎

−𝑎

 𝑑𝑧 𝑑𝑦 𝑑𝑥 

+ ∫ ∫ ∫ 𝑦𝑧2

√𝑎2−(𝑥2+𝑦2)

−√𝑎2−(𝑥2+𝑦2)

√𝑎2−𝑥2

−√𝑎2−𝑥2

𝑎

−𝑎

𝑑𝑧 𝑑𝑦 𝑑𝑥 

= ∫ ∫ ( ∫ 𝑥

√𝑎2−(𝑦2+𝑧2)

−√𝑎2−(𝑦2+𝑧2)

𝑑𝑥)

√𝑎2−𝑧2

−√𝑎2−𝑧2

𝑎

𝑧=−𝑎

𝑑𝑦 𝑑𝑧 

+ ∫ ∫ ( ∫ 𝑦𝑧2

√𝑎2−(𝑥2+𝑧2)

−√𝑎2−(𝑥2+𝑧2)

𝑑𝑦)

√𝑎2−𝑥2

−√𝑎2−𝑥2

𝑎

𝑥=−𝑎

𝑑𝑧𝑑𝑥 

= ∫ ∫ 0

√𝑎2−𝑧2

−√𝑎2−𝑧2

 

𝑎

𝑧=−𝑎

𝑑𝑦 𝑑𝑧 

+ ∫ ∫ 0

√𝑎2−𝑥2

−√𝑎2−𝑥2

𝑎

𝑥=−𝑎

 𝑑𝑧 𝑑𝑥 

= 0 + 0 = 0. 

We now introduce a terminology of  a symmetry  

function with respect to any point in 𝑅𝑛  and its 

properties. We begin with a definition. 

Definition 11.  Let 𝒂 ∈ 𝑅𝑛  and let 𝑓: 𝑅𝑛 → 𝑅  be a 

function. Function 𝑓  is said to be symmetry with 

respect to the point 𝒂 in 𝑅𝑛  if there is a function ℎ on 

𝑅𝑛 that defined by 

 ℎ(𝒙) = 𝑓(𝒙 + 𝒂),   for all 𝒙 in 𝑅𝑛 

such that ℎ is an odd function on 𝑅𝑛 . 
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For instance,  a function 𝑓: 𝑅3 → 𝑅  that defined by 

𝑓(𝒙) = 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦2 − 𝑦2 − 𝑧 + 2 is a symmetry 

function with respect to the point 𝒂 = (1,0,2) ∈ 𝑅3, 
because   

ℎ(𝒙) = 𝑓(𝒙 + 𝒂) 

 = 𝑓(𝑥 + 1, 𝑦, 𝑧 + 2) 

 = (𝑥 + 1)𝑦2 − 𝑦2 − (𝑧 + 2) + 2 

 = 𝑥𝑦2 − 𝑧 

is an odd function on 𝑅3. 

The graph of a symmetry function with respect to any 

point 𝒂 ∈ 𝑅𝑛  is symmetric with respect to the point  

𝒂 ∈ 𝑅𝑛.  

 

Theorem 12. If 𝑓 is a symmetry function with respect 

to the point 𝒂 ∈ 𝑅𝑛, then  𝑓(𝒂) = 0. 

Proof.  Since 𝑓 is a symmetry function with respect to 

𝒂 ∈ 𝑅𝑛 , based on Definition 11, there is ℎ  an odd 

function on 𝑅𝑛 such that 

ℎ(𝑥) = 𝑓(𝑥 + 𝑎). 

Based on the Theorem 6, we have ℎ(𝟎) = 0. Then 

0 = ℎ(𝟎) = 𝑓(𝟎 + 𝒂) = 𝑓(𝒂). 

Thus, it satisfies 𝑓(𝒂) = 0.              ∎  

 

  

Theorem 13. Let 𝒂 ∈ 𝑅𝑛 , let 𝐷 = {𝒙 ∈ 𝑅𝑛: ‖𝒙 −
𝒂‖ ≤ 𝑟},  and let 𝑓: 𝐷 → 𝑅  be a function that 

integrable on 𝐷 . If 𝑓  is a symmetry function with 

respect to the point 𝒂 ∈ 𝑅𝑛, then 

∫ 𝑓(𝒙)

𝐷

 𝑑𝒙 = 0. 

Proof.  Suppose that 𝒙 − 𝒂 = 𝒖. Then, we have 𝑑𝒙 =
𝑑𝒖,  𝐷′ = {𝒖 ∈ 𝑅𝑛: ‖𝒖‖ ≤ 𝑟},  and 𝑓(𝒙) = 𝑓(𝒖 + 𝒂).  
Since 𝑓  is a symmetry function with respect to the 

point 𝒂 ∈ 𝑅𝑛 , based on the Definition 11, there is an 

odd function ℎ on 𝑅𝑛  such that ℎ(𝒖) = 𝑓(𝒖 + 𝒂). 
Therefore, we have 

 

 

 

 

 

 

 

 

 

 

 

 

 

∫ 𝑓(𝒙)

𝐷

 𝑑𝒙 = ∫ 𝑓(𝒖 + 𝒂)

𝐷′

 𝑑𝒖 = ∫ ℎ(𝒖)

𝐷′

 𝑑𝒖. 

Based on the Theorem 8, we obtain 

∫ ℎ(𝒖)

𝐷′

 𝑑𝒖 = 0. 

Thus, we conclude ∫ 𝑓(𝒙)
𝐷

 𝑑𝒙 = 0.            ∎ 
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