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Abstract

In this contribution, we focus on extend-
ing the Laplacian processing used in data-
driven dimensionality reduction based on
weighted graphs by incorporating the con-
cept of singular value decomposition. We
indicate a novel point of view on generalized
eigenvalue problem by pointing out geomet-
ric meaning of factorization matrices. We
demonstrate that classical eigenvalue prob-
lem of normalized Laplacian, generalized
eigenvalue problem of pure Laplacian and
singular value decomposition of specific al-
tered Laplacian form are mutually equivalent
problems and discuss some of its theoretical
implications.

Keywords: Singular value decomposition,
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Introduction

Our long-term research [3, 4] (which we follow and
extend in this paper) is focused on dimensionality re-
duction (DR) based on analysis of Laplacian matrix of
a weighted graph used in signal (and especially im-
age) processing. Laplacian matrix is determined by
a weighted adjacency matrix and derived degree ma-
trix. These matrices describe the geometric structure of
the data (in the other words, characterize the space we
work with in terms of local closeness) and the impor-
tance of all data points (points closely connected with
other points are represented by vertices of higher de-
gree than less important points, e.g. outliers). The re-
sult of such DR is determined by generalized eigenvec-
tors that correspond to smallest generalized eigenval-
ues — these values describe the reversed importance of

eigenvector directions in which each transformed ob-
ject is decomposed as the eigenvectors play the role of
an alternative, data-driven space basis.

The motivation of this paper is to enrich the set of
methods we use in Laplacian data processing by in-
corporating the singular value decomposition (SVD)
to eventually discover a new perspective of the orig-
inal problem (i.e. the problem of DR) and to embed
our research into a broader scope. We would like to
show that SVD is different but at the same time similar
approach (similarity comes from special structure and
square size of the Laplacian matrix) to graph-based DR
and hence its procedures and results are also applicable
in the case of our Laplacian formalism.

SVD is widely used in matrix factorization compu-
tations as it is able to discover "hidden features" of
the input data matrix A. Assuming that each row of
A represents one object (e.g. one physical body or
one person) and each column represents a noisy reg-
istered value of one variable (e.g. a percentage of wa-
ter content), then factorizing A into three matrices as
described below can reveal for which objects one par-
ticular feature is present in a significant degree, which
variables strongly correspond to this feature and how
much prevalent the representation of this feature in the
input data is (weakly manifesting features are consid-
ered to be a type of noise). If we look at the initial
matrix as at a linear transformation, then it can be also
interpreted as a composition of three transformations:
rotation (or reflection) of objects, their scaling (and
eventually dropping or increasing the number of co-
ordinates) and rotation (or reflection) of variables to
fit the initial ones, each of which corresponds to one of
the constituent matrices of the SVD factorization of the
initial matrix. This enriched interpretation creates an
interesting topic as it makes a connection between our
well-established Laplacian formalism and the ubiqui-
tous algebraic and geometric operations, in the other
words, it expands our point of view on DR.
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Other usages and interpretations of SVD include, e.g.,
solving systems of linear algebraic equations (the ma-
trix of the system need not be square — we can use
SVD to construct its pseudoinverse), finding data cor-
relations, building linear regression systems, image
processing (compression, noise filtering), determining
the rank and range of a matrix and, of course, DR
(for each object, it finds its lower-dimensional repre-
sentation in a feature space of pre-selected dimension,
e.g. as in PCA). One of the main advantages of SVD
is the fact that any complex matrix (symmetric, non-
symmetric, square, rectangular, . . . ) can be decom-
posed by this method (on the pure theoretical level, the
numerical stability is not of our interest but there are
techniques used in computer computations to reduce
the round-off errors caused by computing the SVD
which are out of the scope of our current research).
SVD therefore generalizes the utilization of spectral
decomposition which is restricted to only square and at
the same time diagonalizable matrices (their eigenval-
ues also indicate the scaling factors of the linear trans-
formations that they represent, this time along the di-
rection of eigenvectors that appear on both sides of the
factorization which disables the distinction between
projection vectors used in transformation composition
which is usually considered as an advantage but at the
same time this is the reason why it cannot be applied
to non-square matrices and hence an opportunity for
SVD arises). To sum up, the decomposition possibili-
ties show the usefulness in applied problems.

1 Weighted Graph Induced Laplacian

Let us assume that the data (set of objects of one arbi-
trary nature) is given by

X = {xi | i = 1, . . . ,n} ,

indexed by
I = {1, . . . ,n} ,

and that the closeness between any two objects xi and
x j in X is described by w(i, j) where

w : I × I → R

is a non-negative, symmetric function. For the further
purpose of this paper, it is assumed that the closer ob-
jects have higher closeness value (weight) than the less
close ones.

If we introduce a weighted graph G(V,E,W ) where

V = I, E =V ×V

and where weights of the edges ei j = (i, j) are stored
in the adjacency matrix W ∈ Rn×n and given by

wi j = w(i, j) ,

then it accurately describes the data geometry. We as-
sume that W determines a connected graph. Following
the method proposed in [1], we can derive a diagonal
matrix D ∈ Rn×n with diagonal entries given by

dii =
n

∑
j=1

wi j ,

that describes degrees of all vertices. Laplacian ma-
trix L ∈ Rn×n of the graph G is defined as

L = D−W .

Let us note that the literature is inconsistent in the sign
of Laplacians meaning that the definition L =W −D is
also sometimes used. Laplacian matrix L is symmet-
ric as both of its constituent matrices, W and D, are.
Moreover, it is positive semi-definite so that for any
vector�y ∈ Rn, it holds:

�y�L�y =
1
2

n

∑
i, j=1

(yi − y j)
2wi j ≥ 0 ,

where �y =




y1
...

yn


. Laplacian matrix L is in the centre

of our interest as well as its generalized eigenvectors�y,
i.e. the solutions of the generalized eigenvalue problem

L�y = λD�y , (1)

that are used to determine a real, lower-dimensional
representation of the original data.

2 Singular Value Decomposition

A classical result (formalized e.g. in [2]) states that any
real, m×n matrix A can be decomposed as:

A =USV� ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matri-
ces, i.e.

U�U =UU� = I, V�V =VV� = I ,

and S is an m×n diagonal matrix (i.e. ∀i �= j : si j = 0)
with p = min{m,n} diagonal entries σ1, . . . ,σp called
the singular values of A that are usually ordered:

σ1 ≥ σ2 ≥ ·· · ≥ σp ≥ 0 .

(Each of these values corresponds to one of the hidden
features we talked about in the Introduction — strong
features are accompanied by bigger singular values
while small, non-zero singular values are results of a
data noise.) To emphasize that the singular value σi
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belongs to the matrix A, we write σi(A). Columns of
the matrix U , �u j, j = 1, . . . ,m, are called left singu-
lar vectors (and absolute values of its elements reveal
which objects represent a corresponding hidden fea-
ture), columns of the matrix V , �v j, j = 1, . . . ,n, are
right singular vectors (absolute values of its elements
tell us which variables support a particular feature).

If m ≤ n, it holds that

A =
m

∑
i=1

σi�ui�v�i

(in the case that rank(A)<m= p, then for i≥ rank(A),
σi will be zero), in the other words, the i-th row (i =
1, . . . ,m) of A can be expressed as

m

∑
r=1

σruir�v�r .

Since A�A=V S�SV� is a diagonalizable matrix, each
right singular vector �v j of A is an eigenvector of A�A
and hence

µi(A�A) = σ2
i (A) .

Recall that the eigenvalue problem has the form

A�z = µ�z .

Each complex number µi for which this equation holds
(i.e. exists a non-zero vector�z), is called the (classical)
eigenvalue of A and is denoted by µi(A). Eigenvalues
of symmetric matrices are real. Analogously it holds
for left singular vectors. It shows the relation between
singular values and eigenvalues — singular value of
A is the square root of the eigenvalue of the iterated
matrix A (i.e. of A�A or AA�).

3 Laplacian SVD

As the Laplacian matrix L is real, its SVD is formed by
two orthogonal matrices as described above but in gen-
eral, these two matrices, for a genereal complex matrix,
are unitary (so in our case U� =U∗ and V� =V ∗). Be-
cause L is symmetric, it moreover holds that

L = L� = L� = L∗ ,

which implies that

L∗L = LL∗ ,

and hence Laplacian matrix is normal.

Normality of L implies that U and V are unitary matri-
ces that diagonalize L. And since L is a positive semi-
definite matrix, its SVD coincides with its eigende-
composition, i.e. if we rewrite L as QT Q� (with Q or-
thogonal and T diagonal), then for classical eigenvec-
tors and eigenvalues of L (solving L�z = µ�z), it holds:

q·,i = zi,· and tii = µi ;

and we see that

U =V = Q, S = T and σi(L) = µi(L) .

Even though we showed this useful coincidence, the
spectral decomposition itself is not of our interest as
the classical eigenvalue is not used in DR.

Let us recall that the value of λ which are we inter-
ested in, is the generalized eigenvalue of the Laplacian
matrix L as it (together with corresponding generalized
eigenvectors) solves the equation (1).

It is also a classical eigenvalue of D−1L as D−1L�y =
λ�y. Moreover, it is also a classical eigenvalue of nor-
malized Laplacian matrix D− 1

2 LD− 1
2 as

D− 1
2 LD− 1

2�z = λ�z ,

for if�y = D− 1
2�z or equivalently�z = D

1
2�y.

The normalized Laplacian matrix is symmetric (and
real) and hence diagonalizable which means that we
can express it as follows:

D− 1
2 LD− 1

2 = Q�T Q ,

where Q ∈ Rn×n is orthogonal and T ∈ Rn×n is diago-
nal. Recall that µi(A) denotes a classical eigenvalue of
any square matrix A. As

Q�T Q = Q�T
1
2 (Q�T

1
2 )� ,

we can see that

µi(D− 1
2 LD− 1

2 ) = µi(Q�T Q) = σ2
i (Q

�T
1
2 ) ,

which is equal to the generalized eigenvalue of L:

λi(L) = σ2
i (Q

�T
1
2 ) , (2)

that we are interested in. Hence the singular value de-
composition of the matrix Q�T

1
2 follows.

Recall that the diagonal entries of the matrix T are clas-
sical eigenvalues of D− 1

2 LD− 1
2 which ere equal to λi,

so
tii = λi ,

and hence
t

1
2

ii =
√

λi ,

the diagonal entries of the matrix T
1
2 .

We are looking for orthogonal matrices U and V and a
diagonal matrix S s.t.

Q�T
1
2 =USV� ,

where
sii = σi ,
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and from (2), we get

sii =
√

λi ,

which proves that
S = T

1
2 .

This shows, that if we diagonalize the normalized
Laplacian (by computing T ), the SVD will then not be
necessary (S will be clear), as the generalized eigenval-
ues will instantly emerge.

From the above, the main result of this paper regard-
ing processing of data of one arbitrary nature can be
formulated as follows:

Proposition 1. If data is described by a symmetric,
non-negative weighted graph adjacency matrix W, D
is derived degree matrix, L is derived Laplacian ma-
trix and eigendecoposition of the normalized Lapla-
cian matrix D− 1

2 LD− 1
2 is equal to Q�T Q producing

a unique diagonal matrix T , then SVD factorization of
the matrix Q�T

1
2 produces a unique diagonal matrix S

s.t. S = T
1
2 . Moreover, the values of S2 are equal to

generalized eigenvalues of L.

This result gives us a new perspective of DR solution
as it connects Laplacian eigenmaps (that can be found
after computing the generalized eigenvalues, see Ex-
ample 1) with a much more general matrix factoriza-
tion technique that is applicable in a broader area of
problems.

Below, we would like to illustrate the creation of a
reduced data representation given by the Laplacian
eigendecomposition where the space closeness is de-
termined by a fuzzy partition.

Example 1. Consider a set of two-dimensional points

X =
{
(1,1),(2,2),(3,4)

}
.

Our purpose is to reduce the dimensionality of the
given data from two to one. As a first step, let us
set up a universe [−2,6]× [−2,7] and establish its
fuzzy partition using the nodes {1,2,3} along the x-
axis and {1,2,4} along the y-axis. Our basic func-
tions A1, A2, A3, B1, B2, B3 are of the symmetric tri-
angular shapes with support lengths 6. Their combi-
nations Ai ·B j constitute the fuzzy partition of the uni-
verse [−2,6]× [−2,7]. We can now define the close-
ness between any pair of points (xi,yi) and (x j,y j) in
X by

wi j = Ai(x j) ·Bi(y j) .

Therefore, the weight matrix is

W =




1 4
9 0

4
9 1 2

9
0 2

9 1


 .

The corresponding diagonal matrix is equal to

D =




13
9 0 0
0 5

3 0
0 0 11

9


 ,

and the Laplacian matrix is

L =




4
9 − 4

9 0
− 4

9
2
3 − 2

9
0 − 2

9
2
9


 .

Its generalized eigenvalues in decreasing order are
λ1

.
= 0.674, λ2

.
= 0.216 and λ3 = 0. One-dimensional

embedding of X is then determined by the generalized
eigenvector�y2 corresponding to λ2 (the second small-
est gen. eigenvalue), i.e. by

�y2 .
=



−0.526
−0.157
0.836


 .

As expected, the first two points are mapped closer
together: (1,1) ˙�→ − 0.526, (2,2) ˙�→ − 0.157, while
(3,4) ˙�→0.836 is mapped further.

The inverse problem consists in finding approximation
representation of a given data using its reduced form.
We plan to discuss this problem using the technique
proposed in this contribution using the SVD factoriza-
tion.

4 Conclusions

We showed that the singular value decomposition of
the Laplacian matrix L coincides with its eigendecom-
position. We focused on lower-dimensional embed-
ding of given (high-dimensional) points and connected
it with singular values of the transformed Laplacian
matrix. We showed that SVD factorization of this ma-
trix need not be explicitly computed to find these val-
ues as they coincide with square roots of the diagonal-
ized normalized Laplacian matrix. Showing this con-
nection enables us to broaden the scope of our future
research by considering data spaces where their geom-
etry is described by rectangular matrices.

Our future research will be focused on the inverse
problem connected with DR where we plan to use the
technique of SVD decomposition.
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