
Monadic Power Set Theories in Kleisli Categories
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Abstract

In this paper, we follow up on the well-
known interpretation of fuzzy relations as 
morphisms in Kleisli category defined in the 
category of sets using a suitable monad. This 
Kleisli category thus becomes a relational 
variant of the classical category of fuzzy sets. 
This interpretation and the associated con-
struction of, e.g., various transformation op-
erators, is often used not only in fuzzy set 
theory but also in computer science. Using 
this principle we create in the paper a re-
lational variant of a given Kleisli category 
which will be defined again using a suitable 
monad in the original Kleisli category.

Keywords: Lattice-valued fuzzy sets, cate-
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1 Introduction

It is well known that fuzzy relations, i.e., fuzzy sets in
Cartesian products of two (or more) sets, play in the
theory of fuzzy sets an important role. Fuzzy relations
occur in a number of constructions in fuzzy set the-
ory, such as fuzzy order relations, fuzzy equivalence
relations, approximation of fuzzy sets using fuzzy re-
lations, etc., and at the same time fuzzy relations are
an integral part of many applications. It is only a for-
mal statement that fuzzy relations that are defined in a
Cartesian product of sets, i.e. R : X ×Y → [0,1], can
be also defined as a mapping R : X → [0,1]Y , where
R(x)(y) = R(x,y). In many cases, it is sometimes even
more convenient to enter fuzzy relations in this second
way as mappings. A typical example might be the the-
ory of soft sets or fuzzy soft sets [6, 7, 8, 13, 17, 18],
which is based entirely on fuzzy relations in this sec-
ond form, i.e., as mappings. It follows from an inter-
pretation of soft sets or fuzzy soft sets, which are stan-
dardly defined as mappings X→ 2Y or X→ [0,1]Y (or,

generally, X → T (Y )), where X is a set of criteria and
Y is a set of objects to be evaluated by these criteria.

Although the expression of a relation or fuzzy relation
in the form of a mapping X → T (Y ) is only a trivial
transformation, this representation of relations has be-
come the basis of a very complex theory used not only
in fuzzy sets theory but also in other areas such as com-
puter science. This theory is the theory of monads in
categories. Monads in a category were introduced by
several authors, (for introduction see [4, 9]) and have
been used in fuzzifying mathematical objects, includ-
ing power set structures of fuzzy sets [10, 11, 15, 16] or
fuzzy automata [1, 2, 3, 12]. The idea of using monads
for fuzzyfication is based on extension of objects X of
a category K to another object T (X) ∈ K. These new
objects may be regarded as objects of clouds of fuzzy
states. A relation between X and T (X) is described by
a morphism η : X → T (X), representing crisp states
in the object of fuzzy states. Then a fuzzy morphism
f : X  Y is simply a morphism f : X → T (Y ) (i.e.,
a special relation) in the category K and a composi-
tion of fuzzy morphisms is defined by a special oper-
ation ♦. The result of these constructions is a triple
T = (T,♦,η), which Manes [9] called a fuzzy theory
and which, in fact, is a monad. A system of objects
of a category K with fuzzy morphisms and a compo-
sition ♦ of fuzzy morphisms is then a Kleisli category
KT of a monad T in the category K [9]. This category
represents a relational variant of the category K, where
instead of standard morphisms, relations X→ T (Y ) are
used.

In this paper we deal with the following problem. If K
is a category with a monad T, the Kleisli category KT
is a category with ”standard" morphisms X  Y . How
it would be possible to define a ”relational" version of
this category KT, where morphisms from X to Y are in
a form of relations X→ T̃ (T (Y )) for some monad T̃ in
KT? In the fuzzy set theory there are many examples
of structures which can be defined as such morphisms.
The simplest example of a relation X → [0,1][0,1]

X
can
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be interpreted as a relationship R between elements x∈
X and fuzzy sets f ∈ [0,1]X defined by R(x, f ) = f (x).
Another example from the fuzzy soft sets we present
in Section 4.

In Section 3 we present a general construction of a re-
lational variant of Kleisli category KT; more precisely,
using a monad T in a category K we construct a monad
T̃ in a Kleisli category KT which allows to construct
Kleisli category (KT)T̃ representing a relational ver-
sion of KT. We also investigate relationships between
a category K with a monad T and a category KT with
the monad T̃.

2 Preliminaries

In this section we introduce principal notions and cat-
egories based on fuzzy sets which we use in the pa-
per. A principal lattice structure used in fuzzy set the-
ory in the paper is a complete residuated lattice (see
e.g. [14]), i.e. a structure L = (L,∧,∨,⊗,→,0L,1L)
such that (L,∧,∨) is a complete lattice, (L,⊗,1L) is a
commutative monoid with operation ⊗ isotone in both
arguments and→ is a binary operation which is resid-
uated with respect to ⊗, i.e.

α⊗β ≤ γ iff α ≤ β → γ

where≤ is the order relation in L defined by the lattice
structure of L and 0L and 1L are the smallest and the
greatest elements of L, respectively. If L is a complete
residuated lattice, an L -fuzzy set in a crisp set X is a
map f : X → L.

A set with L -fuzzy similarity relation (or L -set) is a
couple (A,δ ), where A is a set and δ : A×A→ L is a
map such that

(a) (∀x ∈ A) δ (x,x) = 1,

(b) (∀x,y ∈ A) δ (x,y) = δ (y,x),

(c) (∀x,y,z∈ A) δ (x,y)⊗δ (y,z)≤ δ (x,z) (general-
ized transitivity).

An L -fuzzy set s : X → L is extensional in an L -set
(X ,δ ), if s(x)⊗δ (x,y)≤ s(y) holds for all x,y∈ X . By
F(X ,δ ) we denote the set of all extensional L -fuzzy
sets in (X ,δ ). In the paper we use some standard cat-
egories with (sometimes special) maps as morphisms.
Namely,

1. Category Set of sets as objects with mappings as
morphisms.

2. Category Set(L ) with L -sets (X ,δ ) as objects
and with f : (X ,δ )→ (Y,γ) as morphisms, where

f : X → Y is a map and it satisfies δ (x,y) ≤
γ( f (x), f (y)), x,y ∈ X .

As we mentioned in the introduction, the main tool
from the category theory we will use is a monad in
a category. More precisely, we use an extension which
is the result of linking the theory of monads [4, 9] with
the theory of power set objects [15, 16]. The result of
this connection is a construction in a category theory
called a monadic power set structure, which is defined
as follows:

Definition 2.1 A structure T = (T,♦,η ,W ) is called a
monadic power set theory in a category K, if

1. T : ob j(K)→ ob j(K) is mapping between objects
of K,

2. W : K→ Set is a forgetful functor,

3. For arbitrary object X in K, a structure of a com-
plete

∨
-semilattice is defined on a set W (T (X)),

4. For K-morphisms f : X→ T (Y ) and g : Y → T (Z)
there exists their composition g♦ f : X → T (Z),
(called the Kleisli composition) which is associa-
tive,

5. For arbitrary K-morphisms f , f ′ : X → T (Y ) and
g,g′ : Y → T (Z), the following implications hold

W (g)≤Y W (g′)⇒W (g♦ f )≤Z W (g′♦ f ),

W ( f )≤Y W ( f ′)⇒W (g♦ f )≤Z W (g♦ f ′),

where ≤Y ,≤Z are pre-order relations de-
fined point-wise from ordering on W (T (Y )) or
W (T (Z)), respectively.

6. η is a system of K-morphisms ηX : X→ T (X), for
any object X of K,

7. For any K-morphism f : X →Y , the K-morphism

f→T := ηY . f♦1T (X) : T (X)→ T (Y )

is such that W ( f→T ) is also
∨

-preserving map with
respect to ordering defined in 3, where 1T (X) is the
identity K-morphism T (X)→ T (X) in K and ”.”
is a composition of morphisms in a category K.

8. For any K-morphism f : X → T (Y ), ηY♦ f = f
holds,

9. ♦ is compatible with composition of K-
morphisms, i.e., for K-morphisms f : X → Y ,
g : Y → T (Z), we have g♦(ηY . f ) = g. f .

Let us consider the following classical examples of a
monadic power set theory.
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Example 2.1 [15] The monad P=(P,♦,η ,1Set) in the
category Set is defined by

1. For each object X ∈ Set,P(X) = 2X ,

2. For each object X ∈ Set, ηX : X → P(X) by
ηX (x) = {x}.

3. For each f : X → P(Y ),g : Y → P(Z), g♦ f : X →
P(Z), by

(g♦ f )(x) =
⋃

y∈ f (x)

g(y).

Example 2.2 [16] The structure Z = (Z,�,χ,1Set) in
the category Set is defined by

1. Z : ob j(Set)→ ob j(Set) is a mapping defined by
Z(X) = LX and 1Set : Set → Set is the identity
functor. On LX the order relation is defined point-
wise,

2. For each X ∈ Set, χX : X → Z(X) is the charac-
teristic map of elements from X, i.e.,

x,y∈X , χ
X (x)(y)= χ

X
{x}(y)=

{
1L, x = y,
0L, otherwise.

3. For each f : X → Z(Y ) and g : Y → Z(V ) in Set,
g� f : X → Z(V ) is defined by

(g� f )(x)(z) =
∨
y∈Y

f (x)(y)⊗g(y)(z).

Then Z is a monadic power set theory.

Example 2.3 [11] The monad G = (G,�,ρ,1Set(L ))
in the category Set(L ) is defined by

1. The object function G : Set(L )→ Set(L ) is de-
fined by G(X ,δ ) = (F(X ,δ ),σX ,δ ), where the
similarity relation σ is defined by

σX ,δ (s, t) =
∧
x∈X

s(x)↔ t(x),

for all s, t ∈ F(X ,δ ), where↔ is the bi-residuum
operation in L , such that a↔ b=(a→ b)∧(b→
a),

2. For each (X ,δ ) ∈ Set(L ), ρ(X ,δ ) : (X ,δ ) →
F (X ,δ ) is defined by ρ(X ,δ )(a)(x) = δ (a,x), for
all a,x ∈ X,

3. For each f : (X ,δ ) → G(Y,γ), for each g :
(Y,γ) → G(Z,ω) in Set(L ), g� f : (X ,δ ) →
G(Z,ω) is defined in the same way as in Exam-
ple 2.2.

For a monadic power set theory T in a category K, K-
morphisms X → T (Y ) are called T-relations and are
denoted by X  Y . If f : X  Y and g : Y  Z are
T-relations, their composition is a T-relation defined
by g♦ f : X Z. This notion was introduced in the pa-
per of Manes [10] and it was recently proved that it is
an universal construction of relations for many fuzzy
type structures (e.g., see [11]). Using the notion of a
T-relation X Y , we can define a notion of a transfor-
mation of objects from T (X) to objects from T (Y ).

Definition 2.2 [11] Let R : X  Y be a T-relation
in a category K with a monadic power set theory
T = (T,♦,η ,W ). Then a R-transformation of ob-
jects from T (X) to objects from T (Y ) is a K-morhism
R↑ : T (X)→ T (Y ), such that R↑ = R♦1T (X).

Example 2.4 [11] Recall that an L -valued fuzzy re-
lation from X to Y is an L -valued fuzzy set R in a
set X ×Y . It is easy to see that R is an L -valued
fuzzy relation if and only if R is a Z-relation X  Y ,
where R(x)(y) = R(x,y) and Z is the monadic power
set theory from Example 2.2. In the fuzzy set theory the
following transformation operator R↑ : Z(X)→ Z(Y ),
based on a fuzzy relation R is standardly used:

s ∈ LX ,y ∈ Y, R↑(s)(y) =
∨
x∈X

s(x)⊗R(x,y).

It is easy to see that R↑ = R♦1Z(X) = R↑.

Objects of a category K with T-relations as morphisms
define a new category:

Definition 2.3 [5] Let T = (T,♦,η ,W ) be a monadic
power set theory in a category K. Kleisli category of a
category K with respect to T is the category KT such
that

1. Objects in KT are the same as objects of K,

2. Morphisms in KT are T-relations X  Y ,

3. Composition of morphisms f : X  Y , g : Y  Z
is g♦ f ,

4. For arbitrary object X ∈ KT, the unit morphism
of X in KT is ηX : X  X.

Remark 2.1 It should be emphasised that the symbol
f : X  Y indicates at the same time both a morphism
in Kleisli category KT and a morphism X → T (Y ) in a
category K. To avoid misunderstandings, if f : X  Y
is a morphism in KT, by f ∗ we denote the same mor-
phism X → T (Y ) in a category K. If g : Y  T (Z),
then we have (g♦ f )∗ = g∗♦ f ∗.
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Moreover, if T is a monadic power set theory in K, then
T can be extended to a functor T : K→ K. In fact, if
f : X → Y is a K-morphism, then T ( f ) is defined by

T ( f ) = ηY . f♦1T (X) : T (X)→ T (X).

3 Monadic power set theories of Kleisli
categories

Kleisli categories represent a type of a category which
is frequently used in computer science and in fuzzy
mathematics. Examples of these categories can be
found wherever various types of relationships between
objects occur and where the composition of these re-
lationships is defined. For this reason, it is interesting
and important to decide whether monadic power set
theory can also be defined for these Kleisli categories.
It subsequently allows not only to define a new con-
cept of a relation in this Kleisli category (i.e., a higher
order relation) but also to extend a number of standard
constructions, including the approximation of objects
using this relation of a new type.

In this Section we prove that for arbitrary Kleisli cate-
gory KT, where T is a monadic power set theory in a
category K, there exists a monadic power set theory T̃
in Kleisli category KT. It follows that the Kleisli cate-
gory (KT)T̃ can be considered as a relational variant of
the Kleisli category KT, where instead of morphisms
from KT, T̃-relations as considered.

Theorem 3.1 Let K be a category and let T =
(T,♦,η ,W ) be a monadic power set theory in K.
Then there exists a monadic power set theory T̃ =
(T̃ ,�,ξ ,V ) in the Kleisli category KT.

Proof. The monadic power set theory T̃ is defined by

1. For arbitrary object X of KT, mapping T̃ :
ob j(KT)→ ob j(KT) is defined by T̃ (X) = T (X).
For this reason instead of T̃ (X) we simply use
T (X).

2. Functor V : KT→ Set is such that V (X) =W (X)
and for a morphism f : X  Y in KT we set
V ( f ) =W ( f ∗),

3. For arbitrary KT-morphisms f : X  T (Y ) and
g : Y  T (Z), g� f : X  T (Z) is such that

(g� f )∗ = g∗♦1T (Y )♦ f ∗ : X  T (Z),

4. The
∨

-semilattice structure on V (T (X)) is the
same as on W (T (X)), for arbitrary object X ,

5. For arbitrary object X in KT, ξX : X  T (X) is
defined such that ξ ∗X = η∗T (X).η

∗
X : X → T (X)→

T (T (X)), where ”." is the composition of K-
morphisms.

We show that this definition of T̃ is correct. In fact, for
a KT-morphism f : X  T (Y ) we have

(ξY� f )∗ = ξ
∗
Y♦1T (Y )♦ f ∗ = ηT (Y ).ηY♦1T (Y )♦ f ∗ =

ηT (Y ).(ηY♦1T (Y ))♦ f ∗ = ηT (Y ).1T (Y )♦ f ∗ =

ηT (Y )♦ f ∗ = f ∗.

Therefore, f = ξY� f and the condition (8) from Def-
inition 2.1 holds. Now, because the composition ♦ is
associative, the composition operation � is also asso-
ciative, as for arbitrary KT-morphisms f : X  T (Y ),
g : Y  T (Z), h : Z T (Q) follows from the identity

(h�(g� f ))∗ = h∗♦1T (Z)♦g∗♦1T (Y )♦ f ∗ = ((h�g)� f )∗.

Hence the condition (4) from Definition 2.1 holds.
Now, let f : X  Y and g : Y  T (Z) be KT-
morphisms. Then we have

(g�(ξY♦ f ))∗ = g∗♦1T (Y )♦(ξY♦ f )∗ =

g∗♦1T (Y )♦(ηT (Y ).ηY♦ f ∗) =

g∗♦1T (Y )♦ηT (Y ).(ηY♦ f ∗) =

g∗♦1T (Y )♦ηT (Y ). f
∗ = g∗♦(1T (Y )♦ηT (Y )). f

∗ =

g∗♦ f ∗ = (g♦ f )∗.

Therefore, we obtain g�(ξY♦ f ) = g♦ f and the condi-
tion (9) from Definition 2.1 holds.

Finally, recall that the unit KT-morphism of an element
T (X) is ηT (X). Hence, according to (7) from Definition
2.1, for a KT-morphism f : X  Y we have

( f→T̃ )∗ = ((ξY♦ f )�ηT (X))
∗ =

(ξY♦ f )∗♦1T (X)♦η
∗
T (X) =

ξ
∗
Y♦ f ∗♦1T (X)♦η

∗
T (X) = ηT (Y ).ηY♦ f ∗♦1T (X)♦η

∗
T (X) =

η
∗
T (Y ).(η

∗
Y♦ f ∗)♦1T (X)♦η

∗
T (X) =

η
∗
T (Y ) f ∗♦1T (X)♦η

∗
T (X) =

η
∗
T (Y ). f

∗♦1T (X).

Therefore, we have

V ( f→T̃ ) =W (( f→T̃ )∗) : T (X)→ T T (Y )

and if we apply the condition (7) from Definition 2.1
to the K-morphism f ∗ : X → T T (Y ), we obtain that
V ( f→

T̃
) is also

∨
-preserving map. Therefore, T̃ is a

monadic power set theory in Kleisli category KT.

�
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Let’s try to explain how morphisms look like in the
Kleisli category (KT)T̃. For this purpose, we use the
following symbols for morphisms from K, KT and
(KT )T̃, respectively:

X → Y, X  Y, X ⇒ Y. (1)

As it was mentioned, a morphism X  Y in KT rep-
resents also the morphism X → T (Y ) in K. Analo-
gously, a morphism X ⇒ Y in (KT)T̃ represents also
the morphism X  T̃ (Y ) = X  T (Y ) in KT and this
morphism represents also a morphism X → T (T (Y ))
in K. Therefore, by morphisms X ⇒ Y in (KT )T̃ we
can consider morphisms X → T (T (Y )) in K. Using
notation from Remark 2.1, if R : X ⇒ Y is a (KT)T̃-
morphism, then R∗ : X T (Y ) is a corresponding KT-
morphism and R∗∗ : X → T (T (Y )) is a corresponding
K-morphism.

The method presented in Theorem 3.1 allows us to cre-
ate an infinite sequence of categories with higher or-
der relations as morphisms from one category K with
monadic power set theory T, i.e., a sequence of Kleisli
categories defined over Kleisli categories. In fact, we
can use the following sequence of Kleisli categories

K T
> KT

T̃
> (KT)T̃

T̃′
> ((KT)T̃)T̃′ > etc.

Relationships between pairs of categories from this se-
quence can be described by morphisms between ob-
jects (K,T) consisting of a category K and a monadic
power set theory T in this category. This notion was
introduced in [12].

Definition 3.1 [12] By a monadic couple we under-
stand the couple (K,T), where T = (T,♦,η ,W ) is
a monadic power set theory in a category K. Let
(L,R) be another monadic couple such that R =
(R,�,µ,V ). Then (H,Φ) : (K,T)→ (L,R) is a mor-
phism of monadic couples if

1. H : K→ L is a functor,

2. V H(X) =W (X) for an arbitrary object X in K,

3. Φ : HT → RH is a natural transformation of a
composition of functors,

4. For each morphisms f : X → T (Y ),g : Y → T (Z)
in K, the following equality holds:

ΦZ .H(g♦ f ) = (ΦZ .H(g))�(ΦY .H( f )), (2)

where . is a composition of L-morphisms in L.

5. For arbitrary object X in K, the following dia-
gram of L-morphisms commutes:

H(X)
H(ηX )

> HT (X)

RH(X).

ΦX
∨µH(X) >

In the following proposition we show the basic rela-
tionship between monadic pairs (K,T) and (KT, T̃).

Proposition 3.1 There exists a morphism

(H,Φ) : (K,T)→ (KT, T̃)

of monadic pairs from Theorem 3.1.

Proof. The morphism (H,Φ) is defined by

1. H : K→KT is defined by

(a) H(X) = X for objects from K,
(b) For a K-morphism f : X → Y , a KT-

morphism H( f ) : X  Y is such that
H( f )∗ = ηY . f : X → T (Y ), where ”." is the
composition of morphisms in K.

2. For an object X in K, ΦX : HT (X) T̃ H(X) is
a KT-morphism T (X) T (X) such that Φ∗X =
ηT (X) : T (X)→ T (T (X)).

We prove that H is a functor. Let f : X → Y and g :
Y → Z be K-morphisms. Since the composition of KT-
morphisms is ♦, to prove that H is a functor we need
to show that H(g. f ) = H(g)♦H( f ). In fact, we have

H(g. f )∗ = ηZ .g. f ,

(H(g)♦H( f ))∗ = ηZ .g♦ηY . f = ηZ .(g♦ηY . f ) =

ηZ .(g♦ηY ). f = ηZ .g. f ,

H(1X ) = ηX = 1H(X).

Further, let f : X →Y be a K-morphism. To prove that
Φ is a natural transformation, we need to prove that the
following diagram of KT-morphisms commutes:

HT (X)
ΦX
> T̃ H(X)

HT (Y )

HT ( f )
∨

ΦY
> T̃ H(Y ).

T̃ H( f )∨

According to Remark 2.1 we have

(ΦY♦HT ( f ))∗ = ηT (Y )♦H(T ( f ))∗ =

ηT (Y )♦ηT (Y ).(ηY . f♦1T (X)) = ηT (Y ).(ηY . f♦1T (X)).
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On the other hand, we have

(T̃ H( f )♦ΦX )
∗ = T̃ (ηY . f )∗♦ηT (X) =

((ξY♦ηY . f )�ηT (X))
∗♦ηT (X) =

ξY . f♦1T (X)♦ηT (Y ) = ηT (Y ).ηY . f♦1T (X)♦ηT (X) =

ηT (Y ).(ηY . f♦1T (X))♦ηT (X) = ηT (Y ).(ηY . f♦1T (X)).

Therefore, the diagram commutes and Φ is a natural
transformation. Further, we prove that the equality (2)
holds. Let f : X → T (Y ) and g : Y → T (Z) be K-
morphisms. We have

(ΦZ♦H(g♦ f ))∗ = ηT (Z)♦H(g♦ f )∗ = H(g♦ f )∗ =

ηT (Z).(g♦ f ) = ηT (Z).g♦ f .

On the other hand, we have

((ΦZ♦H(g))�(ΦY♦H( f )))∗ = (H(g)�H( f ))∗ =

((ηT (Z).g)�(ηT (Y ). f ))
∗ = ηT (Z).g♦1T (Y )♦ηT (Y ). f =

ηT (Z).g♦(1Y (Y )♦ηT (Y )). f = ηT (Z).g♦ f .

Therefore, the equality (2) holds. Finally, we show
that the diagram from condition 5 in Definition 3.1,
commutes. In fact, the commutativity of this diagram
is transformed to the equality ΦX♦H(ηX ) = ξH(X) =
ξX and this equality follows directly from equali-
ties ΦX♦H(ηX ) = ηT (X)♦ηT (X).ηX = ηT (X).ηX = ξX .
Therefore, (H,Φ) is a morphism of monadic pairs.

�

From Proposition 3.1 and Theorem 3.1 it follows that
we can construct a sequence of morphisms between
monadic pairs

(K,T) (H,Φ)
> (KT, T̃)

(H ′,Φ′)
> ((KT)T̃, T̃

′)) > etc.

4 Examples

In the following example we show how the category
((Set)Z)Z̃ can be described in a simpler and more il-
lustrative way.

Example 4.1 Let us consider the following category
K.

1. Objects of K are the same as in the category Set.

2. K-morphisms R : X → Y are L -fuzzy relations
from X to Z(Y ), i.e., R : X×Z(Y )→ L.

3. Compositions of K-morphisms R : X → Y and S :
Y →Q is an L -fuzzy relation S◦R : X×Z(Q)→
L, defined by

x ∈ X , t ∈ Z(Q),

S◦R(x, t) =
∨

s∈Z(Y )

∨
y∈Y

R(x,s)⊗ s(y)⊗S(y, t).

4. For an object X in K, the unit K-morphism 1X :
X→ X is an L -fuzzy relation 1X : X×Z(X)→ L,
such that

x ∈ X ,s ∈ Z(X),1X (x,s) =

{
1L, if s = χ{x},

0L, otherwise.

It is easy to prove that the category K is isomor-
phic to Kleisli category (SetZ)Z̃.

Example 4.2 For illustration, we show how mor-
phisms R : (X ,δ ) ⇒ (Y,γ) look in the category
(Set(L )G)G̃, where G is a monadic power set the-
ory from Example 2.3. According to Remark 2.1, R
is equivalent to the Set(L )-morphism

(R∗)∗ : (X ,δ )→ G(G(Y,γ)), where

G(G(Y,γ)) = G(F(Y,γ),σY,γ) =

((F(F(Y,γ),σY,γ),σF(Y,γ),σY,γ ).

It follows that the following statements are equivalent.

1. R : (X ,δ )⇒ (Y,γ) is a morphism in (Set(L )G)G̃,

2. R : X ×F(Y,γ)→ L is an L -fuzzy relation, such
that

(a) For arbitrary x,x′ ∈ X, it holds

δ (x,x′)≤
∧

t∈F(Y,γ)

R(x, t)↔ R(x′, t),

(b) For arbitrary x ∈ X ,s, t ∈ F(Y,γ), it holds

R(x,s)⊗
∧
y∈Y

s(y)↔ t(y)≤ R(x, t).

In the next example we show that morphisms X ⇒ Y
in Kleisli category (Set)Z)Z̃ can, in fact, occur even in
quite commonly used systems, such as e.g. L -fuzzy
soft sets.

Example 4.3 We use a notation from Example 2.2.
Recall that an L -fuzzy soft set in a soft universe (X ,K)
is a pair (E,s), where X is a set of objects, K is a
set of criteria, E ⊆ K and s : E → Z(X) is a map-
ping (see, e.g., [6]). It is clear that L -fuzzy soft sets
can be equivalently represented as a pair (E,s), where
s : X→ Z(E) is a mapping such that s(x)(e) = s(e)(x).
In this case, s(x) is a fuzzy set in E expressing how the
object x satisfies individual criteria from E. Unlike the
individual criteria e∈E, we can also consider criteria,
which are represented by fuzzy sets in E. It is natural
to call these fuzzy sets as fuzzy criteria for selecting
variants from X.

Now, if a fuzzy criterion h ∈ Z(E) is defined, we must
determine how a given object x corresponds to h. For a
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given L -fuzzy soft set (E,s), object x ∈ X and a fuzzy
criterion h ∈ Z(E), we need to associate a value in L.
Equivalently, it means that we need to define a map-
ping X→ Z(Z(E)). According to Theorem 3.1 and Re-
mark 2.1, this mapping is equivalent to the morphism

R(E,s) : X ⇒ E

in the Kleisli category (SetZ)Z̃ or, equivalently, to the
SetZ-morphism R∗(E,s) : X Z(E), or, equivalently, the
Set-morphism (R∗(E,s))

∗ : X → Z(Z(E)) in Set. For ex-
ample, for x ∈ X ,h ∈ Z(E) we can set

(R∗(E,s))
∗(x)(h) =

∨
e∈E

h(e)⊗ s(e)(x).

In that case , (R∗(E,s))
∗(x)(h) is the value with which the

object x corresponds to the fuzzy criterion h, provided
that the object x is primarily evaluated using a fuzzy
soft set (E,s).

In addition, just as we introduced the notion of a fuzzy
criterion, we can introduce (at least for some tasks)
the notion of a fuzzy portfolio of objects from X as
a fuzzy set g ∈ LX , where the value g(x) ∈ L corre-
sponds to how strongly we consider including object x
in our individual selection of suitable objects. It is then
possible to solve the problem of how a fuzzy portfolio
g of objects corresponds to a fuzzy scenario h. For
this purpose we can use the morphism R(E,s) : X ⇒ E
in the Kleisli category (SetZ)Z̃, which is also a Z-
relation R∗(E,s) : X  Z(E). According to Definition
2.2, using this Z-relation R∗(E,s) we can construct the
R∗(E,s)-transformation of objects from Z(X) to objects
Z(Z(E)) defined by

R∗(E,s)
↑ : Z(X)→ Z(Z(E)),

g ∈ Z(X),h ∈ Z(E), R∗(E,s)
↑(g)(h) =

R∗(E,s)�1Z(X)(g)(h) =
∨
x∈X

∨
e∈E

g(x)⊗h(e)⊗ s(e)(x).

Hence, R∗(E,s)
↑(g)(h) represents the value from L de-

scribing how fuzzy portfolio g corresponds to the fuzzy
scenario h.

Example 4.4 The simplest example of a morphism in
Kleisli category (SetZ)Z̃ is a calculation of member-
ship functions of L -fuzzy sets. In fact, let R : X ⇒ X
be a (SetZ)Z̃-morphism. Using the notation (1) and
Remarks 2.1, this morphism is equivalent to the SetZ-
morphism R∗ : X  Z(X) and Set-morphism (R∗)∗ :
X→ Z(Z(X)). Now, the mapping (R∗)∗ can be defined
by

x ∈ X ,s ∈ Z(X), (R∗)∗(x)(s) = s(x) ∈ L.

Therefore, the (SetZ)Z̃-morphism R : X ⇒ X can be
identified with the process of calculations of member-
ship functions of L -fuzzy sets from Z(X).

5 Conclusions

In this paper, we continued to build relational vari-
ants of categories K, i.e., such modifications of a cat-
egory K, where instead of K-morphisms f : X → Y of
this category, special relations R : X  Y defined by a
monad T in this category are considered. Then Kleisli
category KT of a category K defined by a monad T
can be considered as a relational variant of a category
K. We first presented this type of transformation of
a category K to relational version in [11], where we
showed that many standard fuzzy type relations in var-
ious categories are in fact relations defined by monads
and, therefore, categories with such defined relations
as morphisms are isomorphic to Kleisli category.

Although often not explicitly stated, the Kleisli cate-
gories themselves are also often used in the fuzzy set
theory and their modifications. It is therefore interest-
ing to examine what the relational variants of Kleisli
categories look like, i.e., how it is possible to construct
Kleisli categories of Kleisli categories using appropri-
ate monads. In the paper we show how to define a
monad T̃ in a Kleisli category KT of a category K and a
monad T, such that (KT)T̃ represents a relational vari-
ant of the category KT. We show also some examples
of morphisms in this category (KT)T̃ and relationship
between categories KT and (KT)T̃.
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