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Abstract

Inspired by the basic fuzzy connectives min
(t-norm TM) and max (t-conorm SM), we in-
troduce and study outliers-based extended
aggregation functions. Simply said, A is
an (a,b)-outliers-based extended aggrega-
tion function if for each arity n ≥ a+ b, its
output values depend on the number a mi-
nimal and b maximal input values only. We
focus on associative outliers-based extended
aggregation functions, including t-norms, t-
conorms, uninorms, nullnorms, as well as on
outliers-based extended OWA operators and
related outliers-based extended aggregation
functions.

Keywords: Aggregation function, Cho-
quet integral, Extended aggregation func-
tion, Nullnorm, Outlier-based-aggregation,
OWA operator, Triangular conorm, Triangu-
lar norm, Uninorm.

1 Preliminaries

Aggregation of real inputs without apriori given car-
dinality, such as, e.g., the arithmetic mean, geomet-
ric mean, t-norms or t-conorms, is usually realized by
means of extended aggregation functions [2, 7]. In this
paper we restrict our consideration to aggregations on
the scale [0,1], and then an extended aggregation func-
tion A is a mapping A :

⋃
n∈N

[0,1]n→ [0,1] such that for

each n ∈ N, An = A|[0,1]n is an n-ary aggregation func-
tion, i.e.,

• An(0) = An(0, . . . ,0) = 0 and An(1) =
An(1, . . . ,1) = 1,

• An is increasing, i.e., An(x)≤An(y) whenever x=
(x1, . . . ,xn),y = (y1, . . . ,yn) ∈ [0,1]n and xi ≤ yi
for each i = 1, . . . ,n.

Throughout the paper, the class of all extended aggre-
gation functions on the scale [0,1] will be denoted by
A and for any fixed n ∈N, the class of all n-ary aggre-
gation functions will be denoted by An.

In some situations, only outliers of the input data sam-
ple are necessary to be considered in aggregation pro-
cess for obtaining the output value. For example, the
fuzzy disjunction SM (max) proposed by Zadeh [15] re-
quires considering a unique value, namely the maximal
value. On the other hand, the t-norm TD (drastic prod-
uct) requires the knowledge of the two minimal input
values only. The aim of this contribution is to provide
formalization of outliers-based aggregation and then
to study such aggregation functions in some particu-
lar subclasses, for example, in the class of all extended
triangular norms and conorms, uninorms, nullnorms,
OWA operators, etc.

The contribution is organized as follows. In Section
2, (a,b)-outliers-based extended aggregation functions
are introduced and some general results are given. In
Section 3, (a,b)-outliers-based extended t-norms, t-
conorms, uninorms and nullnorms are sudied. Section
4 is devoted to extended OWA opertors and to some
related classes of aggregation functions. Finally, some
concluding remarks are added.

2 (a,b)-outliers-based extended
aggregation functions

The following definition was introduced by the authors
in [9].
Definition 2.1. Let N0 = N ∪ {0}, and let a,b ∈
N0, a + b ≥ 1. An extended aggregation function
A :

⋃
n∈N

[0,1]n→ [0,1] is called an (a,b)-outliers-based

extended aggregation function whenever for each x ∈
[0,1]n with n≥ a+b, we have

A(x) = BA(x(1), . . . ,x(a),x(n−b+1), . . . ,x(n)) (1)

where BA : [0,1]a+b → [0,1] is a fixed (a+ b)-ary ag-
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gregation function and x(i) is the ith smallest input from
the sample x = (x1, . . . ,xn).

The class of all (a,b)-outliers-based extended aggrega-
tion functions will be denoted by A(a,b).

Obviously, for each input vector x = (x1, . . . ,xn) there
is a permutation (·) : {1, . . . ,n} → {1, . . . ,n} such that
x(1) ≤ ·· · ≤ x(n). Due to (1), each (a,b)-outliers-based
extended aggregation function A is necessarily sym-
metric for each arity n≥ a+b. Note that for n < a+b,
Definition 2.1 does not bring any constraint for A.

Let us stress that in this contribution we work with ex-
tended aggregation functions on [0,1], but for simplic-
ity, when no confusion can arise, the word “extended"
will sometimes be dropped.

The following result can be seen as a construction
method for (a,b)-outliers-based extended aggregation
functions.

Theorem 2.1. Let a,b ∈ N and let C,D :
⋃

n∈N
[0,1]n→

[0,1] be (a,0)- and (0,b)-outliers-based extended ag-
gregation functions, respectively. If E ∈ A2 is a bi-
nary aggregation function then the extended function
A :

⋃
n∈N

[0,1]n → [0,1] given for each x ∈ [0,1]n, n ≥

a+b, by

A(x) = E
(
C
(
x(1), . . . ,x(a)

)
,D
(
x(n−b+1), . . . ,x(n)

))
(2)

and such that A|[0,1]n ∈ An for any n < a + b, is an
(a,b)-outliers-based extended aggregation function.

Example 2.1. Let A :
⋃

n∈N
[0,1]n→ [0,1] be given by

A(x) =
1
2
(x(1)x(n)+ x(2)x(n−1)),

if n ≥ 2, and if n = 1, A(x) = x, for each x ∈ [0,1].
Then A is a (2,2)-outliers-based extended aggregation
function which cannot be expressed in the form (2).

The following general results can be proved.

Proposition 2.1.

(i) Let a,b,c,d be as in Definition 2.1 and such that
(a,b)≤ (c,d). Then A(a,b) ⊆A(c,d).

(ii) Let A be an extended aggregation function, A ∈
A(a,b). Then its dual Ad :

⋃
n∈N

[0,1]n → [0,1], de-

fined by Ad(x1, . . . ,xn) = 1−A(1−x1, . . . ,1−xn),
belongs to A(b,a).

Proposition 2.2. Let A be a symmetric extended ag-
gregation function. Then

(i) A ∈A(1,0) if and only if A(x,y) = A(x) for all x ∈
[0,1]n, n ∈ N, and each y ∈ [0,1] such that y ≥
min{x1, . . . ,xn}.

(ii) A ∈A(0,1) if and only if A(x,y) = A(x) for all x ∈
[0,1]n, n ∈ N, and each y ∈ [0,1] such that y ≤
max{x1, . . . ,xn}.

(iii) A ∈ A(1,1) if and only if A(x,y) = A(x) for all
x ∈ [0,1]n, n ≥ 2, and each y ∈ [0,1] such that
min{x1, . . . ,xn} ≤ y≤max{x1, . . . ,xn} (consider-
ing n≥ 2) .

Due to Proposition 2.2, it is not difficult to see that

• A(1,0) = { f ◦TM | f ∈A1}, where TM =min is the
greatest t-norm [8],

• A(0,1) = { f ◦ SM | f ∈ A1}, where SM = max is
the weakest t-conorm [8],

• A(1,1) = {B(TM,SM) | B ∈ A2} (considering n ≥
2).

3 Some associative (a,b)-outliers-based
extended aggregation functions

In this section we will discuss extended t-norms and
their dual t-conorms [8], uninorms [14], and also null-
norms [1]. Binary forms of all these aggregation func-
tions are associative, thus they univocally generate
the related extended aggregation functions. Note that
unary forms of all these aggregation functions coincide
with the identity function on [0,1]. Due to Proposition
2.2, it is evident that TM is the only t-norm contained in
A(1,0), and SM is the only t-conorm in A(0,1). Note that
proper uninorms or nullnorms belong neither to A(0,1)
nor to A(1,0).

If we denote by T ,S ,U and V the class of all ex-
tended t-norms, t-conorms, uninorms and nullnorms,
respectively, then:

• T ∩A(a,b) = T ∩A(a,0) whenever a ∈ N;

• S ∩A(a,b) = S ∩A(0,b) whenever b ∈ N;

• if U ∈U ∩A(a,b) then a,b ∈ N;

• if V ∈ V ∩A(a,b) then a,b ∈ N.

Theorem 3.1. Let T ∈T and let δ ∈A1 be its diago-
nal section, i.e., δ (x) = T (x,x) for each x ∈ [0,1].

(i) If T ∈A(2,0) then δ ◦δ = δ .
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(ii) If δ ◦δ = δ , and if for all x,y ∈ [0,1]

T (x,y) =
{

min{x,y} i f max{x,y}= 1,
δ (min{x,y}) otherwise,

then for each x ∈ [0,1]n, n≥ 2, we have

T (x) =
{

TM(x) i f x(2) = 1,
δ (TM(x)) otherwise,

and T ∈A(2,0).

There are also some other constructions of extended
t-norms belonging to A(2,0).

Example 3.1. Let T nM be the nilpotent minimum [3,
11],

T nM(x) =
{

0 i f x(1)+ x(2) ≤ 1,
x(1) otherwise.

Then T nM ∈A(2,0).

The following example shows a method for construct-
ing extended t-norms from A(a,0).

Example 3.2. Let t : [0,1]→ [0,∞[ be a strictly de-
creasing function continuous on [0,1[, such that t(1) =
0 and

t(1−) = lim
x→1−

t(x)≥ t(0)
a

, a≥ 2.

Then T ∈ A(a,0), where T is a t-norm generated by t,
i.e.,

T (x) = t−1

(
min

{
t(0),

n

∑
i=1

t(xi)

})
.

Note that if a = 2, then T = TD is the drastic product,
and its diagonal is given by

δ (x) =
{

1 i f x = 1,
0 otherwise,

compare with Theorem 3.1.

Remark 3.1. Due to the duality of t-norms and t-
conorms, similar results are valid for t-conorms. For
example,

• if S ∈ S ∩A(0,2) then δ = δ ◦ δ , where δ (x) =
S(x,x) for each x ∈ [0,1].

• Similarly, if s : [0,1]→ [0,∞[ is a strictly increas-
ing function and such that it is continuous on
]0,1], s(0) = 0 and s(0+)≤ s(1)

b , then S generated
by s belongs to A(0,b).

Note that then

S(x) = s−1

(
min

{
s(1),

n

∑
i=1

s(xi)

})
.

Now, let U be an extended uninorm with neutral ele-
ment e∈]0,1[. Then, due to [5], U induces an extended
t-norm T and an extended t-conorm S given, for each
x ∈ [0,1]n, n ∈ N, by

T (x) =
U(e ·x)

e
,

and

S(x) =
U(e+(1− e)x1, . . . ,e+(1− e)xn)− e

1− e
,

respectively.

Based on Theorem 2.1, we get the following interest-
ing result for uninorms.

Theorem 3.2. Let U ∈ U be an extended uninorm
with neutral element e ∈]0,1[ and let a,b ∈ N. Then
U ∈A(a,b) if and only if the extended t-norm T induced
by U belongs to T ∩A(a,0), and the extended t-conorm
S induced by U belongs to S ∩A(0,b).

Clearly, if U ∈U ∩A(1,1), then necessarily T =TM and
S = SM , i.e., U is an idempotent uninorm. Note that
idempotent uninorms were completely characterized in
[10]. We have the following result.

Corollary 3.1. Extended idempotent uninorms can be
characterized as follows:

{U ∈U | ∀ c ∈ [0,1],n ∈ N : Un(c, . . . ,c) = c}
= U ∩A(1,1).

Remark 3.2. Similarly to the case of extended t-norms
and t-conorms, we have a necessary condition for ex-
tended uninorms U ∈ U ∩A(2,2), namely, the involu-
tivity of their diagonal section δ , i.e., δ ◦δ = δ , where
δ (x) =U(x,x), x ∈ [0,1].

For extended nullnorms we have the following result.

Theorem 3.3. Let V ∈ V be an extended nullnorm
with annihilator α ∈]0,1[, and a,b ∈ N. Then V ∈
A(a,b) if and only if the extended t-norm T given by

T (x) =
V (α +(1−α)x1, . . . ,α +(1−α)xn)−α

1−α
,

x ∈ [0,1]n, n ∈ N, belongs to T ∩A(a,0),
and the extended t-conorm S given by

S(x) =
V (α ·x)

α
, x ∈ [0,1]n,n ∈ N,

belongs to S ∩A(0,b).

Observe that the only proper nullnorms from A(1,1) are
just α-medians [4] given by

Vα(x) = med(x1,α,x2,α, . . . ,xn−1,α,xn).
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4 OWA operators based on outliers

Recall that OWA operators in their n-ary form were
introduced by Yager in [13]. An n-ary OWA operator
OWAw can be written as

OWAw(x1, . . . ,xn) =
n

∑
i=1

wix(i),

where w = (w1, . . . ,wn) ∈ [0,1]n with
n
∑

i=1
wi = 1, is its

weighting vector.

OWA operators as extended aggregation functions are
determined by the related weighting triangles

∆ = {wi,n | n ∈ N, i ∈ {1, . . . ,n}},

where, for each n ∈N, (w1,n, . . . ,wn,n) ∈ [0,1]n is an n-

ary weighting vector,
n
∑

i=1
wi,n = 1. An extended OWA

operator OWA∆ :
⋃

n∈N
[0,1]n→ [0,1] can be written as

OWA∆(x1, . . . ,xn) =
n

∑
i=1

wi,nx(i).

More details can be found, e.g., in [2].

The following result is immediate.

Proposition 4.1. Let (a,b) ∈ N0 × N0, a + b ≥ 1,
and let OWA∆ be an extended OWA operator. Then
OWA∆ ∈ A(a,b) if and only if for each n ≥ a+ b we
have

• wi,n = wi,a+b for all i ∈ {1, . . . ,a},

• wi,n = 0 for each i ∈ {a+1, . . . ,n−b},

• wi,n = wi+a+b−n,a+b for all i ∈ {n−b+1, . . . ,n}.

Based on the above proposition, one obtains that all
outliers-based extended OWA operators can be repre-
sented as is given in Theorem 2.1. Indeed, OWA∆ ∈
A(a,b) if and only if there are OWA

∆(1) ∈ A(a,0),
OWA

∆(2) ∈ A(0,b) and λ ∈ [0,1] such that for each
n≥ a+b,

wi,n =


w(1)

i,a ·λ for i ∈ {1, . . . ,a},
w(2)

i−n+b,b · (1−λ ) for i ∈ {n−b+1, . . . ,n},
0 otherwise.

Recall that OWA operators are related to the Choquet
integrals [6], more precisely, the Choquet integrals
with respect to symmetric capacities (i.e., symmet-
ric Choquet integrals) coincide with OWA operators.
Thus, an extended Choquet integral ChM , M = (mn)
being a system of capacities mn acting on {1, . . . ,n},

belongs to A(a,b) only if the capacities mn are sym-
metric whenever n ≥ a+ b, and the related weighting
triangle ∆M = (wi,n) given, for all n≥ a+b, by

wi,n = mn({i, . . . ,n})−mn({i+1, . . . ,n}

(with convention {n+ 1, . . . ,n} = /0) satisfies the con-
straints of Proposition 4.1.

Summarizing the above results for OWA operators
OWA∆ (Choquet integrals), we can see that OWA∆ =
ChM ∈ A(a,b) if and only if there is an (a + b)-ary
weighting vector (v1, . . . ,va+b) such that for all n ≥
a+b and all x ∈ [0,1]n, we have

OWA∆(x) =ChM(x) =
a

∑
i=1

vix(i)+
a+b

∑
i=a+1

vix(n+i−a−b).

(3)

There are two immediate generalizations of (3). In-
stead of OWA operators one can consider QOWA
(quasi-OWA) operators based on continuous strictly
monotone functions f : [0,1]→ [−∞,∞], where

QOWA f ,∆ = f−1 (OWA∆( f (x1), . . . , f (xn)) .

For example, considering f (x) = logx, the related
QOWA f ,∆ is the weighted ordered geometric mean.
Transforming (3), we see that QOWAlog,∆ belongs to
A(a,b) if and only if there is an (a + b)-ary weight-
ing vector (v1, . . . ,va+b) such that for each x ∈ [0,1]n,
n≥ a+b, we have

QOWAlog,∆(x) =

(
a

∏
i=1

xvi
(i)

)
·

(
a+b

∏
i=a+1

xvi
(n+i−a−b)

)
.

Another approach to generalizing outliers-based OWA
operators is based on replacing the Choquet integral by
some other fuzzy integral. For example, one can con-
sider the Sugeno integral [12], and then SuM ∈ A(a,b)
if and only if there is an (a+ b)-ary weighting vector
(v1, . . . ,va+b) such that for each x ∈ [0,1]n, n ≥ a+ b,
we have

SuM(x)

=

(
a∨

i=1

(
ui∧ x(i)

))
∨

(
a+b∨

i=a+1

(
ui∧ x(n+i−a−b)

))
,

where ui =
a+b
∑
j=i

v j.

Example 4.1. Consider a = b = 1 and (v1,v2) =
(0.5,0.5). Then all the following extended aggregation
functions belong to A(1,1):

• OWA∆(x) =ChM(x) =
x(1)+x(n)

2 = min(x)+max(x)
2
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• QOWAlog,∆(x) = x0.5
(1) · x

0.5
(n) =

√
min(x) ·max(x)

• SuM(x) =
(
x(1)∧1

)
∨
(
x(n)∧0.5

)
= (min(x))∨ (max(x)∧0.5)
= med(min(x),0.5,max(x))
= med0.5(min(x),max(x))

5 Concluding remarks

We have introduced and discussed outliers-based ex-
tended aggregation functions related to some par-
ticular subclasses of extended aggregation functions,
including extended t-norms, t-conorms, uninorms,
nullnorms, OWA operators, etc. Note that for
any A ∈ A(a,b), also the transforms Aϕ ∈ A(a,b),
ϕ : [0,1]→ [0,1] being an automorphism and Aϕ(x) =
ϕ−1(A(ϕ(x1), . . . ,ϕ(xn))). Moreover, if ϕ : [0,1] →
[0,1] is a decreasing bijection then Aϕ ∈ A(b,a). In
special cases, also some other construction methods
could be applied. For example, in the case of ordi-
nal sums of t-norms (t-conorms) [8], if all summands
belong to A(a,b), then the related ordinal sums are also
outliers-based aggregation functions from A(a,b). Pos-
sible applications of our research we expect in big data
processing when instead of the huge amount of output
data it is enough to consider a+b outlying values only.
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