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Abstract

We analyze various multi-scale representa-
tions of a one-dimensional signal in spaces
with a closeness relation determined by a
symmetric and positive semi-definite kernel.
We discuss other kernels than the predomi-
nant Gaussian kernel in a scale space repre-
sentation of a one-dimensional signal. We
show that kernels arising from generating
functions of fuzzy partitions can be treated
with the same success. We also show that the
reconstruction from the proposed multi-scale
representations of better quality than the re-
construction from MLP with almost double
the number of neurons in 4 hidden layers.

Keywords: Multi-scale representation,
Fuzzy partition, Fuzzy transform.

1 Introduction

The proposed contribution is focused on a multi-scale
representation of image/signal data. This processing
closely relates to the data processing by neural net-
works, extraction of stable features that are invariant
under various geometric transformations.

Among the first types of multi-scale representation of
image data, the quad-tree methodology [3] should be
mentioned. It focuses on recursively dividing an im-
age into smaller areas. A low-pass pyramid represen-
tation was proposed in [2], where the added benefit to
multi-scaling was that the image size decreased expo-
nentially compared to. scale level.

Koenderink [4] emphasized that the problem of scale
must be solved in any visualization situation. Any real
image has a limited size, determined by two scales:
external and internal. For a digital image, the inter-
nal scale is determined by the pixel size, and for a

photographic image, by the size of the grains in the
emulsion. We can say that the outer scale of an object
corresponds to the (minimum) size of the window that
completely contains that object, while (informally) the
inner scale corresponds to the scale where the features
of the object begin to appear.

To have a successful image analysis we need the ability
to scale up and down the internal scope of observation
in accordance with the specific task. Koenderink also
emphasized that if there is no a priori reason for con-
sidering specific image structures, then the successful
analysis should be able to handle image structures at all
scales. The challenge is to understand the image at all
relevant scales at the same time, but not as an unrelated
set of derived images at different levels of blur.

The basic idea (in Lindeberg [5]) how to obtain a multi-
scale representation of an object is to embed it into
a one-parameter family of gradually smoothed ones
where fine-scale details are sequentially suppressed.
Under fairly general conditions, the author showed that
the Gaussian kernel and its derivatives are the only pos-
sible smoothing kernels. These conditions are mainly
linearity and shift invariance, combined with various
ways of formalizing the notion that structures on a
coarse scale should correspond to simplifications of
corresponding structures on a fine scale.

The main result that we arrive at here is that the Gaus-
sian kernel can be replaced with the same success by
a symmetric positive semi-definite kernel with a local
support. In particular, we will show that generating
function of any uniform fuzzy partition of R can be
used for determining such kernel.

2 Scale-space Representation

A scale-space representation is a special type of multi-
scale representation that is determined by a continuous
scale parameter and preserves the same spatial sam-
pling at all scales. By the construction in Witkin [8],
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a scale-space representation is a one-parameter family
of derived signals constructed using convolution with
a one-parameter family of Gaussian kernels of increas-
ing width.

Formally, a scale space family of a continuous signal
is constructed as follows. For a signal f : RN →R, the
scale-space representation L : RN×R+→R is defined
by:

L(·,0) = f (·),
L(·, t) =g(·, t)? f , (1)

where t ∈R+ is the scale parameter and g :RN×R+→
R is the Gaussian kernel as follows:

g(x, t) =
1

(2πt)N/2 exp−
N

∑
i=1

x2
i

2t
.

The scale parameter t relates to the standard deviation
of the kernel g, and is a natural measure of spatial scale
at the level t.

As an important remark, we note that the scale-space
family L can be defined as the solution to the diffusion
(heat) equation

∂tL =
1
2

∇
T

∇L, (2)

with initial condition L(·,0) = f . The Laplace op-
erator, ∇T ∇ or ∆, the divergence of the gradient, is
taken in the spatial variables. The “diffusivity con-
stant” 1

2 in (2) characterizes the "thermal diffusivity of
the medium", which, among other things, depends on
its mass density.

The solution to (2) in one-dimension and in the case
where the spatial domain is R is known as the con-
volution of f (initial condition) and the fundamental
solution:

L(x, t) =g(·, t)? f , (3)

g(x, t) =
1

(
√

2πt)
exp−x2

2t
. (4)

The following two questions arise: is this approach the
only reasonable way to perform low-level processing,
and are Gaussian kernels and their derivatives the only
smoothing kernels that can be used? Many authors
[5, 8, 4] answer these questions positively, which leads
to the default choice of Gaussian kernels in most image
processing tasks. In this article, we want to expand on
the set of useful kernels suitable for performing scale-
space representations. In particular, we propose to use
kernels arising from generating functions of fuzzy par-
titioning.

3 Space with a Fuzzy Partition

In this section, we introduce space that plays an impor-
tant role in our research. A space with a fuzzy partition
is considered as a space with a proximity (closeness)
relation, which is a weak version of a metric space.
Our goal is to show that the diffusion (heat conduction)
equation in (2) can be extended to spaces with close-
ness, where the concepts of derivatives are adapted to
nonlocal cases.

Let us first recall the basic definitions. As we indicated
at the beginning, our goal is to extend the Laplace op-
erators to those that take into account the specifics of
spaces with fuzzy partitions. For this reason, in the
following sections, we recall the basic concepts on this
topic.

3.1 Fuzzy partition

Definition 1: Fuzzy sets A1, . . . ,An : [a,b] → R, es-
tablish a fuzzy partition of the real interval [a,b] with
nodes a = x1 < .. . < xn = b, if for all k = 1, . . . ,n,
the following conditions are valid (we assume x0 = a,
xn+1 = b):

1. Ak(xk) = 1, Ak(x)> 0 if x ∈ (xk−1,xk+1);

2. Ak(x) = 0 if x 6∈ (xk−1,xk+1);

3. Ak(x) is continuous,

4. Ak(x), for k = 2, . . . ,n, strictly increases on
[xk−1,xk] and Ak(x) strictly decreases on [xk,xk+1]
for k = 1, . . . ,n−1,

The membership functions A1, . . . ,An are called basic
functions [6].

Definition 2: The fuzzy partition A1, . . . ,An, where
n ≥ 2, is h-uniform if nodes x1 < · · · < xn are h-
equidistant, i.e. for all k = 1, . . . ,n−1, xk+1 = xk +h,
where h=(b−a)/(n−1), and the following additional
properties are fulfilled [6]:

1. for all k = 2, . . . ,n − 1 and for all x ∈ [0,h],
Ak(xk− x) = Ak(xk + x),

2. for all k = 2, . . . ,n− 1, and for all x ∈ [xk,xk+1],
Ak(x) = Ak−1(x−h), and Ak+1(x) = Ak(x−h).

Proposition 1: If the fuzzy partition A1, . . . ,An of [a,b]
is h-uniform, then there exists an even function A0 :
[−1,1]→ [0,1], such that for all k = 1, . . . ,n:

Ak(x) = A0

(
x− xk

h

)
, x ∈ [xk−1,xk+1].
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A0 is called a generating function of uniform fuzzy par-
tition [6].

Remark. We further assume that the generation func-
tion A0 is such that∫ 1

−1
A0(x)dx = 1.

Under this assumption, the h-rescaled generating func-
tion Ah(x) = A0(x/h) of an h-uniform fuzzy partition
produces the corresponding to it kernel Ah(x− y) and
the normalized kernel 1

h Ah(x−y), so that for all x ∈R,

1
h

∫
∞

−∞

Ah(x− y)dy = 1.

3.2 Discrete Universe and Its Fuzzy Partition

From the point of view of image / signal processing,
we assume that the domain of the corresponding func-
tions is finite, i.e. finitely sampled in R, and the func-
tions are identified with high-dimensional vectors of
their values at the selected samples in the discretized
domain. Moreover, we assume that the domain and the
range of all considered functions are equipped with the
corresponding relations of closeness.

The best formal model of all these assumptions is a
weighted graph G = (V,E,w) where V = {v1, . . . ,v`}
is a finite set of vertices, and E (E ⊂ V ×V ) is a set
of weighted edges so that w : E → R+. The edge
e = (vi,v j) connects two vertices vi and v j, and then
the weight of e is w(vi,v j) or just wi j. Weights are set
using the function w : V ×V → R+, which is symmet-
ric (wi j = w ji,∀1 ≤ i, j ≤ `), non-negative (wi j ≥ 0)
and wi j = 0 if (vi,v j) 6∈ E. The notation vi ∼ v j de-
notes two adjacent vertices vi and v j with an existing
edge connecting them.

Let H(V ) denote the Hilbert space of real-valued func-
tions on the set of vertices V of the graph, where if
f ,h ∈ H(V ) and f ,h : V → R, then the inner prod-
uct 〈 f ,h〉H(V ) = ∑v∈V f (v)h(v). Similarly, H(E) de-
notes the space of real-valued functions defined on
the set E of edges of a graph G. This space has the
inner product 〈F,H〉H(E) = ∑(u,v)∈E F(u,v)H(u,v) =
∑u∈V ∑v∼u F(u,v)H(u,v), where F,H : E→R are two
functions on H(E).

We assume that the set of vertices V is identified
with the set of indices V = {1, . . . , `} and that [1, `]
is h-uniform fuzzy partitioned with normalized ba-
sic functions Ah

1, . . .A
h
` , so that Ah

k(x) = Ah(x− k)/h,
k = 1, . . . , `, Ah(x) = A0(x/h) and A0 is the generating
function.

Definition 3: A weighted graph G = (V,E,w) is fuzzy
weighted, if V = {1, . . . , `}, Ah

1, . . .A
h
` is an h-uniform

fuzzy partition, generated by A0, and wi j = Ah
i ( j),

i, j = 1, . . . , `. The fuzzy weighted graph G= (V,E,w),
corresponding to the h-uniform fuzzy partition, will be
denoted Gh = (V,E,Ah).

4 Discrete Laplace operator

In this section, we recall the definition of (non-local)
Laplace operator as a differential operator given by the
divergence of the gradient of a function (see [1]).

Let G = (V,E,w) be a weighted graph, and let f : V →
R be a function in H(V ). The difference operator d :
H(V )→ H(E) of f , is defined on (u,v) ∈ E by

(d f )(u,v) =
√

w(u,v)( f (v)− f (u)) . (5)

The directional derivative of f , at vertex v ∈ V , along
the edge e = (u,v), is defined as:

∂v f (u) = (d f )(u,v). (6)

The adjoint to the difference operator d∗ : H(E) →
H(V ), is a linear operator defined by:

〈d f ,H〉H(E) = 〈 f ,d∗H〉H(V ), (7)

for any function H ∈ H(E) and function f ∈ H(V ).

Proposition 1: The adjoint operator d∗ can be ex-
pressed at a vertex u ∈V by the following formula:

(d∗H)(u) = ∑
v∼u

√
w(u,v)(H(v,u)−H(u,v)) . (8)

The divergence operator, defined by−d∗, measures the
network outflow of a function in H(E), at each vertex
of the graph.

The weighted gradient operator of f ∈ H(V ), at vertex
u ∈V, ∀(u,vi) ∈ E, is a column vector:

∇w f (u)= (∂v f (u) : v∼ u)T =(∂v1 f (u), . . . ,∂vk f (u))T .

The weighted Laplace operator ∆w : H(V )→ H(V ), is
defined by:

∆w f =−1
2

d∗(d f ). (9)

Proposition 2 [1]: The weighted Laplace operator ∆w
at f ∈ H(V ) acts as follows:

(∆w f )(u) =−∑
v∼u

w(u,v)( f (v)− f (u)).

This Laplace operator is linear and corresponds to the
graph Laplacian.

Proposition 3 [7]: Let Gh = (V,E,Ah) be a fuzzy
weighted graph, corresponding to the h-uniform fuzzy
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partition of V = {1, . . . `}. Then, the weighted Laplace
operator ∆h at f ∈ H(V ) acts as follows:

(∆h f )(i) =−∑
i∼ j

Ah
i ( j)( f ( j)− f (i)) = f (i)−Fh[ f ]i,

where Fh[ f ]i, i = 1, . . . , `, is the i-th discrete F-
transform component of f , cf. [6].

5 Multi-scale Representation in a Space
with a Fuzzy Partition

Taking into account the introduced notation, we pro-
pose the following scheme for the multi-scale repre-
sentation LFP of the signal f : V → R, where V =
{1, . . . , `} and subscript “FP” stands for an h-uniform
fuzzy partition determined by parameter h ∈ N, h≥ 1:

LFP(·,0) = f (·),

LFP(·, t) =F2t h[ f ], (10)

where t ∈ N is the scale parameter and F2t h[ f ] is the
whole vector of F-transform components of f . The
scale parameter t relates to the length of the support
of the corresponding basic function. As in the case of
(1), it is a natural measure of spatial scale at level t.
To show the relationship to the diffusion equation, we
formulate the following general result.

Proposition 4: Assume that two time continuously
differentiable real function f : [a,b] → R, and [a,b]
is h- and 2h-uniform fuzzy partitioned by Ah

1, . . . ,A
h
n

and A2h
1 , . . . ,A2h

n , where basic functions Ah
i (A2h

i ), i =
1, . . . ,n, are generated by A0(x) = 1−|x| with the node
at xi = a+ b−a

n−1 (i−1). Then,

F2h[ f ]i−Fh[ f ]i ≈
h2

4
f ′′(xi).

The semantic meaning of this proposition in relation to
the proposed scheme (10) of multi-scale representation
LFP of f is as follows: the Laplacian of f can be ap-
proximated by the (weighted) differences of two adja-
cent convolutions determined by the triangular-shaped
generating function of a fuzzy partition.

6 Experiments with Time Series

Among other purposes (feature extraction, regulariza-
tion, etc.), the multi-scale representation is used for
reconstruction to ensure that all steps are performed
correctly. To demonstrate the effectiveness of the pro-
posed representation, we used several time series with
high volatility. Then, with each value of t = 1,2, . . . we
obtain the corresponding Laplacian as the difference

between two adjacent convolutions or vectors with F-
transform components, so that we obtain the sequence

{LFP(·, t +1)−LFP(·, t) | t = 1,2, . . .}

The stop criterion is closeness to zero of the current
difference. We then compute the reconstruction by
summing all the elements in the sequence. Figure 1
shows the step-by-step reconstruction and the final re-
constructed time series. The latter is plotted on the bot-
tom image along with the original time series to give
confidence in a perfect fit.
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Figure 1: Top. The sequence of reconstruction steps,
where with each value t = 1,2, . . . we improve the qual-
ity of the reconstruction by adding the corresponding
Laplacian to the previous one. Bottom. The original
time series is rendered with a blue line.

For comparison, in Figure 2, we show two MLP recon-
structions of the same time series with the following
configurations: 4 hidden layers with 4086 neurons in
each layer (common setting) and learning rates 0.001
and 0.0001 (different setting). It is obvious that the
proposed multi-scale representation and subsequent re-
construction are computationally cheaper and give re-
sults with better reconstruction quality. To confirm,
we give three estimates of the Euclidean distances be-
tween the original time series and its reconstructions:
89.644 (multi-scale in the space with a fuzzy partition),
159.2996 (MLP, first configuration), 127.4569 (MLP,
second configuration).

Conclusion

We focused on the multi-scale representation of a
1D signal in the space with a fuzzy partition. We
have shown that the predominant statement about the
uniqueness of the Gaussian kernel in the scale space
representation can be weakened by using kernels that
arise from the generating functions of fuzzy partitions.
We also showed that the reconstruction from the pro-
posed multiscale representation is of better quality than
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Figure 2: Two MLP reconstructions of the same time
series as in Figure 1. The original time series is ren-
dered on each image with a blue thin line.

the reconstruction from MLP with almost twice as
many neurons in 4 hidden layers.
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