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Abstract

Starting with three bivariate copulas and
some auxiliary univariate functions, we de-
termine a construction method of trivariate
copulas, which generalizes a class of copulas
previously introduced by M. Ubeda-Flores
(2005). Specifically, we provide a character-
ization of this class of 3—copulas and we dis-
cuss some of its properties. Various related
examples of parametric and semiparametric
families can be obtained, including general-
izations of EFGM copulas.

Keywords: Copula, Extremal Dependence,
Fréchet class,  Eyraud-Farlie-Gumbel-
Morgenstern distribution.

1 Introduction

The interest about copulas is largely due to the fact
that they may provide valuable tools to construct flexi-
ble stochastic models for multivariate random vectors.
However, while an extended list of possible bivariate
models is nowadays available, constructions of copu-
las in higher dimensions are still less popular, despite
some powerful methods like factor, hierarchical and
vine copulas (see, e.g., [1, 4, 8]). In particular, the
compatibility problem of copulas, i.e. the determina-
tion of all copulas with some fixed lower-dimensional
margins, is still considered under some simplifying as-
sumptions and special cases (see, e.g., [6]).

In the case of trivariate copulas, for instance, an inter-
esting construction has been considered in [12]. Given
some bivariate copulas Cy, C13 and C»3, 3—copulas of

type

C(x,y,2) = 2C12(x,y) + yC13(x,2) +xC23(y,2) — 2xyz
(D)

are studied. Notably, C}», C13 and Cy3 are also the bi-
variate margins of C, which represents hence an ele-
ment of the class of Fréchet class determined by these
margins (see, e.g., [5]).

Here, we would like to extend the trivariate copulas of
type (1). This extension requires three additional uni-
variate functions that, together with three 2—copulas,
allow to more flexibility in the whole class. To this
end, first, we define a trivariate mapping in the most
general case and give a sufficient and necessary condi-
tion for it to be a 3—copula. Then we restrict our atten-
tion to a special subclass that is easier to handle, in the
sense that the 3-increasing property is easier to verify.
We give a few examples showing how some parametric
and semiparametric families of 3-copulas can be ob-
tained. Notably, some of these families are related to
Eyraud-Farlie-Gumbel-Morgenstern (EFGM) distribu-
tions (see, e.g. [11]). Various dependence properties
are hence presented, with particular focus to the (mul-
tivariate) extremal dependence.

2 The general construction

We refer to [2, 9] for the definition of n—copulas (n >
2). In particular, given a copula C, we denote by V¢ (R)
the C—volume of any rectangle R C [0,1]".

Since we are going to focus on 3—copulas, we recall
that a function C : [0,1]* — [0,1] is a 3—copula if and
only if C satisfies the boundary conditions, i.e., for ev-
ery s,t € [0,1],

C(s,t,0) =C(s,0,t) = C(0,s,t) =0,
Cc(1,1,5)=C(1,¢,1) =C(z,1,1) =1,

and the C—volume of any rectangle R = [x],x;] X
[V1,y2] % [z1,22] € [0,1]? is positive (increasing prop-
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erty), i.e.,

Ve(R) == C(x1,y1,21) + C(x1,y1,22) + C(x1,¥2,21)
7C(x17y27Z2) +C(x27y]7Z]) fC(Xz,thz)
—C(x2,y2,21) +C(x2,y2,22) > 0.

We denote by @ the class of all continuous and strictly
increasing functions f from [0, 1] into [0,1] such that
f(0)=0and f(1)=1. Let f, gand A be in ® and let A,
B and C be 2—copulas. Define the following mapping
F:[0,13 =R

F(x,y,2) = =f(2)A(x,y) +8(y)B(x,2) + h(x)C(y,2)
—xyz— f(2)g(y)h(x),
()
[0,1]3.

Proposition 1. The function F given by (2) is a copula
if, and only if,

for every (x,y,z) €

Va ([x1,x2] X [y1,32])
(8(y2) —8(n)) - (A(x2) — h(x1))
. Vi ([x1,%2] X [z1,22])
(f(z2) = f(z1)) - (h(x2) — h(x1))
n Ve (i, y2] x [z1,22])
(f(z2) = f(z1)) - (8(y2) —8(31))
Vi, ([x1,x2] X [y1,y2] % [21,22])

—f(z1)) - (8(v2) — g(y1)) - (h(x2)

v

,\.—‘/—\

+1,
3)

(f(z2) —h(x1))

Jorevery x1 <x, y1 <y2and z; < 2.

Proof. Notice that, for every ¢ € [0, 1]
F(1,1,8) = f(t)+t+t—1t— f(t) =1,

and, analougsly, F(1,z,1) =t =
for every s,t € [0,1]

F(z,1,1). Morevorer,

F(5,t,0) =0=F(s,0,¢t) = F(0,s,1).

Therefore, F satisfies the boundary conditions for 3—
copulas.

In order to prove that F satisfies the 3—increasing prop-
erty, let

[z1,22]

R:= [x1,x2] X [y1,y2] X

be a box in [0, 1]°. We have

Vr(R) =—F(x1,y1,21) + F(x1,1,22) + F (x1,¥2,21)
— F(x1,y2,22) + F(x2,y1,21) — F(x2,)1,22)
—F(x2,y2,21) + F(x2,y2,22).
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Therefore, if either x; = x; or y; =y, or z; = 22, then

we have Vg (R) = 0. In the other cases,
Vr(R) = (f(z2) = f(z1)) Va ([x1,%2] X [y1,32])
+(8(v2) —g(1)) Vs ([x1,%2] x [z1,22])
+ (h(x2) = h(x1)) Ve ([y1,y2] % [z1,22])
=V, ([x1,x2) X [y1,¥2] X [z1,22])
—(f(z2) = f(21)) (8(y2) —8(31)) (h(x2) — h(x1)).
Therefore Vi (R) > 0 if, and only if, (3) holds. O

Notice that, if f = g = h is the identity mapping on
[0,1], we obtain the family of trivariate copulas given
in [12].

Now, we would like to discuss the dependence proper-
ties of the 3-copulas given by (2). For this purpose, we
recall that, given two n-copulas C; and C,, C; is said
to be more concordant than C; if, for every u € [0,1]",
Ci(u) > C5(u) and Ci(u) > C,(u), where C; and Cy
are the survival functions associated to C; and C, re-
spectively. Recall that the survival function of a copula
C is defined as the function C(u) := P(U > u), where
u € [0,1]" and U is a random vector distributed accord-
ing to C. The following result holds.

Proposition 2. Let f,g,h € ® and F| and F, be two
3-copulas defined, for every (x,y,z) € [0,1]? as

Fi(x,,2) :=f(2)A1(x,y) +8(y)B1(x,2) + h(x)C1 (y,2)

—xyz— f(2)g(y)h(x);

Py (x,y,2) :=f(2)A2(x,y) + 8(y)B2(x,2) + h(x)C2(y, 2)
—xyz— f(2)g(y)h(x).
for suitable 2-copulas Ay,A2,B1,B,,C1,Cy such that

A] Z Az, B| Z Bz and Cl Z Cz. Then F] is more con-
cordant than F,.

Proof. Forevery (x,y,z) € [0,1]%,

F»(x,y,7) if and only if

we have Fj (x,y,z) >

F(@)(A1(x,y) —A2(x,y)) +8()(B1(x,2) — Ba2(x,2))

+h(x)(Ci(32) = Ca(1,2)) 2 0,

and Fy (x,y,z) > F>(x,y,7) if and only if

(1= £(@)A1(x,y) + (1 —g())B1(x,2)
+(1=h(x))C1(y,2) > (1 - £(
+(1—g(y))B2(x,2) +

These two conditions are both satisfied under our as-
sumptions, hence F] is more concordant than F>. [
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Let now F be defined as in (2). In order to deter-
mine whether F' is a copula, condition (3) has to be
satisfied. Let us assume that A, B and C are three ab-
solutely continuous 2-copulas with densities given by
a(x,y),b(x,z) and c(y,z), respectively, where x,y,z €
[0,1]. Let us also assume that f,g and h are differen-
tiable functions on [0, 1], with continuous derivatives.
We shall find another condition, which is easily seen to
be equivalent to (3), but involves densities.

To this end, consider that, under previous assumptions,
if F is a copula, then it is an absolutely continuous 3-
copula. In fact, it is possible to compute the mixed
third partial derivative of F'. Note that, since a(x,y) =

55 ) = 2355 and cl,2) = T3 regard-

less of the order of the derivatives (and af ost every-
where on the respective domains), the mixed third par-
tial derivative of F is in its turn independent of the or-
der of the derivatives, and it is given by

9°F (x,y,2)
0xdydz

=f"(z)a(x,y) + & (y)b(x,2) + 1 (x)c(y,z)

—1—f(2)g' (K (x).
4

Since it is straightforward to verify that, for every

(x,3,2) € [0,1]?,
Z (93F (u,v,w)
/ du/ dv/ " Judvow dw,

the following result holds.

Proposition 3. Let f,g,h € @ be differentiable func-
tions on [0,1], with continuous derivatives. Let A,B
and C be three absolutely continuous 2-copulas with
densities given by a(x,y),b(x,z) and c(y,z), respec-
tively, where x,y,z € [0,1]. Then the function F de-
fined as in (2) is a copula if and only if, for every
(x,3,2) €[0,1]?,

S (2)a(x,y) + & (v)b(x,2) + 1 (x)e(y,2)
—1—f'(z)g'())K (x) > 0.

Moreover, in this case, F is an absolutely continuous
copula with density given by (4).

F(x,,2)

)

Example 1. If A = B = C =11, the independence cop-
ula, then the function F of type (2) has the simple form

F(x,y,2) ==xyf(z) +xzg(y) + h(x)yz
—xyz— f(2)g(y)h(x).

However, such an F is not always a copula. If we con-
sider for instance, f(x) = g(x) = h(x) = x*, then the
density given by (4) is negative for x =y = 0.2 and
z=0.1.
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The 2-margins of the mapping F are given by

Fio(x,y) =F(x,y,1) =A(x,y) + g(y)x + h(x)y

—xy —g(y)h(x);

=f(z)x+B(x,2) + h(x)z
—xz— f(2)h(x);
F3(,2) = F(1,y,2) =f(2)y +8(»)x+C(y,2)
—yz—f(2)g(y)-
It is known that, if F is a 3—copula, then Fj»,F; 3 and

F> 3 are 2—copulas. In particular, these marginals can
be expressed in the form

Clx,y)+(f(x)—x)(y—gk), (©)

for a 2—copula C and for suitable f,g in ®. Bivariate
copulas of this form belong to the large class of copulas
introduced in [7], which, on the other hand, generalizes
the results given in [10].

F13(x,z) =F(x,1,2)

Cf_,g(x,y) =

3 A special subclass

In general, given three 2-copulas A, B and C and given
three functions f,g,h € ®, it looks very challenging to
determine whether or not the function F, defined as in
(2), is a 3-copula. For this reason, in this section we
restrict our attention to a special subclass of functions
of the kind (2) for which it is easier to check whether
we obtain a 3-copula. Specifically, when we set g =
= id,1j and B = C =TI, eq. (2) becomes

F(x,y,z) ::f(z)(A(x,y) -

If we denote by %, the space of all the n-copulas, (7)
defines a functional from & x %, to the space of all
continuous functions on [0, 1]*. Moreover, for a fixed
f> such a function is continuous with respect to L™
norm (in their respective space). We are going to show
a few cases in which this functional takes values in %3,
namely, for suitable (f,A) € ® x %3, the function F de-
fined as in (7) is a 3-copula. The following proposition,
which provides a sufficient and necessary condition for
F to be a copula, follows quite easily from Proposition
1.

Proposition 4. Let f € ® and A € 65. Then the func-
tion F defined, for every (x,y,z) € [0,1]%, as

F(x,,2) == f(2)(A(x,y)

is a 3-copula if and only if, for every rectangle R :=
i, x2] X [y1,y2] X [z1,22) of [0, 1],

f(z2) = flz1) (VA(R’)
22—z Vii(R')

xy) +xyz. (7)

—xy) +xyz

—1) > 1. (8)

where R' = [x1,x2] X [y1,¥2]-
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If F(x,y,z) := f(z)(A(x,y) — xy) + xyz, for suitable f
and A, turns out to be a copula, then its bivariate mar-
gins are

FIZ(xvy) = F(X,y,l):A(X,y);
Fi3(x,z) = F(x,1,z) =xz=T1(x,z2);
Fx(y,2) = F(l,y,2) =yz=T(y2).

This means that F' defines a copula model for a random
vector (U,V,W) of uniformly distributed random vari-
ables on [0, 1] such that (U, V) is distributed according
to A (in symbols, (U,V) ~ A), whereas (U,W) ~ II
and (V,W) ~II, namely W is independent of both U
and V.

Note that, since (by Proposition 1) F(x,y,z) =
f(2)(A(x,y) — xy) + xyz always satisfies the bound-
ary conditions, Equation (8) is equivalent to the 3-
increasing property of F. We shall point out that, for
a fixed A € %3, not every f € ® allows us to obtain a
copula in %3; hence the function f needs to be chosen
according to the properties of A. From now on, unless
otherwise stated, F' will always denote the mapping de-
fined as in (7).

If we consider, in the expression of F, any bivariate
copula A € 6, that is not fully supported on [0,1]%, we
can state the following result.

Proposition 5. Let A € 6, be any copula whose sup-
port is not the whole unit square [0,1]>. Then the only
copula model of the kind (7) involving A is obtained
with f = id[o,l]’ ie.

F(x’yvz) :ZA(xvy)’ (x,y,z) € [0’ 1]3'

Proof. Consider a copula A € %, that is not fully
supported on [0,1]> and choose any rectangle R’ =
[x1,x2] X [y1,y2] such that V4 (R") = 0. Then, for every
21,22 € [0,1] with z; < zp, considering the rectangle
R := [x1,%2] X [y1,y2] X [z1,22] of [0, 1]3, we have

() —f(z1) (ValR)
2 —2z1 (VH(R’) - 1) =1
f(z2) = f(z1)

22 —11

Vr(R) >0«

= <1.

Then, in order for F to be a copula, we must have

f(z2) = f(z1)

sup ————= < 1.
21<22 2—12

Actually, this last condition, together with the condi-
tions f(0) =0 and f(1) = 1, forces every incremental
ratio to be equal to 1, resulting in f = id|y ;). In order
to see why, let us assume, by contradiction, that there
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exist 71,22 € [0,1],z1 < z2, such that the related incre-
mental ratio is strictly less than 1. Hence we have

fz2) = f)
22—

Now, since f(0) =0 and f(1) = 1, either z; > 0 or
7o < 1; without loss of generality, we can assume 7, <
1 (the other case can be treated analogously). Note that

fz) = f0) _ f(z1)

z1—0 21

<l= f(n)<fa)+zn—-2zu.

<l= f(a) <z,

so that, since we previously found f(z2) < f(z1) +z2 —
21, this yields f(z2) < z2. But then

S —fz2) _ 1-f(z2)

= > 1,
1—2 1—2

which is absurd since every incremental ratio must be
less than or equal to 1. This proves that, for every z €
[0,1], f(z) = z, so this is the only copula model of the
kind (7) involving A. O]

Let us now focus our attention on the semiparametric
family of 2-copulas given by

Ap.p(%,y) :=xy+00(x)9(y), (x,y)€[0,1]%,

where 6 € [0,1] and ¢ : [0,1] — [—1,1] is assumed to
be a 1-Lipschitz function such that ¢(0) = ¢(1) = 0.
We would like to build a copula model of the kind (7)
involving Ag 4. As already pointed out, we should be
careful with the choice of the function f € ®. More-
over, we expect the choice of the function f to be
somehow related or influenced by the parameter 6.
Having set f(z) :=z%,z € [0,1],a > 0, we can state
the following result.

Proposition 6. Let 6 € [0,1] and ¢ : [0,1] — [—1,1]
be a I-Lipschitz function such that ¢(0) = ¢(1) = 0.
Consider the 2-copula

Agg(x,y) :=xy+00(x)0(y). (x,y)€[0,1]%

then, for every o € [l, é}, there exists a trivariate cop-
ula model of the kind (7), having Ag ¢,I1 and I1 as its
bivariate margins, given by

Fap.6(x,,2) = 00(x)$(y)* +xyz, (x,3,2) € [0,1]>.
9

Proof. We are going to check the 3-increasing prop-
erty for F, in order to see what kind of limitations we
get on the choice of o. Considering an arbitrary rect-
angle R := [x1,x2] X [y1,y2] X [z1,22] of [0, 1] and ap-
plying (8), we have V#(R) > 0 if and only if

f(z2) —f(z1) (6¢(x2) — ¢ (x1) ¢(y2) —¢(y1))
2 —2 X2 — X1 Y2—W
> —1.
(10)
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Taking the absolute value of the last product and ap-
plying the 1-Lipschitz property of ¢, one has

f(z2) = f(z1) (9¢(xz)¢(m) |¢(y2)¢(y1)|) <

22— X2 —X1 y2—=y1
0 sup f(z)-1-1<1
z€[0,1]
provided that f fulfils
1
sup f'(z) < . (11
z€[0,1] 0

At this point, condition (11) gives us all the informa-
tion we need about how to choose . Note that, if
€ (0,1), f'(z) is a decreasing function, hence

sup f'(z) = lim az% ! = +oo,

2€[0,1] z—0™
which violates (11). Thus, we must choose & > 1 in
order for f(z) to be an increasing function such that

sup f'(z) =f'(1) = a,
z€[0,1]
which, together with (11), means that we need to
choose a < é, and that completes the proof. O

Let us consider another copula model involving the
Eyraud-Farlie-Gumbel-Morgenstern (EFGM) family
of bivariate copulas. We recall that this is a parametric
family of copulas, whose equation is given by

Ej(x,y) =xy(1+A(1=x)(1-y)), (x,y) €[0,1]%,

where A € [—1,1]. We would like to build a copula
model of the kind (7) involving E; , and as it turns out,
this case has some similarities with the model built in
Proposition 6.

Proposition 7. Let A € [—1,1] and consider the 2-
copula

Ej(x,y) i=xy(1+A(1=2)(1-y)), (xy)€[0,1]

Then, for every o € [17 ‘}L—l}, there exists a trivariate

copula model of the kind (7), having E) Il and I1 as
its bivariate margins, given for all (x,y,z) € [0,1]3 by

Fo(x,3,2) = Axy(1 —=x)(1 —=y)z% +xyz. ~ (12)

Proof. Firstof all, set, forevery ¢ € [0,1], ¢ (t) := (1 —
t), and note that the EFGM copula E;, can be rewritten
as

E)L(xay) ::xy+7L¢(x)q)(y), (xay) € [O’ ]]2'

Also, note that ¢(0) = ¢(1) = 0 and that, for every
t€(0,1] ¢'(r) = 1 -2 € [—1, 1], which implies that ¢

Atlantis Studies in Uncertainty Modelling, volume 3

is a 1-Lipschitz function that satisfies all the require-
ments needed to build a semiparametric bivariate cop-
ula model as in Proposition 6. The only difference
between Ag and Ej is in the parameters: in Proposi-
tion 6 we had 6 € [0, 1], whereas now A € [—1,1] can
also take negative values. Again, we set f(z) :=z%z €
[0,1],0¢ > 0. The corresponding trivariate function of
the kind (7) is given, for every (x,y,z) € [0,1]3, by

F(x,,2) := f(2) (Ex(x,y) —xy) +xyz
=10 (x)0(y)z" +xyz.

We need to check the 3-increasing property for F, in
order to see if there are some limitations on the choice
of o.. Considering an arbitrary rectangle R := [x,x2] X
[V1,¥2] X [21,22] of [0,1]® and applying (8), we have
Vr(R) > 0 if and only if

f(z2) = f(z1) (A P(x2) — 9 (x1) 9 (y2) —¢(y1))
2 —12 X2 — X1 Y2—M
> —1.
(13)

Taking the absolute value of the last product and ap-
plying the 1-Lipschitz property of ¢, one has

f(z2) = f(z1) (I/II 0 (x2) =9 (x1)] [#(v2) —¢(y1)|>

22— X2 — X1 Y2—=y1
<IAlsup f'(2)-1-1<1
z€[0,1]
provided that f fulfills
1
sup f'(z) < - (14)
2€[0,1] 4]

We have just obtained the condition we need in order
to properly choose o. As we have already pointed out
in Proposition 6, condition (14) is violated whenever
o € (0,1). Hence, we must choose & > 1 in order for
f'(z) to be an increasing function such that

sup f'(z) = f'(1) = «,

z€(0,1]

which, together with (14), means that we need to
choose o < VITI This completes the proof. O

Note that, assuming that the hypotheses of the last re-
sult are satisfied, the copula Fy, j is only exchangeable
when o = 1.

Finally, we would like to focus on the study of
two measures of extremal dependence: the extremal
dependence coefficients (EDC’s). First of all, we
recall how the lower and upper EDC’s are de-
fined. Consider a random vector (X,Y,Z) that is dis-
tributed according to Fy , and assume that F,G,H
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are the distribution functions of X,Y,Z respectively.
Then set Fpyin := min{F (X),G(Y),H(Z)} and Fpay :=
max {F(X),G(Y),H(Z)}. Then the lower EDC is de-
fined as

& = lim P(Fmaxgt‘FminSt)a (15)
t—0t+
whereas the upper EDC is defined as
ey = lim P(F >t |Fpax > 1), (16)

t—1-

provided that the above limits exist. We refer to [3] for
further details.

Proposition 8. Let F be the 3-copula considered in
Proposition 7 and given by (12). Then &.(F) =
& (F) =0.

Proof. If t € (0,1), it follows that
]P(me Styquxgt)
P(Fmin St)

_ Fa,l(tatJ)
1= F(1—t,1—1,1—1)

]P)(FmaXSHFminSt):

for the lower case, where F“a’ ,, is the survival copula
associated to Fy 5. Similarly, we have

P (Fuin > t,Fnax > 1)

P (Fpin > t| Fpax > 1) =

P(Fmax > t)
 Fua(l—1,1—1,1—1)
l_F(X,},(t7tat)

for the upper case. Now, it is straightforward to verify
that, if r € (0,1):
Foup(1—t,1—1,1—1)=1=3t+Fy,(t,1,1)
+Fot,?k(tv 1at) +F(x,l(1atat) 7F(x,7k(tvtat)'

Using (12), we can finally calculate the limits in (15)
and (16).

e — Lim 34 A% 2 (1 —1)?
L S0 3 —A2(1—1)2 — 32+ 13+ A*+2(1 —1)2
(1
_ i 0 +0()
o (T +o(0))

)

where o(t) — 0 ast — 0T (remember that ¢ > 1, hence
a+2 > 3). As for the upper EDC gy, one has:
. =3t + A2 (1 —1)2 432 — 13 — At%F2 (1 —1)?
=1~ 1 =13 —Ar%+2(1 —1)?
312 =3t + A2 (1—1)?
=1+ lim A )
-1 1 =13 = Ar%+2(1 —1)?
—1-1=0,

where we applied L’Hopital’s rule in order to solve the
above limit. Thus, &g = &y =0. O
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Finally, we would like to show a 3D scatterplot of
200 points that we simulated from the trivariate cop-
ula given by (12), setting A = 0.5 and @ = 1.5, as well
as a scatterplot matrix in order to visualize the pairwise
relationships among the variables. Both the 3D scatter-
plot and the scatterplot matrix have been generated by
the R software. From a graphical point of view (see
Figure 1), it can be noticed the absence of extremal de-
pendence that we have just proved analytically. Also,
the scatterplot matrix (see Figure 2) shows correlations
on the lower panels; we actually found out the same
(very weak) correlations even for different values of
a€[1,2].
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o & b o w0
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Figure 1: 3D scatterplot of 200 points simulated from
the trivariate copula given by (12); here A = 0.5 and
o=1.5.
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