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Abstract

Starting with three bivariate copulas and
some auxiliary univariate functions, we de-
termine a construction method of trivariate
copulas, which generalizes a class of copulas
previously introduced by M. Úbeda-Flores
(2005). Specifically, we provide a character-
ization of this class of 3–copulas and we dis-
cuss some of its properties. Various related
examples of parametric and semiparametric
families can be obtained, including general-
izations of EFGM copulas.

Keywords: Copula, Extremal Dependence,
Fréchet class, Eyraud-Farlie-Gumbel-
Morgenstern distribution.

1 Introduction

The interest about copulas is largely due to the fact
that they may provide valuable tools to construct flexi-
ble stochastic models for multivariate random vectors.
However, while an extended list of possible bivariate
models is nowadays available, constructions of copu-
las in higher dimensions are still less popular, despite
some powerful methods like factor, hierarchical and
vine copulas (see, e.g., [1, 4, 8]). In particular, the
compatibility problem of copulas, i.e. the determina-
tion of all copulas with some fixed lower-dimensional
margins, is still considered under some simplifying as-
sumptions and special cases (see, e.g., [6]).

In the case of trivariate copulas, for instance, an inter-
esting construction has been considered in [12]. Given
some bivariate copulas C12, C13 and C23, 3–copulas of
type

C(x,y,z) = zC12(x,y)+ yC13(x,z)+ xC23(y,z)−2xyz
(1)

are studied. Notably, C12, C13 and C23 are also the bi-
variate margins of C, which represents hence an ele-
ment of the class of Fréchet class determined by these
margins (see, e.g., [5]).

Here, we would like to extend the trivariate copulas of
type (1). This extension requires three additional uni-
variate functions that, together with three 2–copulas,
allow to more flexibility in the whole class. To this
end, first, we define a trivariate mapping in the most
general case and give a sufficient and necessary condi-
tion for it to be a 3–copula. Then we restrict our atten-
tion to a special subclass that is easier to handle, in the
sense that the 3-increasing property is easier to verify.
We give a few examples showing how some parametric
and semiparametric families of 3-copulas can be ob-
tained. Notably, some of these families are related to
Eyraud-Farlie-Gumbel-Morgenstern (EFGM) distribu-
tions (see, e.g. [11]). Various dependence properties
are hence presented, with particular focus to the (mul-
tivariate) extremal dependence.

2 The general construction

We refer to [2, 9] for the definition of n–copulas (n ≥
2). In particular, given a copula C, we denote by VC(R)
the C–volume of any rectangle R⊆ [0,1]n.

Since we are going to focus on 3–copulas, we recall
that a function C : [0,1]3 → [0,1] is a 3–copula if and
only if C satisfies the boundary conditions, i.e., for ev-
ery s, t ∈ [0,1],

C(s, t,0) =C(s,0, t) =C(0,s, t) = 0,
C(1,1, t) =C(1, t,1) =C(t,1,1) = t,

and the C–volume of any rectangle R = [x1,x2] ×
[y1,y2]× [z1,z2] ⊆ [0,1]3 is positive (increasing prop-
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erty), i.e.,

VC(R) =−C(x1,y1,z1)+C(x1,y1,z2)+C(x1,y2,z1)

−C(x1,y2,z2)+C(x2,y1,z1)−C(x2,y1,z2)

−C(x2,y2,z1)+C(x2,y2,z2)≥ 0.

We denote by Φ the class of all continuous and strictly
increasing functions f from [0,1] into [0,1] such that
f (0) = 0 and f (1) = 1. Let f , g and h be in Φ and let A,
B and C be 2–copulas. Define the following mapping
F : [0,1]3→ R

F(x,y,z) := f (z)A(x,y)+g(y)B(x,z)+h(x)C(y,z)

− xyz− f (z)g(y)h(x),
(2)

for every (x,y,z) ∈ [0,1]3.

Proposition 1. The function F given by (2) is a copula
if, and only if,

VA ([x1,x2]× [y1,y2])

(g(y2)−g(y1)) · (h(x2)−h(x1))

+
VB ([x1,x2]× [z1,z2])

( f (z2)− f (z1)) · (h(x2)−h(x1))

+
VC ([y1,y2]× [z1,z2])

( f (z2)− f (z1)) · (g(y2)−g(y1))
≥

VΠ3 ([x1,x2]× [y1,y2]× [z1,z2])

( f (z2)− f (z1)) · (g(y2)−g(y1)) · (h(x2)−h(x1))
+1,

(3)

for every x1 ≤ x2, y1 ≤ y2 and z1 ≤ z2.

Proof. Notice that, for every t ∈ [0,1]

F(1,1, t) = f (t)+ t + t− t− f (t) = t,

and, analougsly, F(1, t,1) = t = F(t,1,1). Morevorer,
for every s, t ∈ [0,1]

F(s, t,0) = 0 = F(s,0, t) = F(0,s, t).

Therefore, F satisfies the boundary conditions for 3–
copulas.

In order to prove that F satisfies the 3–increasing prop-
erty, let

R := [x1,x2]× [y1,y2]× [z1,z2]

be a box in [0,1]3. We have

VF(R) =−F(x1,y1,z1)+F(x1,y1,z2)+F(x1,y2,z1)

−F(x1,y2,z2)+F(x2,y1,z1)−F(x2,y1,z2)

−F(x2,y2,z1)+F(x2,y2,z2).

Therefore, if either x1 = x2 or y1 = y2 or z1 = z2, then
we have VF(R) = 0. In the other cases,

VF(R) = ( f (z2)− f (z1))VA ([x1,x2]× [y1,y2])

+(g(y2)−g(y1))VB ([x1,x2]× [z1,z2])

+(h(x2)−h(x1))VC ([y1,y2]× [z1,z2])

−VΠ3 ([x1,x2]× [y1,y2]× [z1,z2])

−( f (z2)− f (z1))(g(y2)−g(y1))(h(x2)−h(x1)) .

Therefore VF (R)≥ 0 if, and only if, (3) holds.

Notice that, if f = g = h is the identity mapping on
[0,1], we obtain the family of trivariate copulas given
in [12].

Now, we would like to discuss the dependence proper-
ties of the 3-copulas given by (2). For this purpose, we
recall that, given two n-copulas C1 and C2, C1 is said
to be more concordant than C2 if, for every u ∈ [0,1]n,
C1(u) ≥ C2(u) and C1(u) ≥ C2(u), where C1 and C2
are the survival functions associated to C1 and C2 re-
spectively. Recall that the survival function of a copula
C is defined as the function C(u) := P(U > u), where
u∈ [0,1]n and U is a random vector distributed accord-
ing to C. The following result holds.

Proposition 2. Let f ,g,h ∈ Φ and F1 and F2 be two
3-copulas defined, for every (x,y,z) ∈ [0,1]3 as

F1(x,y,z) := f (z)A1(x,y)+g(y)B1(x,z)+h(x)C1(y,z)

− xyz− f (z)g(y)h(x);

F2(x,y,z) := f (z)A2(x,y)+g(y)B2(x,z)+h(x)C2(y,z)

− xyz− f (z)g(y)h(x).

for suitable 2-copulas A1,A2,B1,B2,C1,C2 such that
A1 ≥ A2, B1 ≥ B2 and C1 ≥C2. Then F1 is more con-
cordant than F2.

Proof. For every (x,y,z)∈ [0,1]3, we have F1(x,y,z)≥
F2(x,y,z) if and only if

f (z)(A1(x,y)−A2(x,y))+g(y)(B1(x,z)−B2(x,z))

+h(x)(C1(y,z)−C2(y,z))≥ 0,

and F1(x,y,z)≥ F2(x,y,z) if and only if

(1− f (z))A1(x,y)+(1−g(y))B1(x,z)

+(1−h(x))C1(y,z)≥ (1− f (z))A2(x,y)

+(1−g(y))B2(x,z)+(1−h(x))C2(y,z).

These two conditions are both satisfied under our as-
sumptions, hence F1 is more concordant than F2.
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Let now F be defined as in (2). In order to deter-
mine whether F is a copula, condition (3) has to be
satisfied. Let us assume that A,B and C are three ab-
solutely continuous 2-copulas with densities given by
a(x,y),b(x,z) and c(y,z), respectively, where x,y,z ∈
[0,1]. Let us also assume that f ,g and h are differen-
tiable functions on [0,1], with continuous derivatives.
We shall find another condition, which is easily seen to
be equivalent to (3), but involves densities.

To this end, consider that, under previous assumptions,
if F is a copula, then it is an absolutely continuous 3-
copula. In fact, it is possible to compute the mixed
third partial derivative of F . Note that, since a(x,y) =
∂ 2A(x,y)

∂x∂y , b(x,z) = ∂ 2B(x,z)
∂x∂ z and c(y,z) = ∂ 2C(y,z)

∂y∂ z regard-
less of the order of the derivatives (and almost every-
where on the respective domains), the mixed third par-
tial derivative of F is in its turn independent of the or-
der of the derivatives, and it is given by

∂ 3F(x,y,z)
∂x∂y∂ z

= f ′(z)a(x,y)+g′(y)b(x,z)+h′(x)c(y,z)

−1− f ′(z)g′(y)h′(x).
(4)

Since it is straightforward to verify that, for every
(x,y,z) ∈ [0,1]3,

F(x,y,z) =
∫ x

0
du
∫ y

0
dv
∫ z

0

∂ 3F(u,v,w)
∂u∂v∂w

dw,

the following result holds.

Proposition 3. Let f ,g,h ∈ Φ be differentiable func-
tions on [0,1], with continuous derivatives. Let A,B
and C be three absolutely continuous 2-copulas with
densities given by a(x,y),b(x,z) and c(y,z), respec-
tively, where x,y,z ∈ [0,1]. Then the function F de-
fined as in (2) is a copula if and only if, for every
(x,y,z) ∈ [0,1]3,

f ′(z)a(x,y)+g′(y)b(x,z)+h′(x)c(y,z)

−1− f ′(z)g′(y)h′(x)≥ 0.
(5)

Moreover, in this case, F is an absolutely continuous
copula with density given by (4).

Example 1. If A = B =C = Π, the independence cop-
ula, then the function F of type (2) has the simple form

F(x,y,z) :=xy f (z)+ xzg(y)+h(x)yz

− xyz− f (z)g(y)h(x).

However, such an F is not always a copula. If we con-
sider for instance, f (x) = g(x) = h(x) = x2, then the
density given by (4) is negative for x = y = 0.2 and
z = 0.1.

The 2–margins of the mapping F are given by

F1,2(x,y) = F(x,y,1) =A(x,y)+g(y)x+h(x)y

− xy−g(y)h(x);

F1,3(x,z) = F(x,1,z) = f (z)x+B(x,z)+h(x)z

− xz− f (z)h(x);

F2,3(y,z) = F(1,y,z) = f (z)y+g(y)x+C(y,z)

− yz− f (z)g(y).

It is known that, if F is a 3–copula, then F1,2,F1,3 and
F2,3 are 2–copulas. In particular, these marginals can
be expressed in the form

C f ,g(x,y) :=C(x,y)+( f (x)− x)(y−g(y)), (6)

for a 2–copula C and for suitable f ,g in Φ. Bivariate
copulas of this form belong to the large class of copulas
introduced in [7], which, on the other hand, generalizes
the results given in [10].

3 A special subclass

In general, given three 2-copulas A,B and C and given
three functions f ,g,h ∈Φ, it looks very challenging to
determine whether or not the function F , defined as in
(2), is a 3-copula. For this reason, in this section we
restrict our attention to a special subclass of functions
of the kind (2) for which it is easier to check whether
we obtain a 3-copula. Specifically, when we set g =
h = id[0,1] and B =C = Π, eq. (2) becomes

F(x,y,z) := f (z)(A(x,y)− xy)+ xyz. (7)

If we denote by Cn the space of all the n-copulas, (7)
defines a functional from Φ×C2 to the space of all
continuous functions on [0,1]3. Moreover, for a fixed
f , such a function is continuous with respect to L∞

norm (in their respective space). We are going to show
a few cases in which this functional takes values in C3,
namely, for suitable ( f ,A)∈Φ×C2, the function F de-
fined as in (7) is a 3-copula. The following proposition,
which provides a sufficient and necessary condition for
F to be a copula, follows quite easily from Proposition
1.

Proposition 4. Let f ∈ Φ and A ∈ C2. Then the func-
tion F defined, for every (x,y,z) ∈ [0,1]3, as

F(x,y,z) := f (z)(A(x,y)− xy)+ xyz

is a 3-copula if and only if, for every rectangle R :=
[x1,x2]× [y1,y2]× [z1,z2] of [0,1]3,

f (z2)− f (z1)

z2− z1

(
VA(R′)
VΠ(R′)

−1
)
≥−1. (8)

where R′ := [x1,x2]× [y1,y2].
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If F(x,y,z) := f (z)(A(x,y)− xy)+ xyz, for suitable f
and A, turns out to be a copula, then its bivariate mar-
gins are

F12(x,y) = F(x,y,1) = A(x,y);
F13(x,z) = F(x,1,z) = xz = Π(x,z);
F23(y,z) = F(1,y,z) = yz = Π(y,z).

This means that F defines a copula model for a random
vector (U,V,W ) of uniformly distributed random vari-
ables on [0,1] such that (U,V ) is distributed according
to A (in symbols, (U,V ) ∼ A), whereas (U,W ) ∼ Π

and (V,W ) ∼ Π, namely W is independent of both U
and V .

Note that, since (by Proposition 1) F(x,y,z) =
f (z)(A(x,y)− xy) + xyz always satisfies the bound-
ary conditions, Equation (8) is equivalent to the 3-
increasing property of F . We shall point out that, for
a fixed A ∈ C2, not every f ∈ Φ allows us to obtain a
copula in C3; hence the function f needs to be chosen
according to the properties of A. From now on, unless
otherwise stated, F will always denote the mapping de-
fined as in (7).

If we consider, in the expression of F , any bivariate
copula A ∈ C2 that is not fully supported on [0,1]2, we
can state the following result.

Proposition 5. Let A ∈ C2 be any copula whose sup-
port is not the whole unit square [0,1]2. Then the only
copula model of the kind (7) involving A is obtained
with f = id[0,1], i.e.

F(x,y,z) = zA(x,y), (x,y,z) ∈ [0,1]3.

Proof. Consider a copula A ∈ C2 that is not fully
supported on [0,1]2 and choose any rectangle R′ =
[x1,x2]× [y1,y2] such that VA(R′) = 0. Then, for every
z1,z2 ∈ [0,1] with z1 < z2, considering the rectangle
R := [x1,x2]× [y1,y2]× [z1,z2] of [0,1]3, we have

VF(R)≥ 0⇐⇒ f (z2)− f (z1)

z2− z1

(
VA(R′)
VΠ(R′)

−1
)
≥−1

⇐⇒ f (z2)− f (z1)

z2− z1
≤ 1.

Then, in order for F to be a copula, we must have

sup
z1<z2

f (z2)− f (z1)

z2− z1
≤ 1.

Actually, this last condition, together with the condi-
tions f (0) = 0 and f (1) = 1, forces every incremental
ratio to be equal to 1, resulting in f = id[0,1]. In order
to see why, let us assume, by contradiction, that there

exist z1,z2 ∈ [0,1],z1 < z2, such that the related incre-
mental ratio is strictly less than 1. Hence we have

f (z2)− f (z1)

z2− z1
< 1 =⇒ f (z2)< f (z1)+ z2− z1.

Now, since f (0) = 0 and f (1) = 1, either z1 > 0 or
z2 < 1; without loss of generality, we can assume z2 <
1 (the other case can be treated analogously). Note that

f (z1)− f (0)
z1−0

=
f (z1)

z1
≤ 1 =⇒ f (z1)≤ z1,

so that, since we previously found f (z2)< f (z1)+z2−
z1, this yields f (z2)< z2. But then

f (1)− f (z2)

1− z2
=

1− f (z2)

1− z2
> 1,

which is absurd since every incremental ratio must be
less than or equal to 1. This proves that, for every z ∈
[0,1], f (z) = z, so this is the only copula model of the
kind (7) involving A.

Let us now focus our attention on the semiparametric
family of 2-copulas given by

Aθ ,φ (x,y) := xy+θφ(x)φ(y), (x,y) ∈ [0,1]2,

where θ ∈ [0,1] and φ : [0,1]→ [−1,1] is assumed to
be a 1-Lipschitz function such that φ(0) = φ(1) = 0.
We would like to build a copula model of the kind (7)
involving Aθ ,φ . As already pointed out, we should be
careful with the choice of the function f ∈ Φ. More-
over, we expect the choice of the function f to be
somehow related or influenced by the parameter θ .
Having set f (z) := zα ,z ∈ [0,1],α > 0, we can state
the following result.
Proposition 6. Let θ ∈ [0,1] and φ : [0,1]→ [−1,1]
be a 1-Lipschitz function such that φ(0) = φ(1) = 0.
Consider the 2-copula

Aθ ,φ (x,y) := xy+θφ(x)φ(y). (x,y) ∈ [0,1]2;

then, for every α ∈
[
1, 1

θ

]
, there exists a trivariate cop-

ula model of the kind (7), having Aθ ,φ ,Π and Π as its
bivariate margins, given by

Fα,θ ,φ (x,y,z) := θφ(x)φ(y)zα +xyz, (x,y,z) ∈ [0,1]3.
(9)

Proof. We are going to check the 3-increasing prop-
erty for F , in order to see what kind of limitations we
get on the choice of α . Considering an arbitrary rect-
angle R := [x1,x2]× [y1,y2]× [z1,z2] of [0,1]3 and ap-
plying (8), we have VF(R)≥ 0 if and only if

f (z2)− f (z1)

z2− z1

(
θ

φ(x2)−φ(x1)

x2− x1

φ(y2)−φ(y1)

y2− y1

)
≥−1.

(10)
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Taking the absolute value of the last product and ap-
plying the 1-Lipschitz property of φ , one has

f (z2)− f (z1)

z2− z1

(
θ
|φ(x2)−φ(x1)|

x2− x1

|φ(y2)−φ(y1)|
y2− y1

)
≤

θ sup
z∈[0,1]

f ′(z) ·1 ·1≤ 1

provided that f fulfils

sup
z∈[0,1]

f ′(z)≤ 1
θ
. (11)

At this point, condition (11) gives us all the informa-
tion we need about how to choose α . Note that, if
α ∈ (0,1), f ′(z) is a decreasing function, hence

sup
z∈[0,1]

f ′(z) = lim
z→0+

αzα−1 =+∞,

which violates (11). Thus, we must choose α ≥ 1 in
order for f ′(z) to be an increasing function such that

sup
z∈[0,1]

f ′(z) = f ′(1) = α,

which, together with (11), means that we need to
choose α ≤ 1

θ
, and that completes the proof.

Let us consider another copula model involving the
Eyraud-Farlie-Gumbel-Morgenstern (EFGM) family
of bivariate copulas. We recall that this is a parametric
family of copulas, whose equation is given by

Eλ (x,y) := xy(1+λ (1− x)(1− y)), (x,y) ∈ [0,1]2,

where λ ∈ [−1,1]. We would like to build a copula
model of the kind (7) involving Eλ , and as it turns out,
this case has some similarities with the model built in
Proposition 6.

Proposition 7. Let λ ∈ [−1,1] and consider the 2-
copula

Eλ (x,y) := xy(1+λ (1− x)(1− y)), (x,y) ∈ [0,1]2.

Then, for every α ∈
[
1, 1
|λ |

]
, there exists a trivariate

copula model of the kind (7), having Eλ ,Π and Π as
its bivariate margins, given for all (x,y,z) ∈ [0,1]3 by

Fα,λ (x,y,z) := λxy(1− x)(1− y)zα + xyz. (12)

Proof. First of all, set, for every t ∈ [0,1], φ(t) := t(1−
t), and note that the EFGM copula Eλ can be rewritten
as

Eλ (x,y) := xy+λφ(x)φ(y), (x,y) ∈ [0,1]2.

Also, note that φ(0) = φ(1) = 0 and that, for every
t ∈ [0,1] φ ′(t) = 1−2t ∈ [−1,1], which implies that φ

is a 1-Lipschitz function that satisfies all the require-
ments needed to build a semiparametric bivariate cop-
ula model as in Proposition 6. The only difference
between Aθ and Eλ is in the parameters: in Proposi-
tion 6 we had θ ∈ [0,1], whereas now λ ∈ [−1,1] can
also take negative values. Again, we set f (z) := zα ,z∈
[0,1],α > 0. The corresponding trivariate function of
the kind (7) is given, for every (x,y,z) ∈ [0,1]3, by

F(x,y,z) := f (z)(Eλ (x,y)− xy)+ xyz

= λφ(x)φ(y)zα + xyz.

We need to check the 3-increasing property for F , in
order to see if there are some limitations on the choice
of α . Considering an arbitrary rectangle R := [x1,x2]×
[y1,y2]× [z1,z2] of [0,1]3 and applying (8), we have
VF(R)≥ 0 if and only if

f (z2)− f (z1)

z2− z1

(
λ

φ(x2)−φ(x1)

x2− x1

φ(y2)−φ(y1)

y2− y1

)
≥−1.

(13)

Taking the absolute value of the last product and ap-
plying the 1-Lipschitz property of φ , one has

f (z2)− f (z1)

z2− z1

(
|λ | |φ(x2)−φ(x1)|

x2− x1

|φ(y2)−φ(y1)|
y2− y1

)
≤ |λ | sup

z∈[0,1]
f ′(z) ·1 ·1≤ 1

provided that f fulfills

sup
z∈[0,1]

f ′(z)≤ 1
|λ |

. (14)

We have just obtained the condition we need in order
to properly choose α . As we have already pointed out
in Proposition 6, condition (14) is violated whenever
α ∈ (0,1). Hence, we must choose α ≥ 1 in order for
f ′(z) to be an increasing function such that

sup
z∈[0,1]

f ′(z) = f ′(1) = α,

which, together with (14), means that we need to
choose α ≤ 1

|λ | . This completes the proof.

Note that, assuming that the hypotheses of the last re-
sult are satisfied, the copula Fα,λ is only exchangeable
when α = 1.

Finally, we would like to focus on the study of
two measures of extremal dependence: the extremal
dependence coefficients (EDC’s). First of all, we
recall how the lower and upper EDC’s are de-
fined. Consider a random vector (X ,Y,Z) that is dis-
tributed according to Fα,λ , and assume that F,G,H
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are the distribution functions of X ,Y,Z respectively.
Then set Fmin := min{F(X),G(Y ),H(Z)} and Fmax :=
max{F(X),G(Y ),H(Z)}. Then the lower EDC is de-
fined as

εL := lim
t→0+

P(Fmax ≤ t |Fmin ≤ t) , (15)

whereas the upper EDC is defined as

εU := lim
t→1−

P(Fmin > t |Fmax > t) , (16)

provided that the above limits exist. We refer to [3] for
further details.

Proposition 8. Let F be the 3-copula considered in
Proposition 7 and given by (12). Then εL(F) =
εU (F) = 0.

Proof. If t ∈ (0,1), it follows that

P(Fmax ≤ t |Fmin ≤ t) =
P(Fmin ≤ t,Fmax ≤ t)

P(Fmin ≤ t)

=
Fα,λ (t, t, t)

1− F̂α,λ (1− t,1− t,1− t)

for the lower case, where F̂α,λ is the survival copula
associated to Fα,λ . Similarly, we have

P(Fmin > t |Fmax > t) =
P(Fmin > t,Fmax > t)

P(Fmax > t)

=
F̂α,λ (1− t,1− t,1− t)

1−Fα,λ (t, t, t)

for the upper case. Now, it is straightforward to verify
that, if t ∈ (0,1):

F̂α,λ (1− t,1− t,1− t) = 1−3t +Fα,λ (t, t,1)
+Fα,λ (t,1, t)+Fα,λ (1, t, t)−Fα,λ (t, t, t).

Using (12), we can finally calculate the limits in (15)
and (16).

εL = lim
t→0+

t3 +λ tα+2(1− t)2

3t−λ t2(1− t)2−3t2 + t3 +λ tα+2(1− t)2

= lim
t→0+

t3(1+o(t))
t(1+o(t))

= 0,

where o(t)→ 0 as t→ 0+ (remember that α ≥ 1, hence
α +2≥ 3). As for the upper EDC εU , one has:

lim
t→1−

1−3t +λ t2(1− t)2 +3t2− t3−λ tα+2(1− t)2

1− t3−λ tα+2(1− t)2

= 1+ lim
t→1−

3t2−3t +λ t2(1− t)2

1− t3−λ tα+2(1− t)2

= 1−1 = 0,

where we applied L’Hôpital’s rule in order to solve the
above limit. Thus, εL = εU = 0.

Finally, we would like to show a 3D scatterplot of
200 points that we simulated from the trivariate cop-
ula given by (12), setting λ = 0.5 and α = 1.5, as well
as a scatterplot matrix in order to visualize the pairwise
relationships among the variables. Both the 3D scatter-
plot and the scatterplot matrix have been generated by
the R software. From a graphical point of view (see
Figure 1), it can be noticed the absence of extremal de-
pendence that we have just proved analytically. Also,
the scatterplot matrix (see Figure 2) shows correlations
on the lower panels; we actually found out the same
(very weak) correlations even for different values of
α ∈ [1,2].
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Figure 1: 3D scatterplot of 200 points simulated from
the trivariate copula given by (12); here λ = 0.5 and
α = 1.5.

Acknowledgement

The authors have been supported by the project
“Stochastic Models for Complex Systems” by Italian
MIUR (PRIN 2017, Project no. 2017JFFHSH).

References

[1] C. Czado, Analyzing dependent data with vine
copulas, Vol. 222 of Lecture Notes in Statistics,
Springer, Cham, 2019, a practical guide with R.
URL https://doi.org/10.1007/

978-3-030-13785-4

[2] F. Durante, C. Sempi, Principles of copula theory,
CRC Press, Boca Raton, FL, 2016.

[3] G. Frahm, On the extremal dependence coeffi-
cient of multivariate distributions, Statist. Probab.
Lett. 76 (14) (2006) 1470–1481.

Atlantis Studies in Uncertainty Modelling, volume 3

659



x

0.
0

0.
4

0.
8

R = −0.05

0.0 0.4 0.8

R = −0.05

0.0 0.4 0.8

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●
●

●

●

y

R = 0.09

0.
0

0.
4

0.
8

● ● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

0.0 0.4 0.8

0.
0

0.
4

0.
8

z

Figure 2: Scatterplot matrix for the 200 points sim-
ulated from the trivariate copula given by (12); here
λ = 0.5 and α = 1.5.

[4] J. Górecki, M. Hofert, O. Okhrin, Outer power
transformations of hierarchical Archimedean
copulas: construction, sampling and estimation,
Comput. Statist. Data Anal. 155 (2021) 107109,
28.

[5] H. Joe, Multivariate models and dependence con-
cepts, Vol. 73 of Monographs on Statistics and
Applied Probability, Chapman & Hall, London,
1997.

[6] N. Kazi-Tani, D. Rullière, On a construction
of multivariate distributions given some multi-
dimensional marginals, Adv. in Appl. Probab.
51 (2) (2019) 487–513.

[7] J.-M. Kim, E. A. Sungur, T. Choi, T.-Y. Heo,
Generalized bivariate copulas and their proper-
ties, Model Assist. Stat. Appl. 6 (2011) 127–136.

[8] P. Krupskii, H. Joe, Flexible copula models with
dynamic dependence and application to financial
data, Econom. Stat. 16 (2020) 148–167.
URL https://doi.org/10.1016/j.ecosta.

2020.01.005

[9] R. B. Nelsen, An introduction to copulas, 2nd
Edition, Springer Series in Statistics, Springer,
New York, 2006.

[10] J. A. Rodríguez-Lallena, M. Úbeda Flores, A new
class of bivariate copulas, Statist. Probab. Lett.
66 (3) (2004) 315–325.

[11] S. Saminger-Platz, A. Kolesárová, A. Šeliga,
R. Mesiar, E. P. Klement, The impact on the prop-
erties of the EFGM copulas when extending this
family, Eur. J. Math. in press (2021) 147–167.

[12] M. Úbeda Flores, A method for constructing
trivariate distributions with given bivariate mar-
gins, Far East J. Theor. Stat. 15 (1) (2005) 115–
120.

Atlantis Studies in Uncertainty Modelling, volume 3

660


