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A B S T R AC T
Nowadays, obesity in humans is a huge challenge requiring effective, readily available, and low-risk alternative treatments. Intake 
of edible Non-Digestible Polysaccharides (NDPs) is regarded as a promising strategy to combat obesity. Herein, an overview 
of the behavior of NDPs in the Gastrointestinal (GI) tract and its association with anti-obesity effect is summarized. Both the 
in vitro and in vivo of such investigations are discussed. Results show that NDPs can reach the large intestine to mediate the 
gut microbiota with the extent of regulation varies among NDPs with different chemical structures. The possible anti-obesity 
mechanisms associated with behavior of NDPs in the GI tract include: (i) inhibition of fat absorption, (ii) modification of gut 
microbiota and their metabolites such as short-chain fatty acids, (iii) regulation of bile acid profiles, (iv) modulation on appetite 
and satiety effect, and (v) protection of intestinal barrier. However, more efforts are required to clarify the exact behavior and 
their beneficial effects of NDPs within GI tract. This paper will provide an overlook of recent advances for better understanding 
anti-obesity activity of NDPs.

H I G H L I G H T S
•   An  overview  of  in vitro and in vivo studies on the behavior of edible Non-Digestible Polysaccharides (NDPs) in the 

Gastrointestinal (GI) tract is presented.
•  The anti-obesity mechanisms of NDPs based on their GI behavior are discussed.
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Figure 1 | The trend of studies concerning polysaccharides and obesity 
in the past decade. The data was obtained from the website (http://
apps.webofknowledge.com). The theme was set as: “Polysaccharide and 
obesity”. Retrieve date: February 2021.

Figure 2 | Typical protocols in investigating the digestive behaviors of 
NDPs in vitro. Images of Erlenmeyer flasks and tubes are referenced from 
the medical site http://smart.servier.com/ by Servier licensed under a 
Creative Commons Attribution 3.0 Unported License.

1. INTRODUCTION

Today, obesity, an epidemic with excess or abnormal fat storage, 
has become a major concern for public health worldwide with rap-
idly expanding prevalence [1,2]. More than 650 million people 
are diagnosed with obesity in 2016 according to the World Health 
Organization [2] and 1 billion people will be influenced by 2030 [3]. 
Obesity and its multiple complications, such as hyperlipidemia, type 2 
diabetes, certain cancers, and so on, all together contribute to reduced 
life quality, increased mortality, and huge medical expenses [4–6].

An energy imbalance arising from higher energy intake and lower 
energy expenditure is fundamentally responsible for the occurrence of  
obesity in addition to other involved factors including genetic metab-
olism, dysfunctional endocrine, and so on [1,4,6]. To date, strategies 
proposed to prevent obesity mainly contain anti-obesity drugs, bar-
iatric surgery, diet, and exercise. Among these, the preferred method 
for fighting against obesity is to persist in regular exercise and a 
low-energy diet like controlling fat and sugar intake [7]. Nevertheless, 
the efficiency and success rate of this method has been questioned 
due to the difficulty of adhering [8]. Besides, anti-obesity drugs pre-
viously approved, such as orlistat, sibutramine, and rimonabant, have 
shown certain adverse effects [4]. Weight loss through gastric bypass 
or gastric band surgery is more effective than that of drug treatment 
[8]. However, only a few patients are suitable to adopt this treatment 
because of its higher risks and cost [4]. Accordingly, effective, read-
ily available, as well as low-risk alternative therapies, have been being 
explored to treat or alleviate obesity in recent years [8].

As one of the natural products, Non-Digestible Polysaccharides 
(NDPs) have been in the spotlight of the studies concerning their 
effects on obesity (Figure 1). They are biomacromolecules com-
posed of monosaccharides linked by glycosidic bonds, and widely 
distributed in plants, fungi, and microbes [3–9]. NDPs like konjac 
glucomannans [10], b-glucan [11] have been approved as food sup-
plements for many years. Accumulating evidence has shown that 
they could prevent the development of obesity through a variety of 
mechanisms such as regulating lipids metabolism [12,13], reducing 
inflammation level [14–16], improving insulin resistance [17,18], 
and so on. The way that NDPs with relatively low bioavailability 
exert their anti-obesogenic activities in the body, such as changing 
the body composition, improving disordered metabolism are likely 
to be based on their behavior in the Gastrointestinal (GI) system to 
large extent. In this review, the behavior of edible NDPs in the GI 

tract and their potential anti-obesity mechanisms associated with 
GI physiology are presented to provide some important insights for 
better understanding of their control of weight gain.

2.  OVERVIEW OF THE BEHAVIOR  
OF NDPS IN GI TRACT

In recent years, the digestion and fermentation behavior of natural 
polysaccharides have been a hot topic for research. Researchers are 
increasingly interested in if polysaccharides are digestible, how they 
act on gut microbiota after oral administration, and in what form 
they are absorbed and functioned [19]. There are many methods 
proposed to study the changes of polysaccharides and the metabo-
lites produced during the transit in GI tract, including in vitro and 
in vivo (animals or humans) models.

In terms of the study of digestion, due to the intricacy of our diges-
tive system, in vivo digestive models adopt labeling techniques such 
as fluorescence labeling [19–21] or digesta collected from animals 
[22] to investigate the digestibility of polysaccharides. While, in vitro 
digestion models, either static or dynamic, commonly use diges-
tive enzymes (e.g., salivary, pepsin, gastric lipase, pancreatin), bile 
salts, and electrolytes. And in vitro digestion models need to control 
parameters such as pH, temperature, and digestion time to simulate 
physiological states of the upper GI tract, namely the oral, gastric, 
and intestinal phase (Figure 2). In contrast, in vivo digestion models 
are more ideal but are less used for studying digestion than in vitro 
digestion models owing to the technical difficulties, ethical limita-
tions, and high costs [23]. Besides, there has been a rising interest in 
the characteristics of their fermentation of NDPs, such as the produc-
tion of metabolites and alterations of chemical structure, and so on. 
The fermentation models are divided into in vivo, in vitro static, and  
in vitro dynamic models. The typical protocols of in vitro fermen-
tation include collecting fresh feces from healthy volunteers without 
antibiotic treatment, preparing fecal inoculum, and then culturing 
under an anaerobic environment (Figure 2). Wang et al. [24] have 
recently reviewed the in vitro static and dynamic fermentation  
models including the simulator of the TNO in vitro model of the colon 
(TIM-2) and the human intestinal microbial ecosystem (SHIME®).

In general, studies of digestive behavior of NDPs focus on changes 
in molecular weight and reducing sugar contents as well as fermen-
tation by gut microbiota (Table 1). A few studies have also studied 
the changes in the conformation [25] and viscosity [26] of NDPs in 
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digestion. The experimental results generally varied with each poly-
saccharide on account of their unique chemical structure resulted 
from their sources or preparation methods. Some NDPs are par-
tially degraded with a decrease in molecular weight and an increase 
in reducing sugar, which might be resulted from the effects of pH, 
enzymes, and bile salts in the process of digestion [27–29]. Reasons 
for the decline in molecular weight of NDPs within GI tract include 
the disruption of aggregates and the hydrolysis of glycosidic bonds. 
However, most of them can resist the digestion of saliva, stomach, 
and small intestine and can be transited intact into the large intes-
tine [30]. Recently, Li et al. [19] reported that polysaccharide from 
Dendrobium officinale kept intact during the upper GI tract both 
in vitro and in vivo, which was similar with many other polysac-
charides [31–34]. In the large intestine, since the gut microbiota 
can generate a variety of carbohydrate-active enzymes [35], these 
NDPs or their corresponding digestive products (mono-/oligo-/
poly-saccharides) can be selectively utilized by gut microbiota to 
significantly decrease the pH, increase the Short-Chain Fatty Acids 
(SCFAs), and modify the composition of gut microbiota. Such 
characteristics of the NDPs match with those criteria of prebiot-
ics [36,37]. Furthermore, the health-promoting activities of poly-
saccharides are related to their fermentation by microbiota [9,38]. 
Nonetheless, the exact GI digestion behaviors, particularly the 
interactions between these polysaccharides or oligosaccharides and 
intestinal microbiota, still need further exploration. These above 
studies offer significant information for the diverse applications of 
polysaccharides in the food industry [23,27,29,30].

3.  ANTI-OBESITY EFFECT VIA  
INHIBITING FAT ABSORPTION

Obesity happens when energy expended is lower than that con-
sumed. Therefore, it is an effective approach to fight against obe-
sity by controlling the absorption of the energy-dense components 
in food, especially dietary fat [46]. Dietary fat mainly consists of 
mixed triglycerides [7]. Starting from the mouth, triglycerides are 
hydrolyzed, emulsified, and finally absorbed by the small intestine 
in the form of monoglycerides and free fatty acids [47]. Emerging 
studies have found that NDPs can significantly affect the process 
of fat digestion and absorption to prevent obesity via two principal 
targets, Pancreatic Lipase (PL) and Bile Acids (BAs) micelles.

Pancreatic lipase is a lipase secreted into the small intestine from 
the pancreas upon food intake [8]. It plays a predominant role in fat 
absorption in the GI tract, accounting for the hydrolysis of 50–70% 
of dietary fat [47]. Orlistat, one of the clinically approved anti- 
obesity drugs, suppresses PL owing to the formation of covalent 
bonds with the catalytic sites of PL, thus reducing fat absorption 
[4,8]. But its side effects, such as bloating and diarrhea, can make 
patients feel uncomfortable [4]. Consequently, developing novel 
inhibitors from natural products of PL to treat obesity safely has 
attracted a lot of interest [48,49]. As reported, NDPs possessed 
inhibitory effects on PL to exert potentially anti-obesogenic effects 
both in vitro [45,50,51] and in vivo [5,52,53] (Table 2). Remarkably, 
the inhibitory effects of several NDPs are almost equal to that of  
orlistat. In a recent study, a barely b-glucan from black Qingke showed 
strong PL inhibitory effects (IC50 = 2.315 mg/mL) in vitro, compared 
with orlistat (IC50 = 2.051 mg/mL) [50]. Similarly, the excretion of 
fecal free fatty acids in High-Fat Diet (HFD) rats was elevated to  

21.39–35.86% by black tea polysaccharide extracts compared with 
orlistat [54]. This indicates that NDPs have the potential to be 
developed as an effective inhibitor of PL. Although plenty of poly-
saccharides with inhibitory effect on PL have been found, the pre-
cise relationships between structure and activity are not clear now. 
Currently, there are several probable structural factors concerning 
the inhibitory activity of polysaccharides on PL. On the one hand, 
it has been suggested that inhibitory effects on PL by polysaccha-
rides might be attributed to several functional groups in the poly-
saccharides, including calcium ions [55], free carboxyl groups, 
sulfate groups, and so on. Zhao et al. [45] recently reported that 
the inhibitory effect on PL of a glycosaminoglycan was decreased 
significantly after desulfation or carboxyl reduction, which is sim-
ilar with the result of desulfation of a galactofucan [56]. As anion 
groups, the sulfate groups and carboxyl groups might interact with 
PL via the formation of electrostatic interaction [45]. In addition, 
it was studied that inhibitory activities of polysaccharides on PL 
might be positively related to molecular weight and viscosity [50].

As a group of amphipathic steroid molecules synthesized from 
cholesterol by the liver, BAs are secreted into the small intestine to 
promote the digestion and absorption of foods including fat and 
cholesterol [8]. Previous studies have shown that polysaccharides 
binding with BAs could disrupt micelles where BAs act as emul-
sifiers, affecting the ability of micelle to solubilize the cholesterol, 
monoglycerides, and free fatty acids [55,57,58]. Subsequently, the 
absorption of fats and cholesterol within the small intestine can be 
reduced by polysaccharides, thus decreasing the risk of obesity and 
its complications [59]. However, despite the interest in the inter-
actions between polysaccharides and BAs or BAs micelles, their 
nature remains unsure because of several restrictions such as in 
vivo intricate heterogeneity and limited access to samples, as well 
as the difficulty in simulating in vivo conditions in vitro [59]. To 
develop novel natural cholesterol-lowering agents, more efforts 
should be taken to uncover the mechanisms of actions of polysac-
charides on BAs micelles in future studies.

4.  ANTI-OBESITY EFFECT VIA  
FERMENTATION IN THE INTESTINE

As one of the most important prebiotics, NDPs may manipulate 
gut microbiota and their metabolites, such as SCFAs and secondary 
BAs, through their fermentation in the intestine to combat obesity 
and linked disorders (Table 3).

4.1. Modification of Microbiota

Over the past decade, the intestinal microbiota, a vital “microbial 
organ” composed of trillions of microbes [9], has caught widespread 
attention with the rapid development of associated sequencing 
technologies and omics technologies [60,61]. The casual relation-
ship between obesity and intestinal microbiota has been discussed 
in many studies, among which a piece of evidence strongly shows 
that the intestinal microbiota from twins with different pheno-
type concerning obesity induces respective phenotypes in mice 
[62]. Recently, the intestinal microbiota is generally considered 
an environmental factor correlating the onset of obesity, although 
the underlying mechanisms are still not fully delineated [1,63].  
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NDPs can combat obesity, specifically to enhance the diversity and 
richness of the microbiota, reduce the ratio between Firmicutes  
and Bacteroidetes (F/B), and alter specific genus- or species-level.

Mounting studies have found that the fermentation of several  
polysaccharides significantly increased microbial diversity and 
richness [64,65]. The diversity of intestinal microbiota in obese 
individuals has been reported to be lower than that of lean individ-
uals [66]. There is evidence suggested that low richness of intestinal  

microbiota might be associated with reduced stability of the micro-
biota, resulted in elevated risk of obesity and its related metabolic 
disorders [67]. Thereby, a NDP-induced increase of microbial 
diversity or richness may be of great benefit to improve the dys-
functional microecology in the obese subjects.

In addition, an increase F/B correlates with enhanced capacity 
for energy absorption which ultimately resulted in obesity [68]. 
Increased F/B in rodents [69] and humans [70] with obesity was 

Table 2 | Inhibitory effects of lipase by NDPs

Source Name Type Chemistry and structural 
information Methods Inhibitory effects  

on lipase References

Stichopus  
variegatus

FG Glycosaminoglycan With a b 1,4-linked trisaccharide 
repeating unit -{(l-Fuc2S4S-a1,3-)
d-GlcA-b 1,3-d-GalNAc4S6S}-, 
 Mw = 77 kDa, GlcA (19.62%,  
w/w), sulfate group (35.83%, w/w)

In vitro Reducing PL activity by 
55.4% at 1.25 mg/mL

[45]

dsFG The desulfated FG (the degree of 
de-sulfation of dsFG > 91%)

In vitro Lower inhibitory activity 
on PL compared with 
FG

crFG The carboxyl-reduced FG (the  
carboxyl groups were reduced 
completely)

In vitro Lower inhibitory activity 
on PL compared with 
FG

Laminaria japonica CGF-3 Galactofucan Fuc, Xyl, Gal, Glc, GalA, 
Man in a molar ratio of 
14.9:1.0:16.8:1.7:3.9:6.3,  
Mw = 527.3 kDa, sulfate  
groups (26.7%)

In vivo Decreasing PL activity to 
30.70% at 2.00 mg/mL

[56]

DSCGF-3 The desulfated CGF-3 [sulfate  
groups (6.4%)]

In vitro Lower inhibitory activity 
on PL compared with 
CGF-3

Ganyucang BTHB b-Glucan Gal, Xyl, Ara, and Glc in a molar  
ratio of 0.42:0.81:1.0:27.88,  
Mw = 331.8 kDa

In vitro IC50 = 2.315 mg/mL [50]

Dingqing BLTHB Gal, Xyl, Ara, and Glc in a molar  
ratio of 0.25:0.74:1.0:24.05, 
 Mw = 196.3 kDa

In vitro IC50 = 3.712 mg/mL

Zangqing 320 WTHB Gal, Xyl, Ara, and Glc in a molar  
ratio of 0.26:0.65:1.0:34.08,  
Mw = 126.1 kDa

In vitro IC50 = 7.302 mg/mL

Codium fragile CFSP Sulfated polysaccharide Gal, Glc, Xyl in a molar ratio of 
79.82:18.24:1.94

In vitro IC50 = 101.81 μg/mL [53]
In vivo Reducing the lipase 

activity in the intestine 
by 38% after adminis-
tration at 150 mg/kg of 
BW daily

Cymodocea nodosa CNSP Sulfated polysaccharide Sugar, sulphate, proteins, lipids in a 
weight ratio of 54.90:23.17:10.50:2.13

In vitro IC50 = 108.88 μg/mL [52]
In vivo Inhibiting the lipase 

activity by 30% in the 
intestine after interven-
tion with 200 mg/kg of 
BW CNSP

Cystoseira crinita CCSP Sulfated polysaccharide Ara, Man, All, Gal, Glc, GlcN, Alt, 
Arap, Araf, Manf, Xylp, Galp, Galf, 
Ribf in an area ratio of 19:6.9:7.5: 
8.98:0.4:1.02:7.1:0.5:0.5:1.8:1.6:6:0.3: 
0.08 by GC–MS analysis

In vitro IC50 = 96.73 μg/mL [5]
In vivo Decreasing the intestinal 

lipase activity by 38% 
after oral intake at  
200 mg/kg of BW daily

All, Allose; Alt, Altrose; Arap, Arabinopyranose; BLTHB, blue Qingke (Dingqing) b -glucan; BTHB, black Qingke (Ganyucang) b -glucan; CCSP, Cystoseira crinita sulfated polysaccharide; 
CFSP, sulphated polysaccharide from Codium fragile; CGF-3, a molecular-weight homogeneous fraction of polysaccharide from Laminaria japonica; CNSP, Cymodocea nodosa sulphated 
polysaccharide; crFG, carboxyl-reduced FG; DSCGF-3, desulfated CGF-3; dsFG, desulfated FG; FG, fucosylated glycosaminoglycan from sea cucumber; Galf, Galactofuranose; GalNAc, 
N-acetyl-galactosamine; GC-MS, gas chromatography–mass spectrometry; GlcN, glucosamine; Ribf, ribofuranose; WTHB, white Qingke (Zangqing 320) b -glucan; Xylp, xylopyranose. 
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often observed, yet this variation can also be reversed by fermen-
tation of many [71–73], but not all, polysaccharides [74,75]. Apart 
from these modifications, NDPs also lead to a decrease or increase 
in bacteria that are positively or negatively associated with obe-
sity respectively through their fermentation in the intestine. For 
instance, NDP intervention by fucoidan could increase the benefi-
cial bacterium Akkermansia muciniphila [76], which could amelio-
rate metabolic disorders in mice partly through up-regulating the 
intestinal levels of endocannabinoids in dietary obese mice [77]. 
Previous studies also observed some polysaccharides improved 
obesity along with an increased population of benign microbes 
such as Alloprevotella spp. [78], Prevotella spp. [79], Parabacteroides 
goldsteinii [80]. Likewise, it was demonstrated that a water extract 
of Ganoderma lucidum mycelium (WEGL) could prevent obesity 
via modifying the gut microbiota, therein including the reduction 
of Oscillibacter spp., Mucispirillum spp., and Eubacterium fergu-
sonii [81]. These bacteria are in a positive association with inflam-
mation and the development of obesity. And the high molecular 
weight polysaccharides (>300 kDa) of WEGL was responsible for 
the anti-obesity activity of the extract [81].

Therefore, polysaccharides-induced alterations of gut microbiota 
might be of great significance to improve the dysfunctional intes-
tinal microecology in the obese. However, it is noteworthy that the 
impacts on the gut microbiota of polysaccharides mentioned above 
might not be all present in a specific study. Meanwhile, further 
investigations should be paid to clarify the relationship between 
these impacts and anti-obesity activity by free-germ mice or fecal 
microbiota transplant studies [80,81] to lay a foundation for target-
ing gut microbiota to treat obesity and related metabolic diseases 
using NDPs.

4.2. SCFAs Production

Anti-obesogenic activities of NDPs might be largely due to SCFAs 
generated during their fermentation. The SCFAs refer to a group 
of organic fatty acids with 2–6 carbon atoms including mainly  
acetate, propionate, and butyrate [82], which are involved in reg-
ulating physiological activities in local tissues. Firstly, enhanced 
SCFAs arising from NDP intake will directly lower the luminal pH 
values, suppressing the growth of pathogens [83]. Besides, SCFAs, 
particularly butyrate, have the capacity of supplying energy for 
the intestinal epithelial cells [9,84], and participating in their reg-
ulation of proliferation and differentiation depending on concen-
tration [9]. Several studies have elaborated on a protective role of 
SCFAs in maintaining the intestinal integrity [85–87], which is of 
great significance for health [88].

The local intestinal effects of SCFAs can determine which sig-
nals are subsequently triggered. For example, SCFAs activation 
of G-protein-coupled receptors GPR41 and GPR43 enhances the 
intestinal hormones Glucagon-like Peptide-1 (GLP-1) and Peptide 
YY (PYY) [89]. While these hormones locally regulate the motil-
ity of the gut [37], they subsequently enter circulation where they 
affect other organs to produce satiety, alleviate insulin resistance 
and inflammation in obese subjects [8].

Short-chain fatty acids can also affect distant organs/tissues (e.g., 
brain, liver, adipose tissue, and muscle) to exert their metabolic 
regulatory effects. Among them, adipose tissue is a major target. 
For example, SCFAs activated the GPR43 receptor in adipose tissue 

and inhibited the insulin signaling, which suppressed fat accumu-
lation and promoted energy expenditure [90]. Also, acetate and 
propionate can be metabolized in the liver. Acetate serves as a 
lipogenic compound while propionate is one of the substrates for 
gluconeogenesis and can inhibit lipogenesis [83]. More recently, 
there are a lot of discussions concerning the effects of NDPs on the 
brain–gut axis [17], in which SCFAs might act as important media-
tors in interactions between the gut and brain. For example, acetate 
from colonic fermentation of NDP could cross the blood–brain 
barrier to directly decline appetite through a hypothalamic mech-
anism [91]. Above all, SCFAs not only influence the local tissues 
but serve as key metabolic signals to act on other tissues through a 
variety of pathways, thereby profoundly regulating metabolic activ-
ities. Increased SCFAs might be a key mediator in the impacts of 
fermentable NDPs.

In conclusion, the fermentation of NDPs in the intestine can be  
considered as an important target for control of weight gain, which 
is an outcome of a combination of multiple structural characteris-
tics. NDPs with different molecular weight have different fermen-
tation features. It was suggested that NDPs were more easily by 
intestinal microbiota when degraded or with appropriate molecu-
lar weight [92,93]. And the fermentation of pectin oligosaccharides 
was reported to be positively related to the branching degree and the 
content of neutral sugar [94]. Further works in structure–activity  
relationship should be paid more attention.

5.  ANTI-OBESITY VIA REGULATING  
APPETITE AND SATIETY

Polysaccharides consumption can regulate appetite and satiety to 
manage food and energy intake, thereby preventing the develop-
ment of obesity [98,99]. On the one hand, these effects depend in 
part on their physical effects like the bulking and viscosity effect 
as well as texture property [100]. The bulking effect does not only 
result in reduced food energy density and palatability but also con-
tributes to satiety by inducing gastric distension [100]. Besides, 
some NDPs for example Konjac glucomannans [101] and increase 
the viscosity of digesta and slow the absorption of nutrients (espe-
cially fat which is discussed earlier), thus contributing to delayed 
gastric emptying, slowed bowel transit time, increased satiety, and 
reducing further food intake [100,102].

On the other hand, food ingestion induces satiety in the GI tract 
through mechanical and humoral stimulation. NDPs can regulate 
the secretion of GI hormones such as GLP-1, PYY, Cholecystokinin 
(CCK) and ghrelin to control the uptake of food. A recent study 
found that a NDP from flaxseed contributed to satiety through 
up-regulation of GLP-1, which might further increase the level 
of adiponectin and promote lipid metabolism via AMP-Activated 
Protein Kinase (AMPK) regulation [13]. Several studies also have 
demonstrated that NDPs intake is positively associated with the 
level of PYY [103,104] and CCK [105]. CCK can inhibit the activity  
of hunger-stimulating neuropeptide Y in the hypothalamus [8]. 
However, some NDPs can decrease the expression of ghrelin that 
induces hunger via acting on hypothalamic brain cells in the cen-
tral nervous system [106]. Fermentable NDPs produce SCFAs that 
are importantly involved in the regulation and control of appetite 
and satiety through stimulation of hormonal and neural signals in 
various organs and tissues [107].Ta
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6.  ANTI-OBESITY VIA REGULATING  
BA PROFILES

Bile acids, consisting of primary and secondary BAs, play a piv-
otal role in the regulation of glycolipid metabolism in addition to  
assisting fats digestion and absorption. They are a group of vital sig-
naling molecules with the ability to modulate energy metabolism 
by interacting with receptors, Takeda G protein Receptor 5 (TGR5), 
and Farnesoid X Receptor (FXR) [108,109]. Intestinal TGR5 could 
be activated by the secondary BAs, which induced GLP-1 secretion 
in intestinal L cells, alleviated glucose homeostasis, and combated 
obesity in obese mice [108]. And the inhibition of intestinal FXR 
could lower serum ceramides and promote beige fat thermogene-
sis, subsequently alleviating metabolic syndrome [109]. Moreover, 
the affinity and activation or inhibition potency on BA receptors 
vary with individual BAs [110]. As a result, BA profiles count to 
the energy regulation in the host and altered BA profiles have been 
investigated as a potential anti-obesity mechanism for NDPs.

Importantly, the BA profiles are closely linked to the intestinal 
microbiota. Bile Salt Hydrolase (BSH) enzymes secreted by some 
bacteria deconjugate conjugated primary BAs, thus generating 
unconjugated primary BAs. Unconjugated primary BAs escape 
uptake into the colon where they are dehydroxylated at 7a posi-
tion to produce secondary BAs (deoxycholic and lithocholic acid) 
[110,111]. Other microbial modifications contain esterification, 
desulfation and so on [110]. Moreover, BSH activity was found to 
have significant effects on lipid metabolism, weight gain, and cho-
lesterol levels in the host [111]. Gut microbiota dysbiosis and the 
decreased bacteria with BSH enzymes can result in perturbations 
of BA profiles and induce diseases related to glycolipid metabo-
lism [112]. NDPs can target intestinal microbiota to regulate the 
BA profiles in the host. Chen et al. [113] observed that fucoidan 
could reverse the decreased BSH enzyme activity by modulating 
gut microbiota in HFD rats, modulate the BA composition, and 
finally improve the diet-induced dyslipidemia. Another study 
reported that intervention of a sulfated NDP could decrease the 
hydrophobic BAs but enhance the hydrophilic BAs might through 
up-regulating the relative abundance of Prevotellaceae_UCG-001, 
Corprococcus_1, and Alistipes and Roseburia and Lachnospiraceae_
NK4A136_group, respectively [114].

Furthermore, many polysaccharides can bind with BAs, which can 
suppress the enterohepatic circulation of BAs and affect BA pool 
size [58,115,116]. Specifically, the administration of a NDP from 
Ophiopogon japonicus (MDG-1) significantly decreased the serum 
total BAs levels as compared with the HFD group. Further detection 
of individual BAs in the urine, liver, and fecal suggested that MDG-1 
could absorb BAs in the gut lumen, block the enterohepatic circu-
lation and subsequently decrease the BA pool size in the liver. This 
inhibited the expression of FXR while activated the transcription 
of genes CYP7A1 and CYP8B1 involved in the synthesis of BAs in 
the liver, thus improving hyperlipidemia [117]. Meanwhile, polysac-
charides with the capacity to bind with BAs likely provide a larger 
platform for BAs to interact with microbiota. Hence, the changes in 
gut microbiota resulting from a supplement of NDP significantly 
contribute to the BA profiles and metabolism of the host. Based on 
available evidence, we suggest a polysaccharide/gut microbiota/
BAs/FXR or TGR5 axis as a potential mechanism to understand 
anti-obesity activities of NDPs which still needs further research.

7.  ANTI-OBESITY VIA TARGETING  
INTESTINAL BARRIER FUNCTION

An increase in serum Lipopolysaccharides (LPS) levels has 
been observed in subjects with diet-induced or genetic obesity 
[95,118,119], which is called metabolic endotoxemia. It is a chronic 
condition where elevated LPS in serum can be recognized by Toll-
like Receptor 4 (TLR4) on various tissues, subsequently bringing 
about systemic inflammation and insulin resistance [83,119,120]. 
There may be many potential causes of metabolic endotoxemia, 
one of which is that the disrupted intestinal barrier in the obese 
may allow the intestinal microbes and LPS to enter the circulation 
[121]. As shown in Table 4, polysaccharides in the intestine can 
improve the intestinal barrier to alleviate metabolic endotoxemia, 
hence exerting their anti-obesogenic effects.

An intact intestinal barrier is pivotal in separating the gut lumen 
from the inside of the body besides nutrition absorption. One of 
the key barriers is the intestinal mucous layer between enterocytes 
and the intestinal lumen. Generally, increasing the number of 
goblet cells and their expression of Mucin 2 (Muc2) is the target of 
certain polysaccharides to strengthen the mucous layer [122–124]. 
However, a recent study found that a NDP from apple counteracted 
the HFD-induced goblet cell hyperplasia and reduced thickness 
of the mucous layer by down-regulating Resistin-like Molecule 
b (Relmb ) and promoting autophagic process rather than up- 
regulating Muc2 expression [15].

Additionally, the tight junctions between two neighboring entero-
cytes act as a vital mechanical barrier closely linked with gut per-
meability and the translocation of toxins such as LPS [125]. They 
are composed of transmembrane tetraspan proteins (e.g., occludin, 
claudins), junctional adhesion molecules, and intracellular scaf-
fold proteins (e.g., zonula occludens-1) [126]. It has been shown 
that obesity is characterized by increased permeability along with 
the decreased expression of tight junctions [80,127]. NDPs might  
promote tight junction related gene expression involving several 
specific pathways such as inhibition of nuclear factor kappa B/TLR4 
[128] and up-regulation of AMPK [129], thus restoring the intestinal 
barrier and alleviating metabolic endotoxemia in obesity (Table 4).  
Moreover, as discussed earlier, the fermentation of certain NDPs 
in the gut lumen could regulate gut microbiota and yield of SCFAs, 
which may mediate the effect of polysaccharide on intestinal bar-
rier since the alteration in commensal microbiota was reported to 
be related to metabolic endotoxemia and obesity [120,121,130] and 
SCFAs can regulate intestinal integrity as mentioned earlier.

8. CONCLUSION AND PERSPECTIVE

In this review, we summarized the behavior of NDPs in the GI tract 
and highlighted their anti-obesity mechanisms in association with 
their physiological effects. Results show that NDPs can reach the 
colon, where they are utilized by colonic microbes. They show the 
therapeutic effects on obesity within the GI tract via mechanisms 
including controlling fat absorption, fermentation in the intestine, 
regulating BA profiles, appetite and satiety as well as improving 
metabolic endotoxemia by restoring the intestinal barrier (shown 
in Figure 3). Furthermore, these mechanisms are closely related to 
other metabolic impacts in the body.
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Table 4 | NDPs that improve intestinal barrier and alleviate metabolic endotoxemia

Source Type Chemistry and structural 
information Models Daily intake  

and period
Impacts on the 
intestinal barrier Endotoxin References

Fuji apple N/A Rha, GalA, Glc, Gal and 
Ara in a molar ratio of 
1.00:17.67:8.50:4.01:2.03, 
 Mw = 2102.472, 135.849,  
9.622 kDa

HFD-rats 5%, 10% (w/v)  
10 ml/kg of BW 
for 14 weeks

Decreased gut 
permeability with 
elevated expression 
of occludin

↓LBP [15]

Regulating the  
function of goblet 
cells through  
inhibition of Relmb 
and autophagy 
induction

Finger millet  
CO (Ra) 14

Arabinoxylan Rha, Xyl, Man, Gal, Glc 
in a molar ratio of 
35.3:44.7:3.7:9.5:6.8

HFD-mice 1.0 g/kg of BW on 
every alternate day 
for 10 weeks

Improved colonic 
barrier function 
with up-regulation 
of ZO-1, claudin 2 
and 4, Muc2

↓LPS [127]

Bamboo-shaving Arabinoxylan With a main chain of b-1,4- 
d-pyranoid xylose residues, 
 Mw ≈ 10,000 g/mol

HFD-mice 400 mg/kg of BW  
for 8 weeks

Improved intestinal 
barrier integrity 
as shown by the 
complete structure 
as well as clear 
and inerratic tight 
junction under the 
transmission  
electron  
microscopy

↓LPS [64]

Hirsutella sinensis N/A A higher content of Man,  
Gal, N-GalN, N-GlcN,  
Rha and Fuc

HFD-mice 20 mg/kg of BW  
for 12 weeks

Reduced intesti-
nal permeability 
in HFD-fed 
mice along with 
enhanced  
expression ZO-1 of 
the colon

↓LPS [80]

Poria cocos b-glucan 1,3-b-d-Glucan,  
Mw = 4.486 × 106 Da

ob/ob mice 1 g/kg of BW for  
4 weeks

Maintained  
intestinal integrity 
by up-regulating 
the expression of 
Muc5, ZO-1, and 
occludin in  
the ileum

↓LPS [118]

Polygonatum  
kingianum

N/A Mw = 178.6 kDa, consists of 
Man, GalA, Gal, and Fuc

HFD-rats 120 mg/kg of BW  
for 14 weeks

Reversed the intestinal 
barrier injuries by 
elevating ZO-1 and 
occludin expression

↓LPS [131]

Apple Pectin N/A HFD-rats Free access to a 
standard chow diet 
with 5% pectin 
(w/w) for 6 weeks

Maintained gut 
barrier function by 
improving the level 
of claudin 1

↓LPS [132]

Enhanced the expres-
sion of intestinal 
alkaline phospha-
tase

Raphanus sativus N/A Rha, Fuc, Ara, Xyl, Man, 
Gal, Glc, GlcA and 
GalA in molar ratios of 
5.4:5.0:22.9:0.4,  
Mw = 61 kDa

HFD-mice HFD with a daily 
oral gavage of  
2 mg/kg for  
6 weeks

Improved gut bar-
rier function by 
improving the level 
of ZO-1 

Restored colon  
shortening

↓LPS [133]

BW, body weight; w, weight; v, volume; LBP, LPS-binding protein; ZO-1, zonula occludens-1; Muc5, mucin 5.
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In conclusion, the anti-obesogenic effects of NDPs during their GI 
digestion and fermentation are significant and worth further discus-
sion. From Tables 2 to 4, anti-obesity effects and mechanisms of NDPs 
from different sources with structural and chemical composition 
differences are shown. At present, there is a lack of clear structure– 
activity relationships between NDPs and their anti-obesity effect, 
which should be further investigated. Furthermore, it is worth noting 
that there are still some factors to be considered for the practical appli-
cation of NDPs in the prevention of obesity. For instance, how to solve 
the demand for fat-soluble nutrients when fat absorption is inhibited 
is worth considering. And the methods of NDPs preparation should 
be simpler, and economic for industrial production. Finally, consump-
tion pattern [134] and dosage also influence the effectiveness of the 
NDPs. More toxicological studies are needed to find the optimal dose 
for clinical application. It is anticipated that new products based on 
NDPs for weight control after these problems are solved.
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