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ABSTRACT
In this paper, we derive the exact expressions as well as recurrence relations for single and product moment of generalized upper
record values from the four-parameter generalized linear exponential distribution. Further, we characterize the given distribution
through conditional expectation and recurrence relations.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The exponential, Rayleigh, Weibull, and the linear exponential distribution (LED) are widely used to model lifetime data. These distribu-
tion have several desirable properties which are frequently used in analyzing lifetime data. In particular, the generalized linear exponential
distribution (GLED) having linearly increasing failure rates is very useful for modeling lifetime data. The exponential and Rayleigh dis-
tributions are special cases of LED. Since the LED does not provide a reasonable parametric fit for bathtub shape (decreasing, nonlinear
increasing, nonmonotone failure rates). Therefore, a lot of work is devoted to GLED and propose some new distribution which are more
flexible. So, in this continuation Mahmoud and Alam [1] introduced the four-parameter GLED, which defines the different distributional
properties of GLED. Lee and Tsai [2] modify the moment of the GLED in a different way, which is more robust. The GLED shows the
increasing, decreasing, and bathtub-shaped hazard rate functions which are quite useful in reliability and biological studies.

A random variable X is said to have a GLED with four parameters 𝜃 , 𝛼 > 0 and 𝛽 , 𝜆 ≥ 0, if its probability density function (pdf ) is of the
form

f(x) = 𝛼 (𝛽 + 𝜃x)
(𝜃
2
x2 + 𝛽x − 𝜆

)𝛼−1
exp

{
−
(𝜃
2
x2 + 𝛽x − 𝜆

)𝛼}
I(Ψ,∞)(x), x > 0, (1.1)

where

I(Ψ,∞)(x) =
{

1 x > Ψ
0 otherwise

is the indicator function, and

Ψ =
−𝛽 +

√
𝛽2 + 2𝜃𝜆
𝜃

and the distribution function (df ) is

F(x) =
[
1 − exp

{
−
(𝜃
2
x2 + 𝛽x − 𝜆

)𝛼}]
I(Ψ,∞)(x), x > 0. (1.2)
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It is easy to see that (𝜃
2
x2 + 𝛽x − 𝜆

)
f(x) = 𝛼(𝛽 + 𝜃x)[− ln F(x)][F(x)], (1.3)

where

F(x) = 1 − F(x).

The concept of record values was introduced by Chandler [3]. An observation is called a record if its value is greater (or less) than all
the previous observations. Record values are used in a wide variety of practical situations, such as industrial stress testing, meteorological
analysis, hydrology, seismology, oil, mining surveys, sports, and athletic events. For a survey on important results in this area one may refer
to Ahsanullah [4], Kamps [5], Arnold et al. [6] and Ahsanullah and Nevzorov [7]. Dziubdziela and Kopcoiński [8] have generalized the
concept of record values of Chandler [3] by random variables of a more generalized nature and called them the k-th record values. Later,
Minimol and Thomas ([9], p. 487) called the record values defined by Dziubdziela and Kopcoiński [8] also as the generalized record values,
since the r-th member of the sequence of the classical record values is also known as the r-th record value. By setting k = 1, we obtain
ordinary record statistics.

Let
{
Xn, n ≥ 1

}
be a sequence of independent and identical distributed (iid) continuous random variables with df F(x) and pdf f (x). Then

for a fixed positive integer k ≥ 1, the sequence of k-th upper record times
{
U(k)

n , n ≥ 1
}
is defined as Nevzorov [10]:

U(k)
1 = k

and for n ≥ 1,

U(k)
n+1 = min

{
j ∶ j > U(k)

n ,Xj > XU(k)
n −k+1∶U(k)

n

}
.

The sequence
{
Y(k)
n , n ≥ 1

}
, where Y(k)

n = XU(k)
n ∶U(k)

n +k−1 is called the sequence of generalized upper record values (k-th upper record values)

of
{
Xn, n ≥ 1

}
. Note that for k = 1, we have Y(1)

n = XUn
, n ≥ 1, which are the record values of

{
Xn, n ≥ 1

}
as defined in Ahsanullah [4].

The pdf of Y(k)
n and the joint pdf of Y(k)

m and Y(k)
n are given by (Dziubdziela and Kopcoiński [8], Grudzień [11])

fY(k)
n
(x) = kn

(n − 1)!

[
− ln F(x)

]n−1[
F(x)

]k−1
f(x), n ≥ 1, (1.4)

fY(k)
m ,Y

(k)
n
(x, y) = kn

(m − 1)!(n −m − 1)!

[
− ln F(x)

]m−1 f(x)
F(x)

×
[
ln F(x) − ln F(y)

]n−m−1[
F(y)

]k−1
f(y), x < y, 1 ≤ m < n,

(1.5)

and the conditional pdf of Y(k)
n given Y(k)

m = x, is

fY(k)
n |Y(k)

m

(
y|x) = kn−m

(n −m − 1)!
[ln F(x) − ln F(y)]

n−m−1
[
F(y)
F(x)

]k−1
f(y)
F(x)

, x < y. (1.6)

For some recent developments on generalized record values with special reference to those arising from exponential, Gumbel, Pareto, gen-
eralized Pareto, Burr, Weibull, Gompertz, Makeham, modified-Weibull, exponential-Weibull, additive Weibull, and Kumaraswamy log-
logistic distributions, see Grudzień and Szynal [12,13], Pawlas and Szynal [14–1516], Minimol and Thomas [9,17], Khan and Khan [18],
Khan et al. [19,20], and Singh et al. [21], respectively. In this paper, we mainly focus on the study of generalized upper record values arising
from the GLED and discussed exact explicit expressions as well as several recurrence relations satisfied by single and product moments. In
addition, conditional expectations and recurrence relations of generalized record values are used to characterize this distribution.
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2. RELATIONS FOR SINGLE MOMENTS

In this section, we derive the exact expressions for single moments of generalized upper record values and recurrence relations in the
following theorems:

Theorem 2.1. For the distribution given in (1.1). Fix a positive integer k ≥ 1, for n ≥ 1, (𝛽2 + 2𝜃𝜆) > 0 and j = 0, 1,…

E
(
Y(k)
n

)j
= 1

(n−1)!

⎡⎢⎢⎢⎣
j∑

u=0

∞∑
v=0

(
j
u

)( j−u
2
v

)
(−𝛽)u 2v

(
𝛽2 + 2𝜃 𝜆

) j−u
2

−v

𝜃j−vk
v
𝛼

𝛾
{

v
𝛼
+ n, k

(
𝛽2 + 2𝜃𝜆

2𝜃

)𝛼}

+
j∑

u=0

∞∑
v=0

(
j
u

)( j−u
2
v

)
(−𝛽)u 2

j−u
2

−v
(
𝛽2 + 2𝜃𝜆

)v
𝜃
j+u
2

+vk
j−u
2𝛼

−
v
𝛼

Γ
{ j − u

2𝛼
− v
𝛼
+ n, k

(
𝛽2 + 2𝜃𝜆

2𝜃

)𝛼}⎤⎥⎥⎦ ,
(2.1)

where Γ(s, t) = ∫
∞

t
xs−1 e−x dx and 𝛾(s, t) = ∫

t

0
xs−1 e−x dx are the upper and lower incomplete gamma functions, respectively.

Proof. In the view of (1.4), we have

E(Y(k)
n )j = kn

(n − 1)! ∫
∞

−∞
xj
[
− ln F(x)

]n−1[
F(x)

]k−1
f(x)dx, n ≥ 1 .

Now using (1.3), we get

E(Y(k)
n )

j
= 𝛼kn

(n − 1)! ∫
Ψ

∞

xj(𝛽 + 𝜃x)(
𝜃
2
x2 + 𝛽x − 𝜆

)[− ln F(x)
]n[

F(x)
]k
dx

= 𝛼kn
(n − 1)! ∫

Ψ

∞

xj(𝛽 + 𝜃x)(
𝜃
2
x2 + 𝛽x − 𝜆

)[( 𝜃
2
x2 + 𝛽x − 𝜆

)𝛼]n[
e
−
(
𝜃
2
x2+𝛽x−𝜆

)𝛼]k

dx,
(2.2)

after substituting t =
(
𝜃
2
x2 + 𝛽x − 𝜆

)𝛼
in (2.2), we get

E
(
Y(k)
n
)j = kn

(n − 1)!

∞

∫
0

[
−𝛽 +

√
2𝜃t1∕𝛼 + (𝛽2 + 2𝜃𝜆)

𝜃

]j

tn−1e−ktdt. (2.3)

On using binomial expansion in (2.3) and we have

E
(
Y(k)
n

)j
= kn

(n − 1)!

j∑
u=0

(
j
u

)
(−𝛽)u

𝜃j ∫
0

∞

[
2𝜃t1∕𝛼 + (𝛽2 + 2𝜃𝜆)

] j−u
2 tn−1e−ktdt.

= kn
(n − 1)!

j∑
u=0

(
j
u

)
(−𝛽)u

𝜃j ∫
0

∞

[
1 + 𝛽2 + 2𝜃𝜆

2𝜃t1∕𝛼

] j−u
2
(2𝜃t1∕𝛼)

j−u
2 tn−1e−ktdt.

= kn
(n − 1)!

j∑
u=0

(
j
u

)
(−𝛽)u

𝜃j ∫
0

∞

[
1 + 1

𝜓t1∕𝛼

] j−u
2
(2𝜃t1∕𝛼)

j−u
2 tn−1e−ktdt.

(2.4)
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where 𝜓 = 2𝜃
𝛽2+2𝜃𝜆

, by the expression | 𝛽2+2𝜃𝜆
2𝜃t1∕𝛼

| < 1 only if
(
𝛽2+2𝜃𝜆

2𝜃

)𝛼
< t < ∞. We can verify that |𝜓 t1∕𝛼| < 1 if 0 < t <

(
1
𝜓

)𝛼
and

| 1
𝜓t1∕𝛼

| < 1 if
(

1
𝜓

)𝛼
< t <∞, thus the integral in (2.4) should be separated into two parts as:

E
(
Y(k)
n

)j
= kn

(n − 1)!

j∑
u=0

(
j
u

)
(−𝛽)u

𝜃j

⎡⎢⎢⎢⎢⎣

(
1
𝜓

)𝛼
∫
0

(
1 + 1

𝜓t1∕𝛼

) j−u
2
(2𝜃t1∕𝛼)

j−u
2

× tn−1e−ktdt +
∞

∫(
1
𝜓

)𝛼
[
1 + 1

𝜓t1∕𝛼

] j−u
2
(2𝜃t1∕𝛼)

j−u
2 tn−1e−ktdt

⎤⎥⎥⎥⎥⎦
= kn

(n − 1)!

j∑
u=0

(
j
u

)
(−𝛽)u

𝜃j
(𝛽2 + 2𝜃𝜆)

j−u
2

⎡⎢⎢⎢⎢⎣

(
1
𝜓

)𝛼
∫
0

[
1 + 𝜓t1∕𝛼

] j−u
2

× tn−1e−ktdt +
∞

∫(
1
𝜓

)𝛼
[
1 + 1

𝜓t1∕𝛼

] j−u
2 (

𝜓t1∕𝛼
) j−u

2 tn−1e−ktdt

⎤⎥⎥⎥⎥⎦
.

(2.5)

On using the binomial expansion in (2.5), we get:

E
(
Y(k)
n

)j
= kn

(n − 1)!

j∑
u=0

(
j
u

)
(−𝛽)u

𝜃j
(
𝛽2 + 2𝜃𝜆

) j−u
2

⎡⎢⎢⎢⎣
∞∑
v=0

( j−u
2
v

)
𝜓v × ∫

(
1
𝜓

)𝛼
0

t
v
𝛼
+n−1e−ktdt

+
∞∑
v=0

( j−u
2
v

)
𝜓

j−u
2

−v ∫
(

1
𝜓

)𝛼
∞ t

j−u
2𝛼

−
v
𝛼
+n−1e−ktdt

]
.

= kn
(n − 1)!

j∑
u=0

(
j
u

)
(−𝛽)u

𝜃j
(
𝛽2 + 2𝜃𝜆

) j−u
2

⎡⎢⎢⎢⎣
∞∑
v=0

( j−u
2
v

)(
2𝜃

𝛽2 + 2𝜃𝜆

)v

× ∫
(
𝛽2+2𝜃𝜆

2𝜃

)𝛼
0

t
v
𝛼
+n−1e−ktdt

+
∞∑
v=0

( j−u
2
v

)(
2𝜃

𝛽2+2𝜃𝜆

) j−u
2

−v ∫
(
𝛽2+2𝜃𝜆

2𝜃

)𝛼
∞ t

j−u
2𝛼

−
v
𝛼
+n−1e−ktdt

]
,

(2.6)

using the incomplete gamma function in (2.6), we get the result as given in (2.1).

Corollary 2.1. The j-th moment of the k-th record values from GLED has another form:

E(Y(k)
n )

j
= 1

(n−1)!

⎡⎢⎢⎢⎣
(𝛽2+2𝜃 𝜆)

j
2

𝜃j
𝛾
{
n, k

(
𝛽2+2𝜃𝜆

2𝜃

)𝛼}
+ 2

j
2

𝜃
j
2 k

j
2𝛼

Γ
{

j
2𝛼

+ n, k
(
𝛽2+2𝜃𝜆

2𝜃

)𝛼}

+
j∑

u=1

∞∑
v=1

(
j
u

)( j−u
2
v

)
(−𝛽)u2v (𝛽

2+2𝜃𝜆)
j−u
2

−v

𝜃j−vk
v
𝛼

𝛾
{

v
𝛼
+ n, k

(
𝛽2+2𝜃𝜆

2𝜃

)𝛼}
+

j∑
u=1

∞∑
v=1

(
j
u

)( j−u
2
v

)
(−𝛽)u2

j−u
2

−v (𝛽2+2𝜃𝜆)v

𝜃
j+u
2

+v
k
j−u
2𝛼

−
v
𝛼

Γ
{

j−u
2𝛼

− v
𝛼
+ n, k

(
𝛽2+2𝜃𝜆

2𝜃

)𝛼}]
.

(2.7)

Proof. On expanding (2.1), at u=0 and v=0. Hence, the result.
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Remark 2.1.

i) Setting j = 0 in (2.1), then

RHS = 1
(n − 1)!

[
𝛾
{
n, k

(
𝛽2 + 2𝜃𝜆

2𝜃

)𝛼}
+ Γ

{
n, k

(
𝛽2 + 2𝜃𝜆

2𝜃

)𝛼}]
,

by using the formula [Γ(s, t) + 𝛾(s, t)] = Γ(s) = ∫
∞

0
ts−1 e−t dt, we get

RHS = 1
(n − 1)!

Γ(n) = 1 = LHS as Γ(n) = (n − 1)!

ii) Setting k = 1 and n = 1 in (2.7), we get the exact expression for the j-th ordinary moment of GLED as obtained by Lee and Tsai [2].

iii) Setting 𝛽 = 𝜆 = 0 in (2.7), we get the exact expression for single moments of generalized upper records fromWeibull distribution

E(Y(k)
n )j = 1

(n − 1)!

⎡⎢⎢⎣ 2
j
2

𝜃
j
2 k

j
2𝛼

Γ
{ j

2𝛼
+ n, 0

}⎤⎥⎥⎦ =
(√

2
k1∕𝛼𝜃

)j Γ
(

j
2𝛼

+ n
)

(n − 1)!
, (2.8)

as obtained by Kamps [5] and at k = 1, we get the result as given in Nagaraja [22].

iv) Setting 𝛼 = 1
2
in (2.8), we get the exact expression for single moments of generalized upper records from the exponential distribution

E
(
Y(k)
n
)j = 1(

k
√

𝜃
2

)j
Γ(j + n)
(n − 1)!

,

as obtained by Kamps [5] and at k = 1 in Ahsanullah [23].

v) Setting 𝛼 = 1 in (2.8), we get the exact expression for single moments of generalized upper records from Rayleigh distribution

E
(
Y(k)
n
)j = (√

2
k 𝜃

)j Γ
(

j
2
+ n

)
(n − 1)!

,

at k = 1 we get the similar result as given in Ahsanullah and Shakil [24].

vi) Setting 𝜆 = 0 and 𝛼 = 1 in (2.1), we get the exact expression for single moments of generalized upper records from the LED

E(Y(k)
n )

j
= 1

(n−1)!

⎡⎢⎢⎢⎣
j∑

u=0

∞∑
v=0

(
j
u

)( j−u
2
v

)
(−1)u2v 𝛽

j−2v

𝜃j−vkv
𝛾
{
v + n, k

(
𝛽2

2𝜃

)}

+
j∑

u=0

∞∑
v=0

(
j
u

)( j−u
2
v

)
(−1)u2

j−u
2

−v 𝛽u+2v

𝜃
j+u
2

+v
k
j−u
2

−v
Γ
{

j−u
2

− v + n, k
(
𝛽2

2𝜃

)}]
.

vii) Setting 𝛽 = 0 in (2.7), we get the exact expression for single moments of generalized upper records from the generalized Rayleigh
distribution

E
(
Y(k)
n

)j
= 1

(n−1)!

⎡⎢⎢⎣ (2𝜃𝜆)
j
2

𝜃j
𝛾 {n, k𝜆𝛼} + 2

j
2

𝜃
j
2 k

j
2𝛼

Γ
{

j
2𝛼

+ n, k𝜆𝛼
}⎤⎥⎥⎦

=
(√

2
𝜃

)j
1

(n−1)!

[
𝜆

j
2 𝛾 {n, k𝜆𝛼} + 1

k
j
2𝛼

Γ
{

j
2𝛼

+ n, k 𝜆𝛼
}]

.
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Theorem 2.2. For the distribution given in (1.1), fix a positive integer k ≥ 1, for n ≥ 1 and j = 0, 1,…

E
(
Y(k)
n

)j
= n𝛼𝜃

(j+2)𝜆

[(
1 + j+2

2n𝛼

)
E
(
Y(k)
n

)j+2
− E

(
Y(k)
n+1

)j+2
]

+ n𝛼𝛽
(j+1)𝜆

[(
1 + j+1

n𝛼

)
E
(
Y(k)
n

)j+1
− E

(
Y(k)
n+1

)j+1
]
.

(2.9)

Proof. From (1.4) for n ≥ 1 and j = 0, 1,…, we have

𝜃
2

[
E
(
Y(k)
n

)j+2
]
+ 𝛽

[
E
(
Y(k)
n

)j+1
]
− 𝜆

[
E
(
Y(k)
n

)j
]
= kn

(n − 1)!
×

∞

∫
Ψ

(𝜃
2
x2 + 𝛽x − 𝜆

)
xj
[
− ln F(x)

]n−1(
F(x)

)k−1
f(x)dx, (2.10)

on using (1.3) in (2.10), we get

𝜃
2

[
E
(
Y(k)
n
)j+2] + 𝛽 [E(Y(k)

n
)j+1] − 𝜆 [E(Y(k)

n
)j]

= kn
(n − 1)! ∫

∞

Ψ
𝛼(𝛽 + 𝜃x)xj

[
− ln F(x)

]n[
F(x)

]k
dx

=
𝛼𝛽kn

(n − 1)! ∫
∞

Ψ
xj
[
− ln F(x)

]n[
F(x)

]k
dx + 𝛼𝜃kn

(n − 1)! ∫
∞

Ψ
xj+1

[
− ln F(x)

]n[
F(x)

]k
dx.

(2.11)

Now applying Lemma 2.1 stated in Khan et al. [19] to (2.11), we have

𝜃
2

[
E(Y(k)

n )j+2
]
+ 𝛽

[
E(Y(k)

n )j+1
]
− 𝜆

[
E(Y(k)

n )j
]

= n𝛼𝜃
j + 2

[
E
(
Y(k)
n+1

)j+2
− E

(
Y(k)
n
)j+2] + n𝛼𝛽

j + 1

[
E
(
Y(k)
n+1

)j+1
− E

(
Y(k)
n
)j+1] , (2.12)

after arranging (2.12) we get the yields given in (2.9).

Remark 2.2. If we put

i) 𝛽 = 𝜆 = 0 in (2.11) we get the recurrence relations for single moment of generalized upper records fromWeibull distribution

E
(
Y(k)
n+1

)j+2
=
(
1 +

j + 2
2n𝛼

)
E
(
Y(k)
n
)j+2,

at j′ = j + 2, we get similar result as obtained by Khan and Khan [18].

ii) 𝛽 = 𝜆 = 0 and 𝛼 = 1
2
in (2.11) we get the recurrence relations for single moment of generalized upper records from the exponential

distribution

E
(
Y(k)
n+1

)j+2
=
(
1 +

j + 2
n

)
E
(
Y(k)
n
)j+2,

at j′ = j + 2, we get similar result as obtained by Khan and Khan [18].

iii) 𝛽 = 𝜆 = 0 and 𝛼 = 1 in (2.11) we get the recurrence relations for single moment of generalized upper records from Rayleigh
distribution

E
(
Y(k)
n+1

)j+2
=
(
1 +

j + 2
2n

)
E
(
Y(k)
n
)j+2,

at j′ = j + 2, we get similar result as obtained by Khan and Khan [18].
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iv) 𝜆 = 0 and 𝛼 = 1 in (2.11) we get the recurrence relations for single moment of generalized upper records from the LED

E
(
Y(k)
n+1

)j+2
=
(
1 + j+2

2n

)
E
(
Y(k)
n

)j+2
+ (j+2)𝛽

(j+1)𝜃

[(
1 + j+1

n

)
E
(
Y(k)
n

)j+1
− E

(
Y(k)
n+1

)j+1
]
.

v) 𝛽 = 0 in (2.8) we get the recurrence relations for single moment of generalized upper records from the generalized Rayleigh
distribution

E(Y(k)
n )j = n𝛼𝜃

(j + 2)𝜆

[(
1 +

j + 2
2n𝛼

)
E
(
Y(k)
n
)j+2 − E

(
Y(k)
n+1

)j+2
]
.

Corollary 2.2. The recurrence relation for single moments of the upper record values from GLED has the form

𝜆E
(
XUn

)j = n𝛼𝜃
j+2

[(
1 + j+2

2n𝛼

)
E
(
XUn

)j+2 − E
(
XUn+1

)j+2
]

+ n𝛼𝛽
j+1

[(
1 + j+1

n𝛼

)
E
(
XUn

)j+1 − E
(
XUn+1

)j+1
]
.

(2.13)

Remark 2.3. If we put

i) 𝛽 = 𝜆 = 0 in (2.12), we get the recurrence relations for single moment of upper records fromWeibull distribution, which is similar to
the result as obtained by Balakrishnan and Chan [25] for j′ = j + 2.

ii) 𝛽 = 𝜆 = 0 and 𝛼 = 1
2
and (2.12) in, the results for the single moments of upper records obtained by Balakrishnan and Chan [25] at

j′ = j + 2 for the exponential distribution is deduced.

iii) 𝛽 = 𝜆 = 0 and 𝛼 = 1 in (2.12), the results for the singlemoments of upper records obtained by Balakrishnan and Chan [25] at j′ = j+2
for Rayleigh distribution is deduced.

iv) 𝜆 = 0 and 𝛼 = 1 in (2.12), we get the recurrence relations for single moments of upper records from the LED

E
(
XUn+1

)j+2
=
(
1 + j+2

2n

)
E(XUn

) j+2 + (j+2)𝛽
(j+∣1)𝜃

[(
1 + j+1

n

)
E(XUn

) j+1 − E(XUn+1
)j+1

]
.

v) Setting 𝛽 = 0 in (2.12), we get the recurrence relations for single moments of upper records from the generalized Rayleigh distribution

E
(
XUn

)j = n𝛼𝜃
(j + 2)𝜆

[(
1 +

j + 2
2n𝛼

)
E
(
XUn

)j+2 − E
(
XUn+1

)j+2
]
.

Numerical computations for moments of k-th upper record values from the GLED for arbitrary chosen values of 𝛼, 𝛽, 𝜃. Setting 𝜆 = 0
without loss of generality and various sample size n = 1, 2,… 10 are given in Tables 1 and 2.

Table 1 Moments of the generalized linear exponential distribution(GLED).

E(X) E(X)2

𝛼 = 0.5, 𝜃 = 1, 𝛽 = 2 𝛼 = 0.5, 𝜃 = 1, 𝛽 = 2
n k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
1 0.736241 0.2210499 0.1040861 2.110072 0.2316011 0.0561998
2 1.947826 0.6230462 0.3010611 8.417389 1.015631 0.2581783
3 3.449258 1.16617 0.5780411 20.40594 2.670637 0.7090046
4 5.12462 1.816237 0.9222053 39.00304 5.470104 1.511246
5 6.905298 2.546131 1.321817 64.75762 9.630955 2.758801
6 8.751285 3.335303 1.766684 97.98972 15.31757 4.533193
7 10.63908 4.168577 2.248265 138.8874 22.65138 6.90277
8 12.55456 5.03488 2.759559 187.5635 31.72096 9.923529
9 14.48904 5.926162 3.294916 244.0877 42.59071 13.64067
10 16.43696 6.836557 3.849815 308.5043 55.30755 18.09037
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Table 2 Moments of the generalized linear exponential distribution(GLED).

E(X)3 E(X)4

𝛼 = 0.5, 𝜃 = 1, 𝛽 = 2 𝛼 = 0.5, 𝜃 = 1, 𝛽 = 2
n k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
1 10.71348 0.479532 0.064216 77.53965 1.505019 0.116498
2 55.65176 2.772377 0.393788 490.8589 10.64161 0.879686
3 168.2068 9.18847 1.377652 1762.711 42.06369 3.692394
4 388.0785 22.94524 3.613889 4734.55 122.7896 11.38394
5 758.6281 48.00968 7.906454 10597.46 295.4639 28.7853
6 1325.249 88.92437 15.24622 20908.68 620.8854 63.26942
7 2134.446 150.654 26.78464 37600.07 1179.848 125.224
8 3233.338 238.4644 43.80586 62982.53 2074.428 228.4448
9 4669.385 357.8329 67.7008 99748.23 3428.868 390.451
10 6490.247 514.3848 99.94468 150971.8 5390.161 632.7313

3. RELATIONS FOR PRODUCT MOMENTS

In this section, we derived the recurrence relations for product moments of generalized upper record values. Before proving the main result,
we shall prove the following lemma:

Lemma 3.1. Fix a positive integer k ≥ 1, for 1 ≤ m ≤ n − 2 and i, j = 0, 1,…,

E
[(

Y(k)
m+1

)i(
Y(k)
n

)j
]
− E

[(
Y(k)
m

)i(
Y(k)
n

)j
]
= ikn

m!(n−m−1)!

∞

∫
−∞

y

∫
−∞

xi−1yj

×[− ln F(x)]
m
[ln F(x) − ln F(y)]

n−m−1
[F(y)]

k−1
f(y)dx dy.

(3.1)

Proof. From (1.5), we have

E
[(

Y(k)
m+1

)i(
Y(k)
n

)j
]
− E

[(
Y(k)
m

)i(
Y(k)
n

)j
]
= kn

(m−1)!(n−m−1)!

×

∞

∫
−∞

y

∫
−∞

xiyj
[
− ln F(x)

]m−1 f(x)
F(x)

[
ln F(x) − ln F(y)

]n−m−2

×
[
F(y)

]k−1
f(y)

{[
− ln F(x)

]
(n−m−1)

m
−
[
ln F(x) − ln F(y)

]}
dx dy.

(3.2)

Let

h(x, y) = 1
m

[
ln F(x) − ln F(y)

]n−m−1[
− ln F(x)

]m
(3.3)

𝜕
𝜕x

h(x, y) = −
[
− ln F(x)

]m−1 f(x)
F(x)

[
ln F(x) − ln F(y)

]n−m−2

×
{[

− ln F(x)
] (n −m − 1)

m
−
[
ln F(x) − ln F(y)

]}
.

(3.4)

On using the value of (3.4) in (3.2), we find that

E
[(

Y(k)
m+1

)i(
Y(k)
n

)j
]
− E

[(
Y(k)
m

)i(
Y(k)
n

)j
]
= −kn

(m − 1)!(n −m − 1)!

×

∞

∫
−∞

yj
[
F(y)

]k−1
f(y)

⎧⎪⎨⎪⎩
y

∫
−∞

xi 𝜕
𝜕x
h(x, y)dx

⎫⎪⎬⎪⎭ dy.
(3.5)

Now, in view of (3.3)

∫
y

−∞
xi 𝜕
𝜕x

h(x, y)dx = − i
m ∫

y

−∞
xi−1

[
− ln F(x)

]m[
ln F(x) − ln F(y)

]n−m−1
dx. (3.6)
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On substituting (3.6) in (3.5) and simplifying, we get the required result.

Theorem 3.1. For the distribution given in (1.1) and k ≥ 1,m ≥ 1 and i, j = 0, 1, ...

E
[(

Y(k)
m

)i(
Y(k)
m+1

)j
]
= m𝛼𝜃

(i + 2)𝜆

[(
1 + i + 2

2m𝛼

)
E
[(
Y(k)
m
)i+2(Y(k)

m+1

)j
]
− E

[
(Y(k)

m+1)
i+j+2]]

+
m𝛼𝛽

(i + 1)𝜆

[(
1 + i + 1

m𝛼

)
E
[(
Y(k)
m
)i+1(Y(k)

m+1

)j
]
− E

[(
Y(k)
m+1

)i+j+1
]] (3.7)

and for 1 ≤ m ≤ n − 2, and i, j = 0, 1, ...

E
[(

Y(k)
m

)i(
Y(k)
n

)j
]
= m𝛼𝜃

(i + 2)𝜆

[(
1 + i + 2

2m𝛼

)
E
[(
Y(k)
m
)i+2(Y(k)

n
)j] − E

[(
Y(k)
m+1

)i+2(
Y(k)
n
)j]]

+
m𝛼𝛽

(i + 1)𝜆

[(
1 + i + 1

m𝛼

)
E
[(
Y(k)
m
)i+1(Y(k)

n
)j] − E

[(
Y(k)
m+1

)i+1(
Y(k)
n
)j]] . (3.8)

Proof. From (1.5), form ≤ n − 1, we have

𝜃
2
E
[(
Y(k)
m
)i+2(Y(k)

n
)j] + 𝛽E [(Y(k)

m
)i+1(Y(k)

n
)j] − 𝜆E [(Y(k)

m
)i(Y(k)

n
)j]

= kn
(m − 1)!(n −m − 1)!

Ψ

∫
∞

Ψ

∫
y

(𝜃
2
x2 + 𝛽x − 𝜆

)
xiyj

[
− ln F(x)

]m−1 f(x)
F(x)

×
[
ln F(x) − ln F(y)

]n−m−1[
F(y)

]k−1
f(y)dx dy.

In view of (1.3),

𝜃
2
E
[(
Y(k)
m
)i+2(Y(k)

n
)j] + 𝛽E [(Y(k)

m
)i+1(Y(k)

n
)j] − 𝜆E [(Y(k)

m
)i(Y(k)

n
)j]

= 𝛼kn
(m − 1)!(n −m − 1)! ∫

∞

Ψ ∫
y

Ψ
(𝛽 + 𝜃x)xiyj[− ln F(x)]

m

× [ln F(x) − ln F(y)]
n−m−1

[F(y)]
k−1

f(y)dx dy.

=
𝛼𝛽kn

(m − 1)!(n −m − 1)! ∫
∞

Ψ ∫
y

Ψ
xiyj[− ln F(x)]

m
[ln F(x) − ln F(y)]

n−m−1

× [F(y)]
k−1

f(y)dx dy + 𝛼𝜃kn
(m − 1)!(n −m − 1)! ∫

∞

Ψ ∫
y

Ψ
xi+1yj[− ln F(x)]

m

× [ln F(x) − ln F(y)]
n−m−1

[F(y)]
k−1

f(y)dx dy.

Using Lemma 3.1, we get

𝜃
2
E
[(
Y(k)
m
)i+2(Y(k)

n
)j] + 𝛽E [(Y(k)

m
)i+1(Y(k)

n
)j] − 𝜆E [(Y(k)

m
)i(Y(k)

n
)j]

= m𝛼𝜃
i+ 2

[
E[(Y(k)

m+1)
i+2

(Y(k)
n )

j
] − E[(Y(k)

m )
i+2

(Y(k)
n )

j
]
]

+m𝛼𝛽
i+ 1

[
E[(Y(k)

m+1)
i+1

(Y(k)
n )

j
] − E[(Y(k)

m )
i+1

(Y(k)
n )

j
],
] (3.9)

arranging (3.9) we get the result as given in (3.8).

Now putting n = m + 1 and noting that E[(Y(k)
m )i(Y(k)

m )
j
] = E[(Y(k)

m )i+j], the recurrence relation given in (3.7) can be easily obtained on the
same line of proof (3.8).
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Remark 3.1. If we put

i): 𝛽 = 𝜆 = 0 in (3.9), we get the recurrence relations for product moment of generalized upper records fromWeibull distribution

E
[(

Y(k)
m+1

)i+2(
Y(k)
n
)j] =

(
1 + i + 2

2𝛼m

)
E
[(
Y(k)
m
)i+2(Y(k)

n
)j] ,

at i′ = i + 2, we get similar result as obtained by Khan and Khan [18].

ii): 𝛽 = 𝜆 = 0 and 𝛼 = 1
2
in (3.9), we get the recurrence relations for product moment of generalized upper records from the exponential

distribution

E
[(

Y(k)
m+1

)i+2(
Y(k)
n
)j] =

(
1 + i + 2

m

)
E
[(
Y(k)
m
)i+2(Y(k)

n
)j] ,

at i′ = i + 2, we get similar result as obtained by Khan and Khan [18].

iii): 𝛽 = 𝜆 = 0 and 𝛼 = 1 in (3.9), we get the recurrence relations for product moment of generalized upper records from Rayleigh distri-
bution

E
[(

Y(k)
m+1

)i+2(
Y(k)
n
)j] =

(
1 + i + 2

2m

)
E
[(
Y(k)
m
)i+2(Y(k)

n
)j] ,

at i′ = i + 2, we get similar result as obtained by Khan and Khan [18].

iv): 𝜆 = 0 and 𝛼 = 1 in (3.9), we get the recurrence relations for product moment of generalized upper records from the LED

E
[(

Y(k)
m+1

)i+2(
Y(k)
n

)j
]
=
(
1 + i+2

2m

)
E
[(

Y(k)
m

)i+2(
Y(k)
n

)j
]

+
(i + 2)𝛽
(i + 1)𝜃

[(
1 + i + 1

m

)
E
[(
Y(k)
m
)i+1(Y(k)

n
)j] − E

[(
Y(k)
m+1

)i+1(
Y(k)
n
)j]] .

v): Setting 𝛽 = 0 in (3.8) we get the recurrence relations for product moment of generalized upper records from the generalized Rayleigh
distribution

E
[(
Y(k)
m
)i(Y(k)

n
)j] = m𝛼𝜃

(i + 2)𝜆

[(
1 + i + 2

2m𝛼

)
E
[(
Y(k)
m
)i+2(Y(k)

n
)j] − E

[(
Y(k)
m+1

)i+2(
Y(k)
n
)j]] .

vi): Putting j = 0 in (3.8) we get the recurrence relation for single moment of generalized record value from the GLED.

Corollary 3.1. The recurrence relation for product moments of the upper record values from GLED has the form

𝜆E
[(
XUm

)i(XUn

)j] = m𝛼𝜃
i + 2

[(
1 + i + 2

2m𝛼

)
E
[(
XUm

)i+2(XUn

)j] − E
[(

XUm+1

)i+2(
XUn

)j]]
+
m𝛼𝛽
i + 1

[(
1 + i + 1

m𝛼

)
E
[(
XUm

)i+1(XUn

)j] − E
[(

XUm+1

)i+1(
XUn

)j]] . (3.10)

Remark 3.2. If we put

i): 𝛽 = 𝜆 = 0 in (3.10), we get the recurrence relation of upper records from Weibull distribution, which is similar to the result as given
by Balakrishnan and Chan [25] for i′ = i + 2.

ii): 𝛽 = 𝜆 = 0 and 𝛼 = 1
2
in (3.10), we get the recurrence relation of upper records from the exponential distribution, which is similar to

the result as given by Balakrishnan and Chan [25] for i′ = i + 2.

iii): 𝛽 = 𝜆 = 0 and 𝛼 = 1 in (3.10), we get the recurrence relation of upper records from Rayleigh distribution, which is similar to the result
as given by Balakrishnan and Chan [25] for i′ = i + 2.
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iv): 𝜆 = 0 and 𝛼 = 1 in (3.10), we get the recurrence relations for upper records from the LED

E
[(

XUm+1

)i+2(
XUn

)j] =
(
1 + i+ 2

2m

)
E
[(
XUm

)i+2(XUn

)j]
+ (i+ 2)𝛽

(i+1)𝜃

[(
1 + i+ 1

m

)
E
[(
XUm

)i+i(XUn

)j] − E
[(

XUm+1

)i+1(
XUn

)j]] .
v): Setting 𝛽 = 0 in (3.10) we get the recurrence relations of upper records from the generalized Rayleigh distribution

E
[(
XUm

)i(XUn

)j]
= m𝛼𝜃

(i+ 2)𝜆

[(
1 + i+ 2

2m𝛼

)
E
[(
XUm

)i+2(XUn

)j] − E
[(

XUm+1

)i+2(
XUn

)j]] .
vi): Putting j = 0 in (3.10) we get (2.12), the recurrence relation for single moment of upper record value from the GLED.

4. CHARACTERIZATION

This section contains the characterizations of GLED, we start with the following result of Lin [26].

PROPOSITION. Let n0 be any fixed non-negative integer,−∞ ≤ a < b ≤ ∞ and g(x) ≥ 0 an absolutely continuous function with g′(x) ≠ 0
a.e. on (a,b). Then the sequence of functions

{
(g(x))n e−g(x), n ≥ n0

}
is complete in L(a,b) if g(x)is strictly monotone on(a,b).

Theorem 4.1. Fix a positive integer k ≥ 1 and let j be any non-negative integer. A necessary and sufficient condition for a random variable
X to be distributed with pdf given by (1.1) is that

E
(
Y(k)
n

)j
= n𝛼𝜃

(j+ 2)𝜆

[(
1 + j+ 2

2n𝛼

)
E
(
Y(k)
n

)j+2
− E

(
Y(k)
n+1

)j+2
]

+ n𝛼𝛽
(j+ 1)𝜆

[(
1 + j+ 1

n𝛼

)
E
(
Y(k)
n

)j+1
− E

(
Y(k)
n+1

)j+1
] (4.1)

for n = 1, 2, . . . .

Proof. The necessary part follows from (2.9). On the other hand if the recurrence relation (4.1) is satisfied, then on rearranging (4.1)

𝜃
2

[
E
(
Y(k)
n

)j+2
]
+ 𝛽

[
E
(
Y(k)
n

)j+1
]
− 𝜆

[
E
(
Y(k)
n

)j
]

= n𝛼𝜃
j+ 2

[
E
(
Y(k)
n+1

)j+2
− E

(
Y(k)
n

)j+2
]
+ n𝛼𝛽

j+ 1

[
E
(
Y(k)
n+1

)j+1
− E

(
Y(k)
n

)j+1
]

in view of Khan et al. [19], we have

kn
(n − 1)!

∞

∫
Ψ

(𝜃
2
x2 + 𝛽x − 𝜆

)
xj
[
− ln F(x)

]n−1[
F(x)

]k−1
f(x)dx

= n𝛼𝜃
j+2

[
(j+2)kn

n! ∫
∞

Ψ
xj+1

[
− ln F(x)

]n
[F(x)]

k
dx
]

+ n𝛼𝛽
j+1

[
(j+1)kn

n! ∫
∞

Ψ
xj[− ln F(x)]

n
[F(x)]

k
dx
]
,

which implies

kn

(n−1)!

∞

∫
Ψ

xj[− ln F(x)]
n−1

[F(x)]
k−1

×
{(

𝜃
2
x2 + 𝛽x − 𝜆

)
f(x) − 𝛼(𝜃x + 𝛽)[− ln F(x)][F(x)]

}
dx = 0

.
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Now follow from the above proposition, we get(𝜃
2
x2 + 𝛽x − 𝜆

)
f(x) = 𝛼(𝛽 + 𝜃x)

[
− ln F(x)

] [
F(x)

]
which proves that f (x) has the form as given in (1.3).

Theorem 4.2. For a positive integer k, i and j be a non-negative integer, a necessary and sufficient condition for a random variable X to be
distributed with pdf given by (1.1) and for 1 ≤m ≤ n − 2, is that

E
[(

Y(k)
m

)i(
Y(k)
n

)j
]
= m𝛼𝜃

(i + 2)𝜆

[(
1 + i + 2

2m𝛼

)
E
[(
Y(k)
m
)i+2(Y(k)

n
)j] − E

[(
Y(k)
m+1

)i+2(
Y(k)
n
)j]]

+ m𝛼𝛽
(i+ 1)𝜆

[(
1 + i+ 1

m𝛼

)
E
[(

Y(k)
m

)i+1(
Y(k)
n

)j
]
− E

[(
Y(k)
m+1

)i+1(
Y(k)
n

)j
]]
.

(4.2)

Proof. The necessary part follows from (3.8). On the other hand if the relation in (4.2) is satisfied, then arranging the (4.2)

𝜃
2
E
[(
Y(k)
m
)i+2(Y(k)

n
)j] + 𝛽E [(Y(k)

m
)i+1(Y(k)

n
)j] − 𝜆E [(Y(k)

m
)i(Y(k)

n
)j]

= m𝛼𝜃
i+2

[
E
[(

Y(k)
m+1

)i+2(
Y(k)
n

)j
]
− E

[(
Y(k)
m

)i+2(
Y(k)
n

)j
]]

+m𝛼𝛽
i+1

[
E
[(

Y(k)
m+1

)i+1(
Y(k)
n

)j
]
− E

[(
Y(k)
m

)i+1(
Y(k)
n

)j
]]
.

On using Lemma 3.1, we have

kn
(m − 1)!(n −m − 1)! ∫

∞

Ψ ∫
y

Ψ

(𝜃
2
x2 + 𝛽x − 𝜆

)
xiyj

[
− ln F(x)

]m−1 f(x)
F(x)

× [ln F(x) − ln F(y)]
n−m−1

[F(y)]
k−1

f(y)dx dy

= 𝛼𝜃kn
(m − 1)!(n −m − 1)!

×

∞

∫
Ψ

y

∫
Ψ

xi+1yj[− ln F(x)]
m
[ln F(x) − ln F(y)]

n−m−1
[F(y)]

k−1
f(y)dx dy

+
𝛼𝛽kn

(m − 1)!(n −m − 1)!
+ ∫

∞

Ψ ∫
y

Ψ
xiyj[− ln F(x)]

m
[ln F(x) − ln F(y)]

n−m−1
[F(y)]

k−1
f(y)dx dy.

which implies

∞

∫
Ψ

y

∫
Ψ

xiyj
[
− ln F(x)

]m−1[
ln F(x) − ln F(y)

]n−m−1[
F(y)

]k−1
f(y)

×

{(
𝜃
2
x2 + 𝛽x − 𝜆

)
f(x)[
F(x)

] − 𝛼(𝜃x + 𝛽) [− ln F(x)
]}

dx dy = 0.

Now, follow from the above proposition with(𝜃
2
x2 + 𝛽x − 𝜆

)
f(x) = 𝛼(𝛽 + 𝜃x)

[
− ln F(x)

] [
F(x)

]
which proves that f (x) has the form as given in (1.3).
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Theorem 4.3. Let X be a non-negative random variable having an absolutely continuous df F (x) and F (0) = 0 and 0 ≤ F (x) ≤ 1 for all x
> 0, then

E
[
𝜉
(
Y(k)
n
)
∣ Y(k)

m = x
]
= 𝜉(x)

(
k

k + 1

)n−m

, (4.3)

if and only if

F(x) = exp
{
−
(𝜃
2
x2 + 𝛽x − 𝜆

)𝛼}
, x > Ψ.

where

𝜉(t) = exp
{
−
(𝜃
2
t2 + 𝛽t − 𝜆

)𝛼}
, t > Ψ.

Proof. From (1.6), we have

E[𝜉(Y(k)
n ) ∣ Y(k)

m = x] = kn−m

(n−m−1)!

×

∞

∫
x

𝜉(y)
[
ln F(x) − ln F(y)

]n−m−1[ F(y)
F(x)

]k−1 f(y)
F(x)

dy.
(4.4)

By setting u = F(y)
F(x)

=
exp

{
−
(
𝜃
2 y

2+𝛽y−𝜆
)𝛼}

exp
{
−
(
𝜃
2 x

2+𝛽x−𝜆
)𝛼} from (1.2) in (4.4), we have

E
[
𝜉
(
Y(k)
n
)
∣
(
Y(k)
m
)
= x

]
= kn−m

(n −m − 1)!
𝜉(x)

1

∫
0

uk[− ln u]n−m−1du. (4.5)

Therefore we have (see Gradshteyn and Ryzhik [27], p. 551)

1

∫
0

[
− ln x

]𝜇−1x𝜈−1dx =
Γ𝜇
𝜈𝜇
, 𝜇 > 0, 𝜈 > 0. (4.6)

On using (4.6) in (4.5), we have the result given in (4.3).

To prove sufficient part, we have

kn−m
(n −m − 1)!

∞

∫
x

𝜉(y)[− ln F(y) + ln F(x)]
n−m−1[

F(y)
]k−1

f(y)dy

= [F(x)]
k
gn∣m(x),

(4.7)

where

gn∣m(x) = 𝜉(x)
(

k
k + 1

)n−m

.

Differentiating (4.7) both sides with respect to x, we get

− kn−m

(n−m−2)!
f(x)
F(x)

∞

∫
x

𝜉(y)
[
− ln F(y) + ln F(x)

]n−m−2[
F(y)

]k−1
f(y)dy

= g′n∣m(x)
[
F(x)

]k
− kgn∣m(x)

[
F(x)

]k−1
f(x)
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or

−k gn|m+1(x)[F(x)]k−1f(x) = g′n|m(x)[F(x)]k − k gn|m(x) [F(x)]k−1f(x).
Therefore,

f(x)
F(x)

= −
g′n|m(x)

k[gn|m+1(x) − gn|m(x)] = −
𝜉′(x)
𝜉(x)

, (4.8)

where

g′n|m(x) = 𝜉′(x)
(

k
k+1

)n−m
,

gn|m+1(x) − gn|m(x) = 1
k
𝜉(x)

(
k

k+1

)n−m
,

Integrating both the sides (4.8) with respect to x between (Ψ, y), which gives F¯(x) = 𝜉(x), the sufficiency part is proved.

5. CONCLUSION

In this study, we demonstrate the explicit expression as well as recurrence relation for the moments of k-th upper record values from the
GLED. These relations can be used to reduce the amount of direct computation andmoments of any order can be calculated easily. To verify
the designed models which is required in probability distribution, we used the results of the characterization. At the different values of
parameters, we reduced some well-known results. We can explore our study for generalized order statistics which contains several models
of order random variates.
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