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1. INTRODUCTION

ABSTRACT

In this paper, we present a new class of distribution called generalized Hermite-Genocchi distribution (GHGD). This model is
obtained by compounding generalized Hermite-Genocchi polynomials given by Gould and Hopper with powers series distri-
bution. Statistical properties and reliability characteristics are studied. The model has been applied to several real data. Finally,
a simulation study is performed to assess the performance of the model.
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In this paper, we introduced a new discrete distribution based on the generalized Hermite polynomials given by, see [1]

[;] )’k xn—mk
H =n! —_ >0, N).
nm(y) =1 é k!(n — mk)! (n m &N

For more details, see [2], [3] and [5].

Gupta and Jain [9] extended the Hermite distribution (HD) of the generalized HD defined by

H
P(Y=m)=e @D}

j=0

a(n—mj)bj
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wherea >0, b > 0and m € N.

The distribution has been applied to the frequency of bacteria in leucoytes and frequency of larvae in corn plants [6].

Moreover, there are a lot of popular statistical distributions that have specific applications, but sometimes, observable data contain distinct
features not shown by these classic distributions. So to overcome these limitations, researchers often develop new distributions so that these
new distributions can be used in these cases where the classical distributions don’t provide any suitable fit. There are many techniques with
which we can get new distribution, for more details see [7-9].

Recently, El-Desouky ef al. [10] introduced a new generalized Hermite-Genocchi distribution (GHGD). By compounding (1) and powers
series distribution defined new multivariate distribution called GHGD.
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The paper is organized as follows: In Section 2, when set r = 1 in (1.1), we introduce a new univariate discrete distribution and discuss
mathematical and statistical properties of the model. In Section 3, we introduce monotonic properties. In Section 4, reliability characteristics
are obtained. In Section 5, moment and maximum likelihood estimates of unknown parameters are presented and simulation study is
performed. In Section 6, we apply the new model to real data sets to illustrate the usefulness and applicability of the model. Graphical
assesment of goodness of fit of the model based on empirical probability generating function is presented. Finally, in Section 7, conclusion

and remarks are given.

2. GENERALIZED HERMITE-GENOCCHI DISTRIBUTION

Definition 2.1. A discrete random variable X taking value in the set Z* U {0} is said to follow GHGD with three parameters, that is

GHG(a; f, y), if its probability mass function can be written as

H,,. (.0 ~o

G(a; B,7)’ B
PX=x;a,p,7) =

o« H,, (x+7.0)

— e T x >0,

G(a; p,7)

where f > 0 is scale parameter, y > 0 is shape parameter, 0 < a < 1 is shape parameter, m € N,

G p.r) =D a" H,,( +7.B),
£=0

and
) g1

Z k! (n— mk)'( XN ™

H,(x+7,p) =

G(a; B, ) is convergent and positive for 0 < a < 1.

2.1. Structural Properties of GHGD Model

2.1.1. Shape and behavior of pmf plots of GHG distribution with serval values of

parameters «a, p and y are present in Figure 1

Three examples in Figure 1 showing effects of scale and shape parameters.

2.1.2. Cumulative distribution function
The cumulative distribution function (cdf) of GHGD is given by
F(x)=PX <x)

=1-P(X > %)

Gy f,x+y+1)
G(a; B,7)

=1-

Figure 2 showing shape and behavior of Cdf plots of GHG distribution with several values of parameters @, f and y.

(2.1)



306

0.08

0.06

)

0.04

0.02

0.07

0.06

0.05

0.04

fx)

0.03

0.02

0.01

0.00

0.07

0.06

0.05

0.04

fx)

0.03

0.02

2.1.3. Moments and related measures

The moment-generating function of GHGD is given by
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Figure 2 Cdf of GHGD for different values of &, f and y.
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The r — th factorial moments H,, is given by

Hip = E[(X),]
2 (0, a H,, (x+7,p)
x=0 B
G(a; B,v)
The r — th moments y/ is given by
Wl = ECX)

Y X" H,,(x+7,p)

x=0
Glas; B,7)

The mean and variance are given, respectively, by

Z xa* H,,(x+7,p)

_ x=0
EX) = Ga:p.y)
[e)
Z K oF H, ,(x+7,0)
| x=0
Var(X) = Glasf.y)

o 2
Z xo H,,(x+7,p)
x=0

G(a;f.y)

The plots in Figure 3, it is apparent that both mean and variance of GHGD have bounds.

2.1.4. Over-dispersion
The over-dispersion (OD) index of GHGD is given by

&)

op=2
U
i x*a* H,, (x+7,p) i xa* H,, (x+7,p) (2.2)
T = G(a; B,v)

> xa* H, ,(x+7,p)
x=0

From Figure 3 and Eq. (2.2), we can obtain the following corollary:
Corollary 2.2.

1. OD = (>)(<) lifand only ife = (>)(<) 0.4, f = (>)(<) 0.3andy = (>)(<) 1.

2. GHGD is no over-dispersion, over-dispersion and under-dispersion for a = (>)(<) 0.4, f = (>)(<) 0.3 and y = (>)(<) 1, respectively.

We obtained that numerically.
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2.1.5. Surprise index

The surprise index (SI) of GHGD is given by

ST = EPX =x,a;8,7))
T PX=x,a;0,7)

_ ( © o (H,, (x+7,0)>

,E) G(a; B.7)

) /(«* H,, (x+7.p).

From Figure 4 for various value of a, § and y, where a, f and y, decreases, large values of x become more surprising.

2.1.6. Generating function

The probability-generating function of GHGD is given by

Gx( =Et) = ) PX=x) t*
x=0

_ Gt p.y)
Gla; B,7)
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Figure 3 Plots the mean and variance of GHGD with serval values of parameters a, f and y.
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Figure 4 log(SI)’s for GHGD.
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3. MONOTONIC PROPERTIES

Log-concavity is an essential property of the probability distribution. Characteristics such as reliability function , failure rate, mean residual
and moment of log-concave probability have specific properties see [11-14].
Theorem 3.1. The GHG distribution is log-concave.

Proof. Consider the function

PX=x+1) _aH,,&+r+1p

b(x, o, ﬁ, 7’) = P(X=x) Hn’m(x+}’, ﬂ)

Its derivative is given by

k=0 ok | n—mk—1
. Z’ﬂ nl(x+y+1)
- k! (n—mk—1)!
dbexapy) _ '
ix (H, (< +7. )

k=0 —mk—1
BEnl (x+y)" "
a|Hy o Gx 4,7, +,1,,,8,), ) s
o zﬁ“] k! (n — mk = 1)!

[

m

(Hy(x + 7, B))

Note that b(x, a, §, y) is decreasing function in x for 0 < @ < 1, # > 0 and y > 0 thus, the G(a, f, y) is log-concave. The behavior of GHG
distribution can be illustrated as in Figure 1. X

Corollary 3.2. As a direct consequence of log-concavity, see [11], the following results hold for GHG distribution:

1 Itis strongly unimodal.
It has all moments.

It has an increasing failure rate distribution.

2
3
4 It has monotonically decreasing mean residual function.
5 It remains log-concave if truncated.

6

It gives unimodal and log-concave distribution when convoluted with any other discrete distribution.

4. RELIABILITY PROPERTIES

The survival function of GHGD is given by

Sx)=PX>x)=1—-PX <x)

' Gla; x4y +1) (4.1)
G(a: B.7)
In Figure 5, shape and behaviour of survival function plots of GHG distribution with several values of parameters a, § and y.
Also, the hazard rate function is given by
h(x) = PX =x)
S(x) 42)
H, ,(x+7v.p) '

- a Gla; f,y +x+1)

The failure rate is increasing, see (Theorem 3.1) and (Corollary 3.2) and Figure 6.

The mean residual life (MRL) of the GHGD is given by
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Figure 5 Survival function for GHGD.
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Figure 6 Hazard function for GHGD.
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The mean time to failure (MTTF) of GHGD is given by

p= 3 S
x=0
S ! Gla; B, x+y+1)
x=0 G(a; B, 7)
The reversed hazard rate is given by
P(X =
h*(x) = PX=1
PX <)

o H, (v +x,0)
T G(a; Boy) — L Gl foy +x+ 1)

The shape and behavior of reversed hazard rate GHG distribution with several values of parameters a, f and y, see Figure 7.

Definition 4.1. [13] A discrete distribution of nonnegative random variable is said to be
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Figure 7 Reversed hazard function for GHGD.

o New better (worse) than used, denoted by NBUNWU) if

S(x+y) < (2)SX)SY).

o New better (worse) than used in expectation, denoted by NBUE(NWUE) if
Y S+ <)Y SGHS.
Jj=0 =0
Corollary 4.2. Asaresult of IFR, see [13], the following results hold:

1 GHGDisIFRA
GHGD is NBU
GHGD is DMRL

= W N

GHGD is NBUE.

5. PARAMETER ESTIMATION AND SIMULATION

5.1. Maximum Likelihood Estimators

Letx = (x,, x,, ..., x,,) be a random sample of size n drawn from GHGD. Then, the likelihood function of vector (a, 8, y) is given by

N g Hn,m (xi tr ﬁ)
Wb =l —5075—

1 N g N
=<G(Tﬂs7)> a HHn,m(xi+7,ﬂ).

The log-likelihood function can be written as

0 [%] k40
logL=—-Nlog| X a’ ¥ pn

_— 4+ n—mk
/=0 i=o k! (n—mk)! @+r)

(5.1)

n
[;] ko

+ 3 xloga+ log| 8 L _ x4y
a7 & 5 & Sk (n—mk)! 4 :
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Computing the first partial derivatives of (5.1) with respect to @, f and y, we get
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N ; k—1
1 k p<! n! k
+ (x; + )"
EHn,m(xﬁy,ﬁ)ék' (n—miyt 7

i]ﬁk n! (n — mk)

o [
—N 12 _ n—mk—1
logL = G py) 2 Za Z 0 (n k)' (n—mk) (£ +7)

1 H,, (x+y/3

k! (n—

mk)!

(xi + J/)n—mk—l .

(5.2)

(5.3)

(5.4)

Equating the Equations (5.2-5.4) to zero and solving them with the help of R software, the MLES can be obtained. We notice that, these
equations cannot solve analytically, there is an alternative procedure like Newton-Raphson is required to solve them numerically.

5.2. Simulation

In this section, we evaluate MLE performance to sample n. Evaluation based on simulation study described in the following steps:

1  Generate 1000 samples with » = 50, 100, 500, 800 and 1000 from GHGD.

2 Calculate MLES for 1000 sampls.

3 Calculating absolute bias, standard errors and mean square errors (MSE).

Table 1 Result from the simulated data.

n Parameter MLE Standard Error Abs. Bias MSE
50 a =02 0.2187 0.011 0.0187 0.0005
p = 0.05 0.0809 0.057 0.0309 0.0038
y =03 0.2462 0.1434 0.0538 0.0212
100 a =02 0.2118 0.0137 0.0118 0.0003
p = 0.05 0.0573 0.018 0.0073 0.0003
y =03 0.3169 0.123 0.0169 0.0124
500 a =02 0.2086 0.0063 0.0086 0.0001
p = 0.05 0.0447 0.0069 0.0053 0.00007
y =03 0.2947 0.0414 0.0053 0.0017
800 a =02 0.2079 0.0059 0.0079 0.00009
p = 0.05 0.0455 0.004 0.0045 0.00004
y =03 0.3051 0.0408 0.0051 0.0016
1000 a =02 0.2065 0.0056 0.0065 0.00007
p = 0.05 0.0456 0.0045 0.0044 0.000039
y =03 0.3003 0.0348 0.0003 0.00121
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The results obtained in Table 1.

It can be seen that

1 The bias values decrease as n — .
2 MSEs decrease as n — oo. This shows the consistency of the estimators.

3 The MLE method performs well for the parameters.

6. DATA ANALYSIS

In this section, we explain the empirical importance of GHGD using real data applications. The fitted model is compared using y? statistic,
Akaike information criterion (AIC), Bayesian information criterion (BIC) and correct Akaike information criterion (AICc).

6.1. Data Set 1

This data represents counts of cysts in embryonic mouse kidneys which subjected to steroids, taken from McElduff et al. [15] and [16].
We compare the fits of GHGD with HD, zero-inflated Poisson distribution (ZIPD), negative binomial distribution (NBD), zero-inflated
negative binomial distribution (ZINBD), zero-inflated generalized Poisson distribution (ZIGPD) and zero-inflated Hermite distribution
(ZIHD). The MLES and goodness of fit are presented in Table 2.

From the plots of the log-likelihood function of @, f and y in Figure 8a-8c, we observe that the likehood equations have a unique solution.

6.2. Data Set 2

This data represents the distribution of mistakes in copying groups of random digits, see [17]. We compare the fits of GHGD with
hyper-Poisson distribution (HPD), zero- inflated Poisson distribution (ZIPD), zero-inflated Conway—Maxwell-Poisson distribution
(ZICMPD),ZINBD, ZIGPD and zero-inflated hyper-Poisson distribution (ZIHPD). The MLES and goodness of fit are presented in Table 3.

Table 2 Distribution of the counts of cysts from 111 steroid-treated kidneys [15] and the expected frequencies computed using HD, ZIPD,
NBD, ZIGPD, ZINBD, ZIHD and GHGD.

Count Observed HD ZIPD NBD ZIGPD ZINBD ZIGH GHGD
Frequency
0 65 17.938 60.87 20.87 85.113 63.7 65.02 64.86
1 14 24 3.5 24.6 8.64 5.5 11 14.16
2 10 24 7.5 20.973 6.307 6.02 9 7
3 6 19 9.5 15.57 5.9 6.2 8 6.52
4 4 12 9.6 10.71 4.99 5 5.5 5.36
5 2 6.77 7.8 7.02 0.05 6 2.5 3.9
6 2 3.3 5.44 4.449 4,53 x 1077 42 2.52 2.77
7 2 1.48 3 2.74 2.03x10712 3.17 2.05 1.97
8 1 0.612 1.5 1.7 1.20x 107" 2.27 0.9 1.4
9 1 0.5 1.02 1.25 6.76x107% 1.5 0.61 0.98
10 1 0.5 0.27 0.58 2.642 X 3.04 0.6 0.68
10—40
11 2 0.7 0.7 0.34 5.57x 107 2.5 1.7 0.48
12 1 0.2 0.5 0.198 5.05x1077° 1.9 1.6 0.92
Total 111 111 111 111 111 111 111 111
df 4 5 4 1 4 3 2
Estimates of A=15 A =40 A =225 A=1.05 A =385 A=115 a = 0.203
the parameter
0 =04 ® = 0.54 0 =248 o = 0.56 o = 0.56 ® = 0.53 f =179
6 =135 0 =4.33 0 =1.01 y =0.182
z? value 154.39 27.66 117.43 34.07 22.62 2.32 1.77
Pvalue 0.0001 0.0001 0.0001 0.0001 0.0001 0.0914 0.8804
AIC 476.238 383.634 450.82 3238.76 371.02 368.4 353.287
BIC 477.368 384.7 451.95 3240.45 372.71 370.24 361.415

AlCc 473.83 384.83 448.42 3236.09 368.35 365.22 353.511
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From the plots of the log-likelihood function of @, §and y in Figure 9a-9c, we observe that the likehood equations have a unique solution.

6.3. Data Set 3

This data represents counts of Collenbola microarthropods in 200 samples of forest soil, see [18,19]. We compare the fits of GHGD with

(HPD), (ZIPD), (ZICMPD),(ZINBD), (ZIGPD) and (ZIHPD). The MLES and goodness of fit are presented in Table 4.

From the plots of the log-likelihood function of @, f and y in Figure 10a-10c, we observe that the likelihood equations have a unique

solution.
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Table 3 Distribution of mistakes in copying groups of random digits [17] and the expected frequencies computed using HPd, ZIPD, ZIHPD,
ZICMPD, ZINBD, ZIGPD and GHGD distribution.

Count Observed HPD ZIPD ZIHPD ZICMPD ZINBD Z1GPD GHGD
Frequency
0 35 24.41 41.1937 36.84 40.6 43.69 41.999 34.67
1 11 21.09 9.039 7.5 54 8.74 7.98 10.5
2 8 9.69 6.24 8.5 5.7 5.5 7.981 8.5
3 4 3.07 3.018 5.01 5.1 1.51 1.98 4.59
4 2 0.74 0.05093 2.05 3.2 0.56 0.06 1.74
Total 60 60 60 60 60 60 60 60
df 1 1 1 1 1 1 1
Estimates of A=123 A =145 A =0.63 A=23 A =0.54 A=20 a = 0.0382
the parameter
6 =1.02 = 0.579 w = 0.601 =0 w = w = 0.55 p = 0.0006
6 =123 (4 (4 6 = y = 0.845
0.00000035
12 value 11.168 6.53 1.968 8.09 11.25 67.07 0.074
P value 0.0008 0.0106 0.1607 0.051 0.0008 0.0001 0.9948
AIC 224.34 181.87 169.233 206.22 206.244 301.45 149.57
BIC 221.74 179.27 165.332 205.13 205.072 300.82 155.853
AlCc 223.746 181.272 170.033 224.30 230.24 325.45 149.998
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6.4. Graphical Assesment of Goodness of Fit

Plotting both the empirical probability generating function (EPGF) and log pgffs on the same graph allows us to compare the fit of a number
of discrete distributions using only one plot, see [20].

The log of the EPGF of data set 1 is plotted in Figure 11. The EPGF is shown as black line, whilst a series of distributions fitted to data. The
GHGD pgf shown by the red line, indicates that the GHGD is a good fit to the data.

The log of the EPGF of data set 2 is plotted in Figure 12. The EPGF is shown as black line, whilst a series of distributions fitted to data. The
GHGD pgf shown by the red line, indicates that the GHGD is a good fit to the data.

The log of the EPGF of data set 3 is plotted in Figure 13. The EPGF is shown as black line, whilst a series of distributions fitted to data. The
GHGD pgf shown by the red line, indicates that the GHGD is a good fit to the data.

7. CONCLUSION

A new three parameters discrete distribution is proposed and its important monotonic and reliability concepts are introduced. The model
proposed parameters are estimated by Maximum likelihood and the simulation study is performed to establish the accuracy of the maximum
likelihood estimators. Applications of the new model in the analysis of three real-life data are presented. We show by three applications of
the real data that the proposed distribution can yield better fits than some other distributions.

Table 4 Distribution of the counts of Collenbola microarthropods in 200 samples of fort soil [19] and the expected frequencies computed using
HPD, ZIPD, ZIHPD, ZICMPD, ZINBD, ZIGPD and GHGD distribution.

Count Observed HPD Z1PD ZIHPD ZICMPD ZINBD Z1GPD GHGD
Frequency

0 122 135.133 134.46 118.5 129.6 133.79 157.33 120.09
1 40 54 28.7 36.56 40 41.2 25.75 39.85
2 14 7.31 21.1 23.24 24 17.2 9.5 18.52
3 16 1.58 11.05 14.25 5.2 5.61 5.5 13.07
4 4 1.5 3.64 5.5 0.5 1.72 1.35 5.97
5 2 0.74 1.05 1.95 0.8 0.48 0.57 2.5

Total 200 200 200 200 200 200 200 200
df 1 2 2 1 1 1 2

Estimates of A=25 A =145 A=0.25 A =395 A =476 A=0.73 a = 0.075

the parameter

0 =02 w = 0.578 o = 0.55 o = 0.60 w = 0.37 w = 0.65 f =0.0011

0 =1.02 0 =274 6 = 0.81 6 = y = 0.331
0.000127
? value 158.27 12.6 4.36 90.07 36.37 57.60 1.817
P value 0.0001 0.0018 0.1130 0.0001 0.0001 0.0001 0.7694
AIC 1228.03 621.6 582.99 744.7 660.2 1298.1 474.151
BIC 1227.6 621.18 582.37 744.15 659.5 1297.5 484.046
AlCc 1229.3 625.6 591.9 750.77 669.2 1307.1 474.273
0 -240
-240
-260
-2000 -250
-280
% om0 % -260 % -300
o - T -320
-6000 _280 -340
~-360
-8000 290 -380
0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.02 0.04 0.06 0.08 0.10 0 2 4 6 8
a 8 12
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Figure 10 The profiles of the log-likelihood function of &, f and y.
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Figure 11 EPGF plot of counts of cysts from 111 steroid-treated kidneys
with fitted it log pgf’s for the Hermite distribution, zero-inated Poisson
distribution, negative binomial distribution, zero-inated negative
binomial distribution and generalized Hermite-Genocchi distribution.
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Figure 12 EPGF plot of the distribution of mistakes in copying groups of random digits
with fitted it log pgf’s for the hyper-Poisson distribution, zero-inflated Poisson
distribution, zero-inflated negative binomial distribution, zero-inflated hyper-Poisson
distribution and generalized Hermite-Genocchi distribution.
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Figure 13  EPGF plot of counts of Collenbola microarthropods of forest soil with fitted it
log pgf’s for the hyper-Poisson distribution, zero-inflated Poisson distribution,
zero-inflated negative binomial distribution, zero-inflated hyper-Poisson distribution and
generalized Hermite-Genocchi distribution.



C

B. S. El-Desouky et al. / Journal of Statistical Theory and Applications 20(2) 304-317 317

ONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

AUTHORS’ CONTRIBUTIONS

Al

1 authors have read and agreed to the published version of the manuscript.

ACKNOWLEDGMENTS

The author would like to thank the Editor-in-Chief, and the anonymous referees for their careful reading and constructive comments and
suggestions which greatly improved the presentation of the paper.

R

< S I NI PO

EFERENCES

. H-W. Gould, A.T. Hopper, Duke Math. J. 29 (1962), 51-63.

. G. Dattoli, S. Lorenzutta, G. Maino, A. Torre, C. Cesarano, J. Math. Anal. Appl. 203 (1996), 597-609.

C. Cesarano, Math. Model. Nat. Phenom. 12 (2017), 44-50.

C. Cesarano, C. Fornaro, L. Vazquez, Int. J. Pure. Appl. Math. 98 (2015), 261-273.

. R.P. Gupta, G.C. Jain, Sima. J. Appl. Math. 27 (1974), 359-363.

. M. Cortina-Borja, in: P. Grzybek, R. Kohler (Eds.), Exact Methods in the Study of Language and Text, De Gruyter, Berlin, Germany, and Boston,
MA, USA, 2007.

7. A.Hassan, G.A. Shalbaf, S. Bilal, A. Rashid, J. Stat. Theory Appl. 19 (2020), 102-108.

. C.B. Prasanth, E. Sandhya, J. Stat. Appl. Prob. 5 (2016), 109-121.

. E. Sandhya, C.B. Prasanth, J. Prob. 2014 (2014), 1-10.

. B.S. El-Desouky, R.S. Gomaa, A.M. Magar, An Extension of Apostol Type of Hermite-Genocchi Polynomials and their Probabilistic Represen-
tation, FILO-MAT.

. M. Bagnoli, T. Bergstrom, Econ. Theory. 26 (2005), 445-469.

. N. Ebrahimi, IEEE Trans. Reliab. 35 (1986), 403-405.

. PL. Gupta, R.C. Gupta, S.H. Ong, H.M. Srivastava, Appl. Math. Comput. 196 (2008), 521-531.

. E. Xekalaki, Commun. Stat. Theory Methods. 12 (1983), 2503-2409.

. E McElduff, M. Cortina-Borja, S.K. Chan, A. Wade, Adv. Physiol. Educ. 34 (2010), 128-133.

. C. SatheeshKumar, R. Ramachandran, Commun. Stat. Simul. Comput. (2019), 1-14.

. C.D. Kemp, A.W. Kemp, Biometrika. 52 (1965), 381-394.

. C. Satheesh Kumar, R. Ramachandran, J. Appl. Stat. 47 (2020), 506-523.

. R. Hartenstein, Ecology. 42 (1961), 190-194.

. M. Nakamura, V. Pérez-Abreu, Commun. Stat. Theory Methods. 22 (1993), 827-842.


https://doi.org/10.1215/S0012-7094-62-02907-1
https://doi.org/10.1006/jmaa.1996.0399
https://doi.org/10.1051/mmnp/201712304
https://doi.org/10.12732/ijpam.v98i2.8
https://doi.org/10.1137/0127027
https://doi.org/10.1515/9783110894219.49
https://doi.org/10.1515/9783110894219.49
https://doi.org/10.2991/jsta.d.200224.006
https://doi.org/10.18576/jsap/050110
https://doi.org/10.1155/2014/979312
https://doi.org/10.1007/s00199-004-0514-4
https://doi.org/10.1109/TR.1986.4335485
https://doi.org/10.1016/j.amc.2007.06.012
https://doi.org/10.1080/03610928308828617
https://doi.org/10.1152/advan.00017.2010
https://doi.org/10.1080/03610918.2019.1659362
https://doi.org/10.1093/biomet/52.3-4.381
https://doi.org/10.1080/02664763.2019.1645098
https://doi.org/10.2307/1933288
https://doi.org/10.1080/03610929308831059

	New Discrete Lifetime Distribution with Applications to Count Data
	1. INTRODUCTION
	2. GENERALIZED HERMITE–GENOCCHI DISTRIBUTION
	2.1.  Structural Properties of GHGD Model
	2.1.1. Shape and behavior of pmf plots of GHG distribution with serval values of parameters α, β and γ are present in Figure 1
	2.1.2. Cumulative distribution function
	2.1.3. Moments and related measures
	2.1.4. Over-dispersion
	2.1.5. Surprise index
	2.1.6. Generating function


	3. MONOTONIC PROPERTIES
	4. RELIABILITY PROPERTIES
	5. PARAMETER ESTIMATION AND SIMULATION
	5.1. Maximum Likelihood Estimators
	5.2. Simulation

	6. DATA ANALYSIS
	6.1. Data Set 1
	6.2. Data Set 2
	6.3. Data Set 3
	6.4. Graphical Assesment of Goodness of Fit

	7. CONCLUSION


