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1. Introduction

In this note we present a wide class of bilinear identities the Schur symmetric functions
satisfy. The bilinear identities are homogeneous second order polynomial relations with
integer coefficients, connecting different Schur functions. For the detailed treatment of the
Schur function theory, the corresponding terminology, examples etc., see the monograph [7].
Here we give only a short list of definitions and key examples for convenience of the reader.

A sequence of non-increasing non-negative integers

λ = (λ1, λ2, . . . , λi, . . .), λ1 ≥ λ2 ≥ · · · ≥ λi ≥ · · ·

31
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containing only finitely many nonzero terms is called a partition. The total number of
nonzero components, �(λ), is called the height of a given partition λ

�(λ) = n⇔ λn > 0, λn+1 = 0.

Given a partition λ with �(λ) = n, the Schur symmetric function (actually, it is a
polynomial) sλ(t1, . . . , tm), where m ≥ �(λ), is an element of the ring Z[t1, . . . , tm] defined
as the ratio of two determinants [7]

sλ(t1, . . . , tm) =
det ‖tλj+m−j

i ‖
det ‖tm−j

i ‖

∣∣∣∣∣
1≤i,j≤m

.

The set of Schur symmetric functions sλ(t1, . . . , tm) labeled by all partitions λ with �(λ) ≤ m

forms a Z-basis of the subring of symmetric polynomials

Λm = Z[t1, . . . , tm]Sm

where the symmetric group Sm acts on the polynomials from Z[t1, . . . , tm] by the permu-
tating the indeterminates.

The ring Λm is graded

Λm =
⊕
k≥0

Λk
m,

where Λk
m consists of the homogeneous symmetric polynomials of degree k. Then by a

specific inverse limit (for details, see [7]) as m → ∞ we pass from Λk
m to a graded ring

Λ called the ring of symmetric functions in countably many indeterminates {ti}i∈N. For
each partition λ, the polynomials sλ ∈ Λm, define a unique element sλ ∈ Λ called the
Schur symmetric function in countably many indeterminates. Note that sλ ∈ Λ is no longer
polynomial (as well as other elements of the ring Λ). It is a formal infinite sum of monomials,
each of them being homogeneous of degree |λ| = λ1 + · · · + λn. The Schur symmetric
functions form a Z-basis of the ring Λ and satisfy the Littlewood–Richardson multiplication
rule

sλsµ =
∑

ν

Cν
λµsν , (1.1)

where the non-negative integers Cν
λµ (the Littlewood–Richardson coefficients) are calculated

by some combinatorial rule from partitions λ, µ and ν. Actually, the multiplication rule (1.1)
can be taken for the formal definition of the ring Λ in the Z-basis of Schur symmetric
functions.

The bilinear identities we would like to discuss is another type of relations among the
Schur functions. As was mentioned at the beginning of the section, they are of the form
p({sλi

}) = 0, where p({xi}) is a homogeneous second order polynomial (a bilinear form)
in its indeterminates with integer coefficients. These identities follow, of course, from the
multiplication rule (1.1) but we use another technique to prove them.

As the first example of such identities we mention the bilinear relations obtained in [4]:

s[m|n]s[m|n] = s[m|n−1]s[m|n+1] + s[m−1|n]s[m+1|n], (1.2)

where [m|n] stands for the partition (mn) with n components equal to m. This identity
connects the characters of the irreducible representations of SU(p + 1), where s[m|n] is a
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character of the m-th symmetric power of the fundamental SU(p + 1) representation πn

corresponding to the signature (1, 1, . . . , 1, 0, . . . , 0) (n units, 1 ≤ n ≤ p). The identity (1.2)
played the key role in proving the completeness of the Bethe vector set for the generalized
Heisenberg model. In the paper [5], analogous bilinear identities were obtained for the
characters of symmetric powers of fundamental representations of other classical Lie groups
(of B, C and D series).

In the work [3] on quantum supermatrix algebras of GL(m|n) type, we generalized the
above identities to the products s[a|b] s[m|n] for arbitrary integers 1 ≤ a ≤ m and 1 ≤ b ≤ n:

s[a|b]s[m|n] =
a∑

k=
max{1,a+b−n}

(−1)a−ks[m|n]a+b−k
s[a−1|b−1]k−1

+
b∑

k=
max{1,a+b−m}

(−1)b−ks[m|n]a+b−k s[a−1|b−1]k−1
, (1.3)

where the symbols [r|p]k (k ≤ r) and [r|p]k (k ≤ p) denote the partitions ((p + 1)k, pr−k)
and (pr, k), respectively. These identities turned out to be useful in studying the structure
of the maximal commutative subalgebras of the quantum supermatrix algebra.

In the work [6], identity (1.2) was generalized to the product sλsλ for an arbitrary
partition λ. In the present paper, we give a different version of the identity for the product
sλsλ. In contrast with the result of [6], our formula admits the transposition of the Young
diagrams which parameterize the Schur functions. In other words, given a bilinear identity
for sλsλ, we get a true identity if we change all the partitions λ by their conjugates λ′ (see
Sec. 2 and [7]). In particular, if the Young diagram of the partition λ is symmetric under
the transposition, the identity for sλsλ is also symmetric.

Fulmek and Kleber have found the identities for the product of two different Schur
functions. Namely, in [2], they proved that

s(λ1,...,λn)s(λ2,...,λn+1) = s(λ2,...,λn)s(λ1,...,λn+1) + s(λ2−1,...,λn+1−1)s(λ1+1,...,λn+1), (1.4)

where (λ1, λ2, . . . , λn+1) is a partition, n > 0 being an integer.
The series of the bilinear identities derived in this paper considerably generalizes the

identities (1.4).
In the next section we introduce our notation and some key operations with partitions.

The third section is devoted to the derivation of bilinear identities. The main results are
formulated in Proposition 3.1 and Corollary 3.7.

2. Definitions and Notation

We use the terminology and definitions from the monograph [7].
Let λ = (λ1, . . . , λn) be a partition of the height �(λ) = n, that is λn > 0. We omit the

zero components of λ. The Schur symmetric function corresponding to the partition λ can
be expressed in terms of the complete symmetric functions hk by means of the Jacobi–Trudi
relations [7]:

sλ = det ‖hλi−i+j‖1≤i,j≤N , (2.1)
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where the index i enumerates rows, the index j enumerates columns, and N ≥ �(λ) = n is
an arbitrary positive integer. In the above formula it is assumed that h0 ≡ 1 and hk ≡ 0 if
k < 0.

Vectors µ. As is clear from the Jacobi–Trudi determinant (2.1), any its row is completely
defined by the index of the first element of the row. Therefore, the Jacobi–Trudi determi-
nants and the corresponding Schur functions can be unambiguously parameterized by the
vectors µ ∈ Z

N of the form

µ = [µ1, . . . , µN ], µi := λi − i + 1 (2.2)

that is, µ = λ−δ(N), δ(N) = [0, 1, . . . , N−1]. Unlike the partition λ, some of the components
of µ can be negative. Besides, the components of µ form a strictly descending sequence

µ1 > µ2 > · · · > µN .

To each partition λ we assign its graphical image — the Young diagram (see [7]). Below
we denote the Young diagram of the partition λ by the same letter (when it does not lead
to a misunderstanding). Now we describe subsets of the Young diagram λ and define some
operations with them; this will be used in what follows.

The complete border strip. Consider the Young diagram corresponding to a partition
λ = (λ1, . . . , λn). Let us remove λ2 − 1 boxes from the first row of the diagram, starting
from the first (the left-most) one. Then we extend this procedure to the other rows removing
λk+1 − 1 boxes from the k-th row, 1 ≤ k ≤ n− 1. We leave the last n-th row unchanged.

This procedure results in a skew-diagram which will be referred to as the complete border
strip. Any non-empty proper subset of the complete border strip will be called a border strip
provided this subset can be represented as the set-theoretical difference λ \ ν, where ν ⊂ λ

is a Young diagram completely contained in λ.
As an example, we consider the partition (8, 7, 43, 22). Its Young diagram with the

complete border strip marked by star signs is depicted below:

∗ ∗
∗ ∗ ∗ ∗
∗ ↑
∗ (2, 1)

∗ ∗ ∗
∗ ←(6, 0)

∗ ∗

.

We accept the following indexation of the boxes in the complete border strip. As follows
from the definition, in the r-th row of the Young diagram λ, the boxes of the complete
border strip occupy positions from the λr+1-th column till the λr-th one (counting from
left to right). So, these boxes in the r-th row can be enumerated by the number s such that
0 ≤ s ≤ λr − λr+1. A box of the complete border strip situated in the r-th row and in the
(λr+1 + s)-th column will be represented by an ordered pair of nonnegative integers (r, s).
In the above example of the Young diagram, we show the coordinate pairs of two boxes in
the complete border strip.
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The peeling. Let us remove the complete border strip from the Young diagram λ. The
new diagram thus obtained will be denoted by the symbol λ↓. We say that λ↓ is obtained
from λ by peeling the complete border strip off. Note that the diagram λ↓ can be the empty
set if λ is a simple hook diagram:

(k, 1m)↓= ∅ for all k,m ≥ 0.

It is not difficult to see that the diagram λ↓ can be obtained by removing the first row and
the first column from λ. As a consequence, the height of λ↓ is always less than that of λ:

�(λ↓) ≤ �(λ)− 1.

Turning to the components of the partition λ, we get the following structure of the
partition λ↓

λ = (λ1, λ2, . . . , λn)→ λ↓= (λ2 − 1, λ3 − 1, . . . , λn − 1, 0). (2.3)

The corresponding µ-vectors (2.2) are connected with each other by a simple transformation

µ = [µ1, µ2, . . . , µN ]→ µ↓= [µ2, µ3, . . . , µN ,−N + 1]. (2.4)

In other words, the components of µ are just shifted one position to the left, the component
µ1 disappears, and on the last place we get the number 1−N .

Consider now the peeling a border strip off, or a partial peeling. In this case, we have to
indicate the direction of the peeling, that is we consider a partial up-peeling and a partial
down-peeling.

Let us fix a box (r, s) in the complete border strip of a Young diagram λ. Starting from
the box (r, s), we remove all the boxes of the complete border strip lying to the left and
down of the chosen box. That is, we remove all the boxes (r, t) with 0 ≤ t ≤ s and (p, t)
with p > r. This procedure will be called the partial down-peeling from the starting box
(r, s). We will only be interested in down-peelings that transform a Young diagram to a
Young diagram. For this to be true, the starting box (r, s) of the partial down-peeling must
be the right-most box in the r-th row. In other words, the number s must take the maximal
possible value s = λr − λr+1. To simplify the expressions, we omit this s in notation and
denote the diagram (and the partition) obtained from the diagram λ by the partial down-
peeling from the box (r, λr − λr+1) by the symbol λ↓(r). The components of the partition
λ↓(r) read

λ↓(r) = (λ1, . . . , λr−1, λr+1 − 1, . . . , λn − 1, 0), (2.5)

while for the components of the corresponding µ-vector µ↓(r) we obtain

µ↓(r) = [µ1, . . . , µr−1, µr+1, . . . , µN ,−N + 1]. (2.6)

Same as the peeling the complete border strip off, the partial down-peeling decreases the
height of the diagram at least by one: �(λ↓(r)) ≤ �(λ)− 1.

The partial up-peeling is defined in an analogous way. We fix a starting box (r, s) in
the complete border strip of a diagram λ and remove all the boxes (r, t) with t ≥ s and
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(p, t) with p < r. That is we remove all the boxes of the complete border strip, lying to the
right and up of the chosen starting box. This procedure will be called the partial up-peeling
from the starting box (r, s). In what follows we will be interested only in partial up-peelings
that do not destroy the structure of Young diagrams. Therefore, the starting box (r, s) of
the up-peeling must be chosen in such a way that there are no box of the diagram directly
under it. This is only possible if λr > λr+1 and, besides, s ≥ 1. The Young diagram (and
the partition) obtained from the diagram λ by the partial up-peeling from the starting box
(r, s) will be denoted by the symbol λ↑(r, s).

The component structure of the partition λ↑(r, s) is as follows

λ↑(r, s)= (λ2 − 1, . . . , λr − 1, λr+1 + s− 1, λr+1, . . . , λn)
1 r − 1 r r + 1 n

, 1 ≤ s ≤ λr−1 − λr, (2.7)

where in the second line we have written the ordinal numbers of the corresponding compo-
nents to clarify the structure. For the corresponding vector µ, we get the following expression

µ↑(r, s)= [µ2, . . . , µr, µr+1 + s, µr+1, . . . , µN ]
1 r − 1 r r + 1 N

, 1 ≤ s ≤ µr−1 − µr − 1. (2.8)

Adding a border strip to diagram. Consider the Young diagram, corresponding to a
partition λ = (λ1, . . . , λn). Choose m ≤ n−1 consecutive rows with numbers r, r+1, . . . , r+
m− 1, where 2 ≤ r ≤ n −m + 1. We are going to add boxes in the chosen rows in such a
way that the result would be a Young diagram, and, besides, the added boxes would form
a connected border strip in the new diagram. The restriction on the number of rows means
that we do not add boxes into the first line of λ (r ≥ 2) and that we do not increase the
height of the diagram (r ≤ n−m+1). Below we use the shorthand notation rm := r+m−1.

It turns out to be convenient to treat the first (the left-most) box added into the rm-th
row as the beginning (or the first) box of the strip.

The last (the right-most) box added into the r-th row will be treated as the end (or
the last) box of the strip. The beginning of the added strip can be placed in any row of λ

(except for the above restriction on number) with the only requirement that the first added
box must appear in the (λrm +1)-th column (to preserve the correct structure of the Young
diagram). As for the end of the strip, it can be situated only in the row which is shorter
than its preceding row: λr < λr−1.

The number of boxes added into the (r + i)-th row reads as follows

pi = λr+i−1 − λr+i + 1, 1 ≤ i ≤ m− 1. (2.9)

Into the last, r-th, row we add p0 = t boxes, where 1 ≤ t ≤ λr−1 − λr. Therefore, the total
amount of boxes added is equal to

p =
m−1∑
i=0

pi = λr − λrm + t + m− 1 = µr − µrm + t.
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Here is an example of adding a border strip for the case λ = (8, 7, 43, 23), r = 3, m = 5
and t = 2:

∗ ∗
∗
∗

∗ ∗ ∗
∗

Here stars denote the added boxes.
The symbol λ+t

(r,m) will stand for the diagram (and the partition) obtained from the
diagram λ by adding a border strip of m rows from r to rm = r + m− 1 with t boxes in the
end row r. If we add several (say k) disconnected border strips, the notation is obviously
generalized to λ+t1 ... tk

(r1,m1)...(rk ,mk).

The components of the partition λ+t
(r,m) read (recall that 1 ≤ t ≤ λr−1 − λr)

λ+t
(r,m) = (λ1, . . . , λr−1, λr + t, λr + 1, λr+1 + 1, . . . , λrm−1 + 1, λrm+1, . . . , λn)

r r + 1 r + 2 . . . rm rm + 1 . . . n.

(2.10)

Here in the second line we have written the ordinal numbers of the corresponding
components.

The component structure of the corresponding vector µ+t
(r,m) is more transparent

µ+t
(r,m) = [µ1, . . . , µr−1, µr + t, µr, µr+1, . . . , µrm−1, µrm+1, . . . , µN ]

r r + 1 r + 2 . . . rm rm + 1 . . . N

. (2.11)

As we see, the changes take place only for the components from µr to µrm. Namely, the
string of components µr, . . . , µrm−1 shifts one position to the right, in the r-th place (the
end row of the added strip) we get the new component µr + t and the component µrm (the
beginning row of the strip) disappears.

3. Bilinear Identities

The bilinear identities on the Schur symmetric functions follow from the Jacobi–Trudi
determinant formula (2.1) and the Plücker relation on the product of two determinants (for
details, see [8]). Let us formulate the corresponding statement for the reader’s convenience.

Consider a pair of p× p matrices A = ‖aij‖pi,j=1 and B = ‖bij‖pi,j=1. Let ai∗ denote the
i-th row of the matrix A. Introduce the following notation:

detA := |A|, A :=

(
a1∗ . . . ai∗ . . . ap∗
1 . . . i . . . p

)
, (3.1)

where the last symbol contains a detailed information on the row content of A. Namely, it
says that the row ai∗ is located in the i-th place in the matrix A (when counting from the
top down).
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Let us fix a set of integer data {k|r1, r2, . . . , rk}, where 1 ≤ k ≤ p and 1 ≤ r1 < · · · <
rk ≤ p. Given these data, the Plücker relation reads

|A||B| =
∑

1≤s1<···<sk≤p

∣∣∣∣∣a1∗ . . . bs1∗ . . . bs2∗ . . . bsk∗ . . . ap∗
1 . . . r1 . . . r2 . . . rk . . . p

∣∣∣∣∣
×
∣∣∣∣∣ b1∗ . . . ar1∗ . . . ar2∗ . . . ark∗ . . . bp∗

1 . . . s1 . . . s2 . . . sk . . . p

∣∣∣∣∣ , (3.2)

where the sum is taken over all possible sets {k|s1, . . . , sk}.
Now we can obtain a bilinear identity, connecting the Schur symmetric functions labeled

by a partition λ and the partition λ+t1 ... tk
(r1,m1)...(rk,mk). Here we assume that the structure of

the diagram λ allows adding k border strips of the indicated size and location.

Proposition 3.1. In the Young diagram corresponding to a partition λ = (λ1, . . . , λn), let
there exist k ≥ 1 rows with numbers 2 ≤ r1 < r2 < · · · < rk ≤ rk+1 := n possessing the
property

λri < λri−1, 1 ≤ i ≤ k.

Let the integers ti,mi, where 1 ≤ i ≤ k, satisfy the restrictions

1 ≤ ti ≤ λri−1 − λri , 1 ≤ mi ≤ ri+1 − ri, 1 ≤ i ≤ k.

Then the Young diagram λ+t1 ... tk
(r1,m1)...(rk ,mk) can be defined and the following bilinear identity

on the Schur symmetric functions holds

s
λ
s
λ+t1 ... tk

(r1,m1)...(rk,mk)
↓ = s

λ+t1 ... tk
(r1,m1)...(rk,mk)

s
λ↓ +

k∑
p=1

s
λ+t1 ... tk

(r1,m1) (rk,mk)
↓(rp)sλ↑(rp − 1, tp)

. (3.3)

Proof. To prove the proposition we use the Jacobi–Trudi formulae for the Schur func-
tions and the Plücker relation for the product of two determinants. In so doing, we shall
parameterize the rows of the Jacobi–Trudi determinants in (3.2) by components of vectors
µ defined in (2.2).

First of all, we inspect the structure of the Jacobi–Trudi determinants in the left-hand
side of (3.3) in order to find the set of rows to be exchanged in accordance with the Plücker
relation. Taking into account expression (2.11) for the µ-vector of the diagram with added
border strip and expression (2.4) for the peeling the complete border strip off, we have

s
λ
s
λ+t1 ... tk

(r1,m1)...(rk,mk)
↓ =

∣∣∣∣∣µ1 . . . µri µri+1 . . . µrmi
. . . µN

1 . . . ri ri + 1 . . . rmi . . . N

∣∣∣∣∣
I

×
∣∣∣∣∣µ2 . . . µri−1 µri + ti µri µri+1 . . . µrmi−1 µrmi+1 . . . µN −N + 1

1 . . . ri − 2 ri − 1 ri ri + 1 . . . rmi − 1 rmi . . . N − 1 N

∣∣∣∣∣
II

,

where we explicitly indicated the components containing the i-th part of the added border
strip. Recall that it is located in rows between ri and rmi = ri + mi − 1. The indices I and
II were introduced for convenience of references.
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Let us take the data {k | rm1 , rm2 , . . . , rmk
} to indicate the k rows of the determinant

I to be exchanged with all possible sets of k rows of the determinant II in accordance
with the Plücker relation (3.2). It is not difficult to see that in the right-hand side of the
Plücker relation applied to the above product of the determinants I and II there are only
(k + 1) nonzero terms. They correspond to the exchange of the rows rm1 , rm2 , . . . , rmk

of
the determinant I with rows r1−1, r2−1, . . . , rk−1 and N of the determinant II. The other
terms vanish since the determinants obtained in exchanging procedure possess at least two
identical rows.

The nonzero terms correspond to the following ways of row exchange

[
µrmi

rmi

]
I

↔
[

µri + ti
ri − 1

]
II

, 1 ≤ i ≤ k placement A

[
µrmi

rmi

]
I

↔
[

µri + ti
ri − 1

]
II

, 1 ≤ i ≤ p− 1

[
µrmj

rmj

]
I

↔
[

µrj+1 + tj+1

rj+1 − 1

]
II

, p ≤ j ≤ k − 1

[
µrmk

rmk

]
I

↔
[−N + 1

N

]
II




placements Bp, 1 ≤ p ≤ k.

The row exchange in accordance with the placement A gives the first term in the right-hand
side of (3.3). Indeed, after such an exchange the typical part of the determinant I takes the
form

∣∣∣∣∣ . . . µri µri+1 . . . µri + ti . . .

. . . ri ri + 1 . . . rmi . . .

∣∣∣∣∣
I

.

Now we have to make the cyclic permutation of rows placing the component µri + ti to the
ri-th row. This gives the sign factor (−1)rmi−ri = (−1)mi−1 and, according to (2.11), the
structure of the determinant I corresponds to the Schur function s

λ+t1 ... tk
(r1,m1)...(rk,mk)

. As for

the typical part of the second determinant, we get after the row exchange

∣∣∣∣∣µ2 . . . µrmi
µri . . . µrmi−1 µrmi+1 . . . µN −N + 1

1 . . . ri − 1 ri . . . rmi − 1 rmi . . . N − 1 N

∣∣∣∣∣
II

.

Here we also have to make the cyclic permutation of rows from (ri− 1) to (rmi − 1) placing
the component µrmi

to the (rmi − 1)-th row. This generates the sign factor (−1)mi−1 which
compensates the same factor of the determinant I. As for the structure of the determinant
II, it corresponds to sλ ↓ as directly follows from (2.4).

Turn now to a placement of Bp type for some fixed integer p such that 1 ≤ p ≤ k. We
first consider the changes in the determinant I. The rows rm1 to rmp−1 are exchanged in the
same way as in the placement A giving rise to the following typical parts corresponding to
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added border strips

∣∣∣∣∣µ1 . . . µri + ti µri . . . µrmi−1 . . .

1 . . . ri ri + 1 . . . rmi . . .

∣∣∣∣∣
I

, 1 ≤ i ≤ p− 1,

with the sign factor (−1)mi−1 for each strip lying in rows ri to rmi . The remaining part of
the determinant I can be transformed to

∣∣∣∣∣ . . . µrmp−1 µrmp+1 . . . µrj + tj µrj . . . µrmj−1 . . . µrmk
−1 µrmk

+1 . . . −N + 1

. . . rmp − 1 rmp . . . rj − 1 rj . . . rmj − 1 . . . rmk
− 1 rmk

. . . N

∣∣∣∣∣
I

with the sign factors (−1)rj+1−rmj−1 and p ≤ j ≤ k − 1 which originate from the cyclic
permutation of rows from rmj till (rj+1 − 1). This permutation results in moving the com-
ponent µrj+1 + tj+1 from the rmj -th row to the (rj+1−1)-th one. We have also a sign factor
(−1)N−rmk since the component (−N + 1) moved from the rmk

-th row to the last, N -th,
row. Finally, taking into account the structure of the partial down-peeling (2.6), we see that,
up to the above sign factors, the determinant I represents the following Schur symmetric
function

∣∣∣∣∣µ1 . . . µri µri+1 . . . µrmi
. . . µN

1 . . . ri ri + 1 . . . rmi . . . N

∣∣∣∣∣
I

Bp→ s
λ+t1 ... tk

(r1,m1)...(rk,mk)
↓(rp) .

Consider now the changes in the determinant II under the row exchange of the same
Bp type. The part of the determinant containing the rows ri − 1 for 1 ≤ i ≤ p − 1 can be
expressed in the following form

∣∣∣∣∣µ2 . . . µrmi
µri . . . µrmi−1 µrmi+1 . . .

1 . . . ri − 1 ri . . . rmi − 1 rmi . . .

∣∣∣∣∣
II

.

Here we have to rearrange the rows from (ri − 1) till (rmi − 1) by cyclic permutation in
order to move the component µrmi

to the (rmi −1)-th row. This gives rise to the sign factor
(−1)ri−rmi = (−1)mi−1 for each 1 ≤ i ≤ p − 1. The sign factors compensate the analogous
sign factors originated from the determinant I.

The rest part of the determinant II reads (p ≤ j ≤ k − 1)

∣∣∣∣∣ . . . µrp + tp µrp . . . µrmj
µrj+1+1 . . . µrmj+1−1 µrmj+1+1 . . . µrmk

. . . rp − 1 rp . . . rj+1 − 1 rj+1 . . . rmj+1 − 1 rmj+1 . . . N

∣∣∣∣∣
II

.

On moving the component µrmj
from the (rj+1 − 1)-th row to the rmj -th one we get the

sign factor (−1)rj+1−rmj−1 for each p ≤ j ≤ k − 1. Also we get the factor (−1)N−rmk since
the component µrmk

moved from the last, N -th, row to the row rmk
. All these sign factors

exactly compensate the corresponding sign factors appearing in the determinant I. The final
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structure of the determinant II is as follows:∣∣∣∣∣µ2 . . . µri . . . µrp−1 µrp + tp µrp . . . µrj . . . µN

1 . . . ri − 1 . . . rp − 2 rp − 1 rp . . . rj . . . N

∣∣∣∣∣
II

.

On comparing the above determinant with (2.8), we conclude that under the row exchange
of the Bp type the determinant II transforms to the Schur function s

λ↑(rp − 1, tp)
(up to the

sign factors compensated by the corresponding factors of the determinant I).
At last, summing over all placements of the Bp type and adding the result of the place-

ment A we get the final formula (3.3).

Consider now some important corollaries of Proposition 3.1.

Corollary 3.2. The identity (3.3) is preserved under the simultaneous transposition of all
the Young diagrams parameterizing the Schur functions in (3.3).

Proof. Recall (see [7]) that the partition λ′ is said to be the conjugate of a given partition
λ if the Young diagram λ′ is obtained from the Young diagram λ by the transposition with
respect to the main diagonal. In other words,

λ′
i = #(j | λj ≥ i).

The key point in the proof of the Corollary 3.2 is the following Jacobi–Trudi determinant
formula for the Schur symmetric function sλ

sλ = det ‖eλ′
i−i+j‖1≤i,j,≤M , (3.4)

where ek is the k-th elementary symmetric function, and M ≥ �(λ′) = λ1 is an arbitrary
positive integer. Here, as well as in relation (2.1), we set: ek ≡ 0 for k < 0 and e0 ≡ 1.

The proof of Proposition 3.1 is based on formula (2.1), which contains the complete
symmetric functions hk. But we do not use any specific properties of these functions in
course of the proof. The functions hk are just the matrix elements of determinants in the
Plücker relation. If we change all the complete symmetric functions hλi−i+j for eλi−i+j the
identity (3.3) still remains true determinant identity. The interpretation of the determinants
involved will, however, be different. As can be seen from (3.4), the determinants will now
parameterize the Schur functions corresponding to the conjugate partitions λ′.

Another useful consequence of the proof of Proposition 3.1 is a possibility to remove the
first line or the first column of some partitions and get a new identity. Indeed, as can be
easily seen from the proof, the first row of the Jacobi–Trudi determinant corresponding to
the Schur function sλ (the component µ1) does not play an active role in the calculations. In
principle, it can be changed for an arbitrary row and identity (3.3) will be still valid as the
determinant identity (though the interpretation of the corresponding determinants as Schur
functions will be lost in general). But if we change the row µ1 by the N -dimensional row
(1, 0, . . . , 0), the determinants sλ, sλ+ and sλ+↓(r) can be interpreted as the Schur functions
corresponding to the partition with the first component removed. Here is an example of the
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procedure:

s(λ1,...,λn) = det ‖hλi−i+j‖ →

∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0

hλ2−1 hλ2 . . . hλ2+n−2

... . . .
...

...

hλn−n+1 hλn−n+2 . . . hλn

∣∣∣∣∣∣∣∣∣∣∣
= s(λ2,...,λn).

Due to Corollary 3.2 the same is true for removing the first column in the diagram λ.
Therefore, the following corollary holds true.

Corollary 3.3. Let λ = (λ1, . . . , λn) be a partition satisfying the conditions of
Proposition 3.1. Denote by λ̄ the partition obtained from λ by removing the first line or
the first column from the Young diagram λ, that is

λ̄ = (λ2, . . . , λn) or λ̄ = (λ1 − 1, λ2 − 1, . . . , λn − 1).

Then identity (3.3) implies that

s
λ̄
s
λ+t1 ... tk

(r1,m1)...(rk,mk)
↓ = s

λ+
t1 ... tk
(r1,m1)...(rk,mk)

s
λ↓ +

k∑
p=1

s
λ+

t1 ... tk
(r1,m1)...(rk,mk)↓(rp) s

λ↑(rp − 1, tp)
. (3.5)

Here λ+ and λ+ ↓(rp) are the Young diagrams obtained from the diagrams λ+ and λ+↓(rp)

by removing the first row (column).

We give two examples illustrating the above formulae.

Example 3.4. Let λ = (2, 1, 1), k = 1, r1 = 2,m1 = 1 in accordance with the notation of
Proposition 3.1. That is we add a single box in the second row of the Young diagram λ.
Then the main identity (3.3) reads:

s(2,1,1)s(1) = s(2,2,1) + s(2)s(1,1,1)

or, loosely denoting the Schur functions sλ by the corresponding Young diagrams λ (for
more visual clarity)

× = + × .

On removing the first row (λ→ λ̄ = (1, 1)), we get

s(1,1)s(1) = s(2,1) + s(1,1,1),

or, in the graphic form

× = + .
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On removing the first column, we find

s(1)s(1) = s(1,1) + s(2),

or, in the graphic form

× = + .

Evidently, these are nothing but the well known Littlewood–Richardson relations on the
Schur functions.

Example 3.5. Take λ = (4, 2, 1), k = 1, r1 = 2,m1 = 2, that is we add a border strip in
the second and the third rows of λ. The main identity takes the form

s(4,2,1)s(2,2) = s(4,3,3)s(1) + s(4,2)s(2,2,1).

In the graphic form it reads

× = × + × .

Removing the first row or the first column gives rise to a pair of new identities

s(2,1)s(2,2) = s(3,3)s(1) + s(2)s(2,2,1)

and

s(3,1)s(2,2) = s(3,2,2)s(1) + s(4,2)s(1,1).

Before proving the next corollary, we should introduce new notation. With a Young
diagram λ = (λ1, . . . , λn) we associate a coordinate system with x and y axes directed as
shown in the picture below

. . . x

. . .

. . .

y

.

The size of each box is accepted to be 1×1, being measured in the units of the x and y axes.
It is convenient to accept a different notation for components of a given partition λ.

Namely, we denote by ξi, where 1 ≤ i ≤ k ≤ n, all distinct components of the partition λ.
That is λ = (ξm1

1 , ξm2
2 , . . . , ξmk

k ) with some integers mi ≥ 1, m1 + · · · + mk = n. Note, that
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by definition ξi > ξj if i < j. Besides, it is convenient to set ξk+1 = 0. We also introduce a
set of integers yi, where 0 ≤ i ≤ k, by the rule

y0 = 0, yi = mi + yi−1, 1 ≤ i ≤ k.

An inner corner of a diagram λ is a point with coordinates (ξi, yi−1) with respect to the
above coordinate system. The collection of all inner corners will be called the inner corner
set of the diagram λ. So, the inner corner set Cλ of the Young diagram λ = (ξm1

1 , . . . , ξmk
k )

consists of the following k + 1 points αi

Cλ = {αi = (ξi, yi−1) | 1 ≤ i ≤ k + 1}. (3.6)

For example, the inner corner set of the Young diagram (6, 5, 22, 1) includes five elements:
(6, 0), (5, 1), (2, 2), (1, 4) and (0, 5).

By the above definition, the inner corner set of any non-empty Young diagram λ is a
non-empty set, containing at least two elements — the points (ξ1, 0) and (0, �(λ)). Note
that knowing the inner corner set of a diagram allows one to restore the diagram itself.

Introduce now the vertical and horizontal shifts of inner corners. Let αi = (ξi, yi−1),
where ξi �= 0, be an inner corner of a partition λ = (ξm1

1 , . . . , ξmk
k ). The horizontal shift h±

i

of the corner αi by ±1 means increasing or decreasing the component ξi by 1. If ξi+1 = ξi−1

or ξi − 1 = ξi+1, then the corresponding rows of the diagram are united:

λ = (. . . , ξ
mi−1

i−1 , ξmi
i , . . .)

h+
i→



(. . . , ξ
mi−1

i−1 , (ξi + 1)mi , . . .) if ξi−1 − ξi ≥ 2

(. . . , ξ
mi−1+mi

i−1 , . . .) if ξi−1 − ξi = 1,

λ = (. . . , ξmi
i , ξ

mi+1

i+1 , . . .)
h−

i→



(. . . , (ξi − 1)mi , ξ
mi+1

i+1 , . . .) if ξi − ξi+1 ≥ 2

(. . . , ξ
mi+mi+1

i+1 , . . .) if ξi − ξi+1 = 1.

The other components of λ preserve their values.
Similarly, the vertical shift v±i of the corner αi = (ξi, yi−1), where yi−1 �= 0, by ±1 affects

the exponents mi and mi−1 in the following way

(. . . , ξ
mi−1

i−1 , ξmi
i , . . .)

v−i→



(. . . , ξ
mi−1−1
i−1 , ξmi+1

i , . . .) if mi−1 ≥ 2

(. . . , ξ
mi−2

i−2 , ξmi+1
i , . . .) if mi−1 = 1,

(. . . , ξ
mi−1

i−1 , ξmi
i , . . .)

v+
i→



(. . . , ξ
mi−1+1
i−1 , ξmi−1

i , . . .) if mi ≥ 2

(. . . , ξ
mi−1+1
i−1 , ξ

mi+1

i+1 , . . .) if mi = 1.

The other components of λ remain unchanged.
Note that we do not define the horizontal shifts for the corner (0, �(λ)) and vertical shifts

for the corner (ξ1, 0).
For example, for partition λ = (6, 5, 22, 1), the horizontal shift of the corner α3 =

(2, 2) by +1 and the vertical shift of the corner α2 = (5, 1) by −1 lead to the following
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transformations:

λ
h+
3−→ (6, 5, 32, 1), λ

v−2−→ (52, 22, 1).

Define now two transformations of any partition λ generated by shifts of the inner
corners of the corresponding Young diagram.

Definition 3.6. Let λ be a partition and αi = (ξi, yi−1) an inner corner of the Young
diagram λ. Make the horizontal shift by +1 of all the inner corners situated above αi in the
diagram λ (that is the corners (ξj, yj−1) with j < i). Besides, make the vertical shift by −1
of all the inner corners situated below αi (that is, the corners (ξj, yj−1) with j > i). The
corner αi keeps its position unchanged. The Young diagram thus obtained will be denoted
λ+
−(αi). In a similar way, shifting the corners above αi by −1 in the horizontal direction

and those below αi by +1 in the vertical direction, we get the diagram λ−
+(αi).

Here is an example of the above procedures for the partition λ = (6, 5, 22, 1) and the
inner corner α3 = (2, 2):

λ = (6, 5, 22, 1)⇒ λ+
−(α3) = (7, 6, 2, 1), λ−

+(α3) = (5, 4, 23, 1).

Corollary 3.7. Let λ = (ξm1
1 , . . . , ξmk

k ) be an arbitrary partition and let Cλ be the inner
corner set of the Young diagram λ. Then the following identity holds true

sλsλ =
∑
α∈Cλ

sλ+
−(α)sλ−

+(α). (3.7)

This identity generalizes (1.2) to the case of an arbitrary partition.

Proof. Let λ = (ξm1
1 , . . . , ξmk

k ) be an arbitrary partition of height �(λ) = n. We introduce
an auxiliary partition ν with n + 1 components

ν = (ξ1 + 1, ξm1
1 , ξm2

2 , . . . , ξmk
k ).

On adding to the diagram ν all possible strictly vertical border strips, we get the partition

ν+ = ((ξ1 + 1)m1+1, (ξ2 + 1)m2 , . . . , (ξk + 1)mk ).

The inner corner sets of the new partitions are

Cν = (ξ1 + 1, 0) ∪ {(ξi, yi−1 + 1), 1 ≤ i ≤ k + 1}

Cν+ = {(ξ1 + 1, 0), (0, yk + 1)} ∪ {(ξi + 1, yi−1 + 1), 2 ≤ i ≤ k}.
Now we apply identity (3.3) of Proposition 3.1 to the product of the Schur functions

sνsν+↓ and then we use Corollary 3.3 in order to remove the first line of length ξ1 + 1 from
the diagram ν:

ν �→ ν̄ = (ξm1
1 , . . . , ξmk

k ) = λ.

Besides, as follows from (2.3), ν+↓= λ. So, in our case, the left-hand side of identity (3.5)
in Corollary 3.3 reads sν̄sν+↓ = sλsλ. We consider the right-hand side of (3.5) and verify
that it coincides with that of (3.7).
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The first term in the right-hand side of (3.5) in our case has the form s
ν+s

ν↓ . Recall
that the bar over the symbol of partition means removing the first row of the corresponding
Young diagram. The inner corner sets of the diagrams ν+ and ν ↓ are as follows

C
ν+ = {(ξi + 1, yi−1), 1 ≤ i ≤ k} ∪ (0, yk)

Cν↓ = {(ξi − 1, yi−1), 1 ≤ i ≤ k} ∪ (0, yk),

and therefore, as follows from the structure of the inner corner set Cλ (3.6) and
Definition 3.6,

ν+ = λ+
−(αk+1), ν↓= λ−

+(αk+1), αk+1 = (0, yk).

Consider now the sum over the partial peelings in (3.5). In our case, this sum takes
the form

k∑
p=1

s
ν+↓(rp)sν↑(rp−1,1)

.

The starting points rp of partial peelings in the diagram ν+ are the end points of the vertical
border strips added to the diagram ν. The numbers {rp} are expressed in terms of {yp} by
the relation rp = yp−1 + 2 as illustrated in the diagram below

ν+ =

∗ ← r1 = y0 + 2
λ ∗ ← r2 = y1 + 2

∗

Here the star signs mark the end points of the added border strips — the starting points rp

of the partial down-peelings. As is not difficult to see, the inner corner set of the diagram
ν+↓(yp−1+2) has the following structure

C
ν+↓(yp−1+2) = {(ξi +1, yi−1) | 1 ≤ i ≤ p−1}∪ (ξp, yp−1)∪{(ξj , yj−1−1) | p+1 ≤ j ≤ k+1}.

By Definition 3.6 this means that

ν+↓(yp−1+2)= λ+
−(αp), αp = (ξp, yp−1).

In analogous way we find that ν↑(yp−1+1,1)= λ−
+(αp). Lastly, summation over p gives the

final result (3.7).

As an example we write down the bilinear relation for the square s2
(3,2,1):

s(3,2,1)s(3,2,1) = s(4,3,2)s(2,1) + s(4,3)s(2,13) + s(4,1)s(23,1) + s(32,2,1)s(2,1).
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In what follows, we give a simple proof of the result (1.4) [2].

Corollary 3.8 [2]. Let (λ1, λ2, . . . , λn+1) be a partition with an integer n > 0. Then the
following identity holds true

s(λ2,...,λn+1)s(λ1,...,λn) = s(λ1+1,...,λn+1)s(λ2−1,...,λn+1−1) + s(λ2,...,λn)s(λ1,...,λn+1). (3.8)

Proof. The result is based on identity (3.3) and the following steps.

(1) Given a partition λ = (λ1, λ2, . . . , λn+1), we construct an auxiliary partition

λ̂ = (λ1 + 1, λ2, . . . , λn+1)

and take it as the initial partition for Proposition 3.1.
(2) Then we add to λ̂ the connected border strip from the second row till the last one

(k = 1, r1 = 2,m = n) and get the partition (see (2.10))

λ̂+ = (λ1 + 1, λ1 + 1, λ2 + 1, . . . , λn + 1).

(3) Peeling the complete border strip off and partial peelings from the end point of the
added strip result in the following partitions (see (2.3), (2.5) and (2.7)):

λ̂+↓ = (λ1, λ2, . . . , λn)

λ̂↓ = (λ2 − 1, . . . , λn+1 − 1)

λ̂+↓(2) = (λ1 + 1, λ2, . . . , λn)

λ̂↑(1,λ1−λ2+1) = (λ1, λ2, . . . , λn+1).

(4) Lastly, the identity (3.3) for the above Schur functions gives

s(λ1+1,λ2,...,λn+1)s(λ1,...,λn) = s(λ1+1,λ1+1,λ2+1,...,λn+1)s(λ2−1,...,λn+1−1)

+ s(λ1+1,λ2,...,λn)s(λ1,λ2,...,λn+1).

Removing from the above identity the first row (λ1+1) in accordance with Corollary 3.3,
we come to the result desired (3.8).

Note added in proof. After this paper had been accepted for publication, M. Fulmek
communicated to us that identity (3.3) can be proved in another way, as a corollary of
Lemma 16 in [2] (for details, see [1]).
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