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It is shown that the exact solubility of the massless Thirring model in the canonical quantization
scheme originates from the intrinsic hidden linearizability of its Heisenberg equations in the method
of dynamical mappings. The corresponding role of inequivalent representations of free massless Dirac
field and appearance of Schwinger terms are elucidated.
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1. Introduction

Despite a considerable age the two-dimensional Thirring model [1–3] is still remained as
important touchstone for non-perturbative methods of quantum field theory [4–8] revealing
new features both in the well-known [9–13] and in newly obtained solutions [15]. At the
same time the methods of integration of such two-dimensional models provide a key for
understanding some non-linear theories of higher dimension [13]. In particular the Thirring
model turns out to be a two-dimensional analog of the well-known Nambu–Jona–Lasinio
model [13, 15] and together with the Schwinger model provides an important example of
using the well-known bosonization procedure (BP) [7–16].

In the present work the BP for Thirring model is considered as a special case of dynamical
mapping (DM) [17, 18], what for Schwinger model was previously done in Greenberg’s
works [19]. In the framework of canonical quantization scheme [20] the DM method consists
in the construction of Heisenberg field (HF) Ψ(x) as a solution of Heisenberg equations
of motion (HEq) in the form of Haag expansion built on normal products [21] of free
“physical” fields ψ(x), whose representation space accords with unknown a priori physical
states of the given field theory [17]. The DM Ψ(x) w= Υ[ψ(x)], being generally speaking a
weak equality, implies the choice of appropriate initial conditions for the HEq. For example
[16, 17], when both sets of fields are complete, irreducible and coincide asymptotically
as t → −∞, the HF will tend in a weak sense to appropriate asymptotic physical field
ψin(x): limt→−∞ Ψ(x1, t) w= Υ[ψin(x1,−∞)]. However the (asymptotic) completeness and
irreducibility are not true in the presence of bound states [17, 18]. In particular for the
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exactly solvable two-dimensional models of Thirring and Schwinger [13, 16] the physical
asymptotic states of propagated physical particles have nothing to do with massless free
Dirac asymptotic fields (confinement).

As was shown in the works [22–24] it is more convenient generally to make DM onto
the “Schrödinger” physical field ψs(x), associated with the HF at t → 0: limt→0 Ψ(x1, t) w=
Υ[ψs(x1, 0)], which is a generalization [23, 24] of the well-known interaction representation
and is closely related to the procedure of canonical quantization [16, 20]. In this represen-
tation the time-dependent coefficient functions of DM [22, 23] contain all the information
about bound states and scattering, and exactly solvable Federbush model [6] leads to the
exactly linearizable HEq [24].

The present paper shows that HEq of the Thirring model admits a similar lineariza-
tion and that the choice of free massless (pseudo-) scalar fields as the physical ones is a
consequence of reducibility of the massless Dirac field [16] in the space of these fields. The
problem of Schwinger terms in the currents commutator [4], being closely related to BP
[9–16], also finds here a natural solution [24] in fact borrowed from QED [25], where it is
also sufficient to define this commutator only for the free fields in corresponding “interaction
representation”.

Definition of the model in canonical quantization scheme is given in the next section.
Then the linearization procedure with corresponding definition of Heisenberg currents is
advocated. The bosonization rules that we need for the free fields only are discussed in
Sec. 4 with the appropriate choice of (pseudo-) scalar fields. That all is used in Sec. 5 for
direct integration of HEq with chosen initial condition. The final remarks are made in Sec. 6.

2. Thirring Model

Following to the canonical quantization procedure [20] we start with the formal Hamil-
tonian of the Thirring model [1], which in two-dimensional space-timea defines a Fermi
self-interaction, with fixed (and further unrenormalizable) dimensionless coupling constant
g, for spinor field with spin 1/2 and zero mass:

H[Ψ] = H0[Ψ](x
0) +HI[Ψ](x

0), (2.1)

HI[Ψ](x
0) =

g

2

∫ ∞

−∞
dx1J(Ψ)µ(x)Jµ

(Ψ)(x), (2.2)

H0[Ψ](x
0) =

∫ ∞

−∞
dx1Ψ†(x)E(P 1)Ψ(x), E(P 1) = γ5P 1, (2.3)

satisfying the equal-time canonical anticommutation relations:

{Ψξ(x),Ψ
†
ξ′(y)}|x0=y0 = δξ,ξ′δ(x1 − y1), (2.4)

{Ψξ(x),Ψξ′(y)}|x0=y0 = 0,

{Ψξ(x),Ψ
#
ξ′ (y)}

∣∣
(x−y)2<0

= 0, with: Ψ#
ξ (y) = Ψξ(y), Ψ†

ξ(y). (2.5)

aHere: xµ = (x0, x1); x0 = t; � = c = 1; ∂µ = (∂0, ∂1); for gµν : g00 = −g11 = 1; for εµν : ε01 = −ε10 = 1;

Ψ(x) = Ψ†(x)γ0; γ0 = σ1, γ1 = −iσ2, γ5 = γ0γ1 = σ3, γµγ5 = −εµνγν , where σi — Pauli matrices, and
I — unit matrix; xξ = x0 + ξx1, 2∂ξ = 2∂/∂xξ = ∂0 + ξ∂1, P 1 = −i∂1; summation over ξ is nowhere
implied.
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Here indices ξ, ξ′ = ±, as well as for the xξ, enumerate the components of HF by the rule:

Ψ(x) =

(
Ψ1(x)

Ψ2(x)

)
=

(
Ψ+(x)

Ψ−(x)

)
, (2.6)

and the vector current Jµ
(Ψ)(x), together with the axial current J5µ

(Ψ)(x), for µ, ν = 0, 1, is
their yet formal local bilinear functional of the form:

Jµ
(Ψ)(x) �→ Ψ(x)γµΨ(x), (2.7)

J5µ
(Ψ)(x) �→ Ψ(x)γµγ5Ψ(x) = −εµνJ(Ψ)ν(x),

which due to (2.1)–(2.6) formally appears also in the canonical equations of motionb [3–6]:

i∂0Ψ(x) = [Ψ(x),H[Ψ]] = [E(P 1) + gγ0γνJ
ν
(Ψ)(x)]Ψ(x), or: (2.8)

2∂ξΨξ(x) = −igJ−ξ
(Ψ)(x)Ψξ(x), ξ = ±, (2.9)

— for each ξ-component of the field (2.6) that formally are also related to the corresponding
current components as:

Jξ
(Ψ)(x) = J0

(Ψ)(x) + ξJ1
(Ψ)(x) �→ 2Ψ†

ξ(x)Ψξ(x), ξ = ±. (2.10)

The correct definitions of these formal operator products will be discussed hereinafter.

3. Linearization of the Heisenberg Equation

An immediate consequence of the field equations of motion (2.8), (2.9) are the local con-
servation laws [3–6] for the currents (2.7), (2.10):

∂µJ
µ
(Ψ)(x) = 0, ∂µJ

5µ
(Ψ)(x) = −εµν∂

µJν
(Ψ)(x) = 0, or: ∂ξJ

ξ
(Ψ)(x) = 0, ξ = ±, (3.1)

that fully determine their dynamics as a free one [4, 5]. Therefore it is not surprising that
by means of the same equations of motion (2.8), (2.9), as well as by means of the anti-
commutation relations (2.4) for HF, it is a simple matter to show [24] that:

i∂0γ
0γνJ

ν
(Ψ)(x) − [γ0γνJ

ν
(Ψ)(x),H0[Ψ](x

0)] = iI∂µJ
µ
(Ψ)

(x) + iγ5εµν∂
µJν

(Ψ)(x) ≡ 0, (3.2)

where the first term on the right-hand side of equality (3.2) comes evidently from the left
terms with ν = 0, while the second term on the right-hand side comes from the left terms
with ν = 1. The canonical equation of motion for this operator of “total current” in Eq.
(2.8), containing of course its commutator with the full Hamiltonian H[Ψ] given by Eqs.
(2.1)–(2.3), recasts then to the following equation:

i∂0γ
0γνJ

ν
(Ψ)(x) − [γ0γνJ

ν
(Ψ)(x),H0[Ψ](x

0)] = [γ0γνJ
ν
(Ψ)(x),HI[Ψ](x

0)] = 0, (3.3)

which thus cannot contain a contribution from the commutator with the interaction Hamil-
tonian HI[Ψ](x0) given by Eq. (2.2). Hence, as well as for the Federbush model [24], a

bContribution to (2.8) due to non-commutativity of Jν
(Ψ)(x) and Ψ(x) is formally proportional to

δ(0)γ0γνγ0γν = 0.
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non-zero contribution of Schwinger terms in HEq (3.3) would be premature, because, due
to Eq. (3.2), it leads to violation of the current conservation laws (3.1).

On the one hand, within the framework of canonical quantization procedure [20], the
vanishing of expressions (3.2), (3.3) means that temporal evolution of this “total current”
is governed by a free Hamiltonian H0[χ](x0) of the same form (2.3) quadratic on some kind
of free massless trial physical Dirac fields χ(x), furnished by the same anti-commutation
relations and by the same conservation laws for corresponding currents Jν

(χ)(x), J
5ν
(χ)(x),

defined formally by Eqs. (2.4)–(2.7), (2.10), (3.1) with Ψ(x) �→ χ(x):

i∂0γ
0γνJ

ν
(χ)(x) − [γ0γνJ

ν
(χ)(x),H0[χ](x

0)] = iI∂µJ
µ
(χ)(x) + iγ5εµν∂

µJν
(χ)(x) = 0. (3.4)

On the other hand, the Heisenberg current operators appearing in (3.2), (3.3) acquire precise
operator meaning — with non-vanishing Schwinger term — only after the choice of the
representation space [4, 20, 26] for anticommutation relations (2.4), (2.5) and subsequent
reduction in this representation to the normal-ordered form by means of renormalization,
for example, via point-splitting and subtraction of the vacuum expectation value [16]:

J0
(Ψ)(x) �→ lim

eε→0
Ĵ 0

(Ψ)(x; ε̃ ) = Ĵ 0
(Ψ)(x), J1

(Ψ)(x) �→ lim
ε→0

Ĵ 1
(Ψ)(x; ε) = Ĵ 1

(Ψ)(x), (3.5)

where at first: ε̃ 0 = ε1 → 0, with fixed: ε̃ 1 = ε0, ε2 = −ε̃ 2 > 0, (3.6)

for: Ĵν
(Ψ)(x; a) = Z−1

(Ψ)(a)[Ψ(x+ a)γνΨ(x) − 〈0|Ψ(x+ a)γνΨ(x)|0〉], (3.7)

and accordingly for the components (2.10). The renormalization “constant” Z(Ψ)(a) is
defined below in (5.16). The definition of renormalized current (3.5)–(3.7) used here corre-
sponds to the well-known Schwinger prescription [25] specified in the work [11] and, unlike
Johnson definition [2], directly depends on the representation choice via the vacuum expec-
tation value [16] in Eq. (3.7) like the very meaning of Schwinger term [4, 13]. One can
show [11] that for the massless case these different current definitions lead to coincident
expressions only for the free Dirac fields (cf. Eqs. (4.1) and (5.12)).

The comments given above jointly with the foregoing arguments deduced from Eq. (3.1)–
(3.4) allow to identify in HEq (2.8), at least in a weak sense, the Heisenberg operator of
“total current”, defined by Eqs. (2.7) and (3.2), with that operator, defined by Eqs. (2.7),
(3.4) for the free massless trial physical Dirac fields χ(x) and renormalized in the sense of
normal form (3.5)–(3.7) up to an unknown yet constant β:

γ0γνJ
ν
(Ψ)(x)

w�→ β

2
√
π
γ0γν Ĵ

ν
(χ)(x), (3.8)

Ĵν
(χ)(x) = lim

ε,(eε )→0
Ĵν

(χ)(x; ε(ε̃ )) ≡: Jν
(χ)(x) : . (3.9)

Here for Z(χ)(a) = 1 the symbol : · · · : means the usual normal form [21] with respect
to free field χ(x). This identification leads to linearization of both Eqs. (2.8) and (2.9)
in the representation of these trial fields χ(x). Of course, the Eq. (2.8) is linearized with
respect to x0, while the Eq. (2.9) — with respect to xξ. However, the latter equation is the
preference of two-dimensional world with initial condition being far from evidence. Whereas
the former equation admits the above-mentioned in the Introduction physically reasonable
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initial condition at x0 = 0. Unlike [4, 16, 24], this initial condition does not fix here the
constant β, which will be defined dynamically in subsequent sections.

4. Bosonization and Scalar Fields

As was shown in [24] such kind of linearization of HEq for the Federbush model directly
leads to its solution in the form of DM Ψ(x) = Υ[ψ1(x), ψ2(x)] onto the free massive Dirac
fields ψ1,2(x) with different non-zero masses m1,2. Unlike the massive one, the components
χξ(x) of two-dimensional free massless field become completely decoupled, ∂ξχξ(x) = 0. As
a consequence, this field turns out to be essentially non-uniquely defined or reducible and
equipped by many inequivalent representations both in the spaces of a free massless (pseudo-
) scalar field [16] (φ(x)), ϕ(x) and massive scalar field [12] φm(x). Because the DM is physi-
cally meaningful only onto the complete, irreducible sets of fields: Ψ(x) = Υ[ϕ(x), φ(x)], or
Ψ(x) = Υ[φm(x)], or Ψ(x) = Υ[ψM (x)], — for the phase with spontaneously broken chiral
symmetry [13, 15], further we consider here only the first possibility.

The corresponding BP allows to operate with functionals of boson fields instead of
fermion operators and forms a powerful tool for obtaining non-perturbative solutions in
various two-dimensional models [9, 13, 16, 24]. Its use also simplifies integration of the
linearized HEq (2.8).

Being a formal consequence of the current conservation conditions (3.1) only, the
bosonization rules have, generally speaking, the sense of weak equalities only for the current
operator in the normal-ordered form (3.5)–(3.7), that already implies a choice of certain
representations of (anti-) commutation relations (2.4) and (4.5) below. However, for the free
massless fields χ(x), ϕ(x), φ(x), this choice is carried out automatically. This, due to the
linearization condition (3.8) and (3.9), becomes enough for our purposes, since for the free
fields these relationships appear as operator equalities [16]:

Ĵµ
(χ)(x) =

1√
π
∂µϕ(x) = − 1√

π
εµν∂νφ(x), Ĵ−ξ

(χ)(x) =
2√
π
∂ξϕ

ξ(xξ). (4.1)

Here, unlike [9], the free massless scalar field ϕ(x), ∂µ∂
µϕ(x) = 0, and pseudoscalar field

φ(x), ∂µ∂
µφ(x) = 0, are mutually dual and coupled by symmetric integral relations:

φ(x)

ϕ(x)

}
= −1

2

∫ ∞

−∞
dy1ε(x1 − y1)∂0

{
ϕ(y1, x0),

φ(y1, x0),
(4.2)

where the step function ε(x1) = 1, for x1 > 0, ε(x1) = −1, for x1 < 0, ε(0) = 0, and the
corresponding charges for these fields have the form similar to [13, 16]:

O

O

}
=
∫ ∞

−∞
dy1∂0

{
ϕ(y1, x0)

φ(y1, x0)

}
=

{
φ(−∞, x0) − φ(∞, x0).

ϕ(−∞, x0) − ϕ(∞, x0).
(4.3)

Right and left fields ϕξ(xξ) and their charges Qξ are defined by linear combinations [16]:

ϕξ(xξ) =
1
2
[ϕ(x) − ξφ(x)], Qξ =

1
2
[O − ξO] = ±2ϕξ(x0 ±∞), (4.4)
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for ξ = ±. All commutation relations [9, 14, 16] for the fields ϕ(x), φ(x), ϕξ(xξ), and Qξ:

[ϕ(x), ∂0ϕ(y)]|x0=y0 = [φ(x), ∂0φ(y)]|x0=y0 = iδ(x1 − y1), (4.5)

[ϕ(x), ϕ(y)] = [φ(x), φ(y)] = − i

2
ε(x0 − y0)θ((x− y)2), (4.6)

[ϕξ(s), ϕξ′(τ)] = − i

4
ε(s − τ)δξ,ξ′ , [ϕξ(s),Qξ′ ] =

i

2
δξ,ξ′ , (4.7)

are reproduced by commutators of their frequency parts and corresponding charges [5, 9, 13]:

[ϕξ(±)(s), ϕξ′(∓)(τ)] = ∓ 1
4π

ln(iκ{±(s − τ) − i0})δξ,ξ′ , (4.8)

[ϕξ(±)(s),Qξ′(∓)] =
i

4
δξ,ξ′ , [Qξ(±),Qξ′(∓)] = ±1

4
δξ,ξ′, (4.9)

defined here by the creation/annihilation operators c†(k1), c(k1) of the pseudoscalar field
φ(x): Pc(k1)P−1 = −c(−k1), with [c(k1), c†(q1)] = 4πk0δ(k1 − q1), and k0 ≡ |k1|, as:

ϕξ(+)(s) = − ξ

2π

∫ ∞

−∞

dk1

2k0
θ(−ξk1)c(k1)e−ik0s, ϕξ(−)(s) = [ϕξ(+)(s)]†, (4.10)

Qξ(+) = lim
L→∞

iLξ

4
√
π

∫ ∞

−∞
dk1θ(−ξk1)c(k1)e−ik0x0

e−(k1L/2)2

, Qξ(−) = [Qξ(+)]†. (4.11)

According to [14], the invariance under the parity transformation P{· · · }P−1 for generating
functional of a free massless pseudoscalar field, unlike the scalar field theory, leads to its
well definiteness and the gauge invariance also under field’s shift by arbitrary constant.
According to [16], in such a well-defined space of bosonic fields (4.2)–(4.11) one can construct
the variety of different inequivalent representations of solutions of the Dirac equation for
massless free trial field, ∂ξχξ(x) = 0, in the form of local normal-ordered exponentials of left
and right boson fields ϕξ(xξ) and their charges Qξ (4.4), (4.7). Let us choose the most simple
of them [16], which leads to the bosonization relations (4.1) for the currents (3.5)–(3.7) of
trial fields χ(x) with Z(χ)(a) = 1:

χξ(x) = χξ(x−ξ) = Nϕ

{
exp
(
−i√π

[
2ϕ−ξ(x−ξ) +

ξ

2
Qξ

])}
uξ,

uξ =
√

κ

2π
e−π/32e−iπξ/4.

(4.12)

The infrared regularization parameter κ from (4.8) can subsequently tend to zero [16] or
remain to be fixed, κ �→M , [13], depending on the phase of the model under consideration.

5. Integration of the Heisenberg Equation

For the chosen representation (4.1)–(4.8) the operator product in the linearized by means
of (3.8) and (3.9) HEq (2.8) or (2.9) is naturally redefined into the normal-ordered form
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[16] with respect to the fields ϕξ(xξ):

∂0Ψξ(x) =
(
−ξ∂1 − i

βg

2
√
π
Ĵ
−ξ(−)
(χ) (x)

)
Ψξ(x) − Ψξ(x)

(
i
βg

2
√
π
Ĵ
−ξ(+)
(χ) (x)

)
. (5.1)

The famous expression for the derivative of function F (x1) in terms of the operator P 1:
−i∂1F (x1) = [P 1, F (x1)], and its finite-shift equivalent: eiaP 1

F (x1)e−iaP 1
= F (x1 + a),

allows to transcribe Eq. (5.1) for x0 = t, Ψξ(x) ↔ Y (t), as follows:

d

dt
Y (t) = A(t)Y (t) − Y (t)B(t), (5.2)

and to obtain then its formal solution in the form of time-ordered exponentials:

Y (t) = TA

{
exp
(∫ t

0
dτA(τ)

)}
Y (0)

[
TB

{
exp
(∫ t

0
dτB(τ)

)}]−1

, (5.3)

that are immediately replaced here by the usual ones, recasting the solution already into
the normal form:

Ψξ(x) = eC
ξ(−)(x)Ψξ(x1 − ξx0, 0)eC

ξ(+)(x), (5.4)

where operator bosonization (4.1) of the vector current of trial field χ(x) (4.12) gives:

Cξ(±)(x) = −i βg
2
√
π

∫ x0

0
dy0Ĵ

−ξ(±)
(χ) (x1 + ξy0 − ξx0, y0)

= −iβg
2π

[ϕ(±)(x1, x0) − ϕ(±)(x1 − ξx0, 0)]

= −iβg
2π

[ϕξ(±)(xξ) − ϕξ(±)(−x−ξ)]. (5.5)

Remarkably, that the completely unknown “initial” HF Ψξ(x1 − ξx0, 0) = λξ(x−ξ) appears
here also as a solution of free massless Dirac equation, ∂ξλξ(x−ξ) = 0, but certainly unitarily
inequivalent to the free field χ(x) (4.12). The expressions (5.4) and (5.5) suggest to choose
it also in the normal-ordered form with respect to the field ϕ, using appropriate “bosonic
canonical transformation” of this field with parameters α = 2

√
π cosh η, β = 2

√
π sinh η,

obeying α2 − β
2

= 4π, which is generated by the operator Fη (for y0 = x0) in the form:

U−1
η ϕ(x)Uη = ω(x) ≡ ωξ(xξ) + ω−ξ(x−ξ) =

1
2
√
π

[αϕ(x1, x0) + βϕ(x1,−x0)], (5.6)

U−1
η ϕξ(xξ)Uη = ωξ(xξ) =

1
2
√
π

[αϕξ(xξ) + βϕ−ξ(−xξ)], Uη = expFη, (5.7)

U−1
η QξUη = Wξ =

1
2
√
π

[αQξ − βQ−ξ], with: [ϕξ(±)(s), Fη ] = ηϕ−ξ(∓)(−s), (5.8)

for: Fη = 2iη
∫ ∞

−∞
dy1ϕξ(yξ)∂0ϕ

−ξ(−yξ) = 2iη
∫ ∞

−∞
dy1ωξ(yξ)∂0ω

−ξ(−yξ), (5.9)
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— does not depend at all on ξ and y0, and (Λ is ultraviolet cut-off [13]):

U−1
η χξ(x−ξ)Uη = λξ(x−ξ) = Nϕ

{
exp
(
−i√π

[
2ω−ξ

(
x−ξ

)
+
ξ

2
Wξ

])}
vξ, (5.10)

vξ =
(
k

Λ

)β
2
/4π

e−β
2
/64uξ =

(
k

Λ

)β
2
/4π√ κ

2π
e−π/32e−β

2
/64e−iπξ/4. (5.11)

For the corresponding current Ĵµ
(λ)(x), defined by Eqs. (3.5)–(3.7), or by the Johnson defi-

nition [2, 3, 6], but nevertheless with the same renormalization constant Z(λ)(a), one finds
the previous bosonization rules (4.1) onto the new scalar fields ω(x), ωξ(xξ), and Wξ, (5.6)–
(5.8), obeying obviously the same commutation relations (4.5)–(4.7):

Ĵµ
(λ)(x) =

1√
π
∂µω(x), for: Z(λ)(a) = (Λ2|a2|)−β

2
/4π. (5.12)

Substituting the normal form (5.10) into the solution (5.4), we immediately obtain the
normal exponential of the DM for Thirring field in the form, analogous to [16]:

Ψξ(x) = Nϕ

{
exp
(
−iαϕ−ξ(x−ξ) − iβϕξ(xξ) − iα

ξ

4
Qξ + iβ

ξ

4
Q−ξ

)}
vξ, (5.13)

by imposing the conditions onto the parameters that are necessary to have correct Lorentz-
transformation properties corresponding to the spin 1/2, and correct canonical anticommu-
tation relations (2.4) and (2.5), respectively:

α2 − β
2 = 4π, β − βg

2π
= 0. (5.14)

Straightforward calculation of the vector current operators (3.5)–(3.7) for the solution (5.13)
by means of Eqs. (4.7)–(4.9) and (5.14), under the conditions:

α =
(

2π
β

+
β

2

)
, β =

(
2π
β

− β

2

)
, or: eη =

2
√
π

β
=
√

1 +
g

π
, (5.15)

reproduces the bosonization relations (3.8), (3.9) and (4.1) as following:

Ĵµ
(Ψ)(x)

w=
β

2
√
π
Ĵµ

(χ)(x) = − β

2π
εµν∂νφ(x), for: Z(Ψ)(a) = (−Λ2a2)−β

2
/4π, Z(χ)(a) = 1,

(5.16)

demonstrating self-consistency of all the above calculations. The last equality of Eq. (5.15)
is easily recognized as the well-known Coleman identity [7]. The weak sense of bosoniza-
tion rules (5.16), unlike (4.1), is directly manifested by the difference of renormalization
constants Z(Ψ)(a) and Z(χ)(a) defined by Eqs. (5.12) and (5.16) for the various fields Ψ(x)
and χ(x) respectively. At the same time, by making use of (4.1) and (4.5), for the Johnson
commutators [2–6] of Heisenberg fields (5.13) and their currents (5.16):

[Ĵ 0
(Ψ)(x),Ψ(y)]|x0=y0 = −aΨ(y)δ(x1 − y1), (5.17)

[Ĵ 1
(Ψ)(x),Ψ(y)]|x0=y0 = −aγ5Ψ(y)δ(x1 − y1), (5.18)

[Ĵ 0
(Ψ)(x), Ĵ

1
(Ψ)(y)]|x0=y0 = −ic(Ψ)∂x1δ(x1 − y1), (5.19)
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upon the above accepted definitions and relations (5.15) one obtains:

a = 1, a =
β2

4π
, c(Ψ) =

β2

4π2
, (5.20)

and finds: aa = πc(Ψ), a− a = gc(Ψ), (5.21)

in agreement with [3–5]. On the other hand, in accordance with [8, 24, 25], the algebra of
the Heisenberg operator of the conserved fermionic charge, by virtue of (5.17) and (5.20),
coincides with the algebra of the conserved fermionic charge O/

√
π from Eq. (4.3) for the

free trial field χ(x). Note, that the use of relations (5.17) and (5.18) for calculation of the
commutator in Eq. (2.8) violates the equations of motion (2.8) and (2.9), as well as the
above-mentioned attempt to use the commutator (5.19) in equation (3.3).

6. Conclusion

We have shown here, that the Thirring model [1–5], as well as the Federbush one [24],
is exactly solvable due to intrinsic hidden exact linearizability of its HEq, and that the
bosonization rules make an operator sense only among the free fields operators. For the
Heisenberg currents these rules are applicable only in a weak sense (5.16), that is naturally
manifested also as various values of Schwinger’s terms (5.19) and (5.20) for the free and
Heisenberg currents in inequivalent field representations (4.12), (5.10) and (5.13), respec-
tively:

c(χ) = c(λ) =
1
π
, c(Ψ) =

1
π + g

, (6.1)

in agreement with [11]. Similarly to the solution [24] of Federbush model, the linear homo-
geneous HEq (5.1) does not define the normalization of HF (5.13) and (5.15), which, as
well as for the free fields χ(x), λ(x), is fixed [13] only by the anticommutation relations
(2.4). We want to point out, that unlike [17–19] the bosonization procedure of [7–16] is
considered here as a particular case of dynamical mapping onto the “Schrödinger” physical
field [22–24] defined at t = 0. From this view point the results of [12] and [13] look as
DM of Thirring field onto the free massive scalar field φm(x), or free massive Dirac field
ψM (x) respectively. The general form of solution (5.4) should give a possibility to describe
all phases of the theory under consideration. We postpone the discussion of these features
to subsequent works.
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