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There is a well known principle in classical mechanic stating that a variational problem independent
of a configuration space variable w (so called cyclic variable), but dependent on its velocity w′ can
be expressed without both w and w′. This principle is known as the Routh reduction.

In this paper, we start to develop a purely geometric approach to this reduction. We do not
limit ourselves to rather special problems of mechanics and in a certain sense we are able to obtain
explicit formulae for the reduced variational integral.

Keywords: Calculus of variations; Routh reduction; cyclic variables; Poincaré–Cartan form;
Noether’s theorem.
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1. Introduction

We discuss a variational integral that admits a local group of symmetries. Our aim is to
reduce the original variational problem to a simpler one.

Such idea of reduction of a variational problem is certainly not new — on the contrary
the reduction theory has its origins in the classical works of Euler and Lagrange and in
mechanics is known as the Jacobi or Maupertuis principle. The approach developed by
Routh which is associated with systems having cyclic variables is especially important as
a starting point for our purposes. Routh himself was able to apply his idea to stability
theory [12] and the method is still used in classical mechanics [2, 3, 7, 11]. Nevertheless all
mentioned works are concerned with a special choice either of the symmetry group or of
the variational integral. Therefore they do not fully clarify the genuine mechanism of the
reduction procedure.

The reduction of variational problems should not be confused with the reduction of
Hamiltonian systems. The later reduction was started in the famous book [4] and is related
to the symplectic geometry. This approach to the mechanic was developed even in the
infinite-dimensional direction, see e.g. the works of Arnold [1], Smale [13] and the well-
known Hamiltonian version of soliton theory. In the finite-dimensional setting important
results have been obtained by Marsden and coworkers [8–10] however these results do not
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concern the reduction of variational integrals which are related to the contact geometry (or
jet space theory). An interesting survey of various symmetry problems in the calculus of
variations is contained in Krupková [6], but without any mention of the reduction procedure.

Our approach to the reduction theory is purely geometrical. The main tool is the
Poincaré–Cartan form (sometimes in literature the Beltrami form, Lepagean equivalent
or Hilbert invariant integral), the concept of which was introduced to the calculus of
variations independently by Cartan [4] and Whittaker [14]. Because the concept of the
Poincaré–Cartan forms can be introduced even for any general Lagrange variational prob-
lem, our approach is not limited to (rather) special problems of mechanics but admits far
going generalizations. However, the most general setting of the reduction problem leads to
the constrained variational integrals, rather nontrivial contact structures and nonclassical
Poincaré–Cartan forms.

In this introductory article our aims are strongly limited and of very modest nature.
We try to indicate the most important ingredients of the reduction problem as elemen-
tary as possible: the orbit space equipped with contact structure, the reduction to the
subspace of orbits, the induced variational integral on the orbit space and the dominant
role of the Poincaré–Cartan form. We deal only with the traditional Routh-setting of the
problem, namely with the independent variable preserving point symmetries of the first
order variational integral. For the convenience of the reader, this is made with the use of
local coordinates and explicit calculations but the final result is expressed in coordinate-free
terms. In order to make the exposition self-contained, we recall some fundamental concepts
and results in the form which will be useful in subsequent generalization.

2. Motivation

In this section we give a concise overview of the classical Routh method of elimination of a
cyclic variable z from the variational integral∫

f(x, y(x), z(x), ẏ(x), ż(x)) dx, x ∈ R, :=
d

dx
, (2.1)

as it could be extracted e.g. from [5] or [11].
The extremals of (2.1) satisfy the Euler–Lagrange system

∂f

∂y
=

d

dx

∂f

∂ẏ
,

∂f

∂z
=

d

dx

∂f

∂ż
. (2.2)

Because we moreover assume that the variable z is cyclic (which means ∂f/∂z = 0), we
have f = f(t, y, ẏ, ż), and the second Euler–Lagrange equation in (2.2) is

∂f

∂ż
= c, (2.3)

where c ∈ R is an arbitrary constant. Supposing the normal case defined by

∂2f

∂ż2
�= 0, (2.4)

Eq. (2.3) locally determines the function ż = g(x, y, ẏ; c) as follows from the implicit function
theorem.
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Let us, (at this place), define the Routh function (Routhian)

f̃(x, y, ẏ; c) := f(x, y, ẏ, g(x, y, ẏ; c)) − cg(x, y, ẏ; c)

and the Routh variational integral∫
f̃(x, y(x), ẏ(x); c) dx, (2.5)

depending on the parameter c. Now a direct computation gives the identity

∂f̃

∂y
− d

dx

∂f̃

∂ẏ
=
∂f

∂y
+
∂f

∂ż

∂g

∂y
− c

∂g

∂y
− d

dx

(
∂f

∂ẏ
+
∂f

∂ż

∂g

∂ẏ
− c

∂g

∂ẏ

)

=
∂f

∂y
− d

dx

∂f

∂ẏ

which implies that the system

∂f̃

∂y
=

d

dx

∂f̃

∂ẏ
,

∂f

∂ż
= c

is equivalent to the original Euler–Lagrange system (2.2).
Summarizing these facts, we have shown that if ∂f/∂z = 0 and ∂2f/∂ż2 �= 0, then

extremals of the Routh variational integral (2.5) are just the y-components of the original
variational integral (2.1).

The true sense of the Routh reduction can be clarified with the help of the Poincaré–
Cartan form

ϕ̆ = fdx+
∂f

∂ẏ
(dy − ẏ dx) +

∂f

∂ż
(dz − ż dx).

Indeed, restriction of the form ϕ̆ by (2.3) gives

ϕ̆|ż=g = f |ż=gdx+
∂f

∂ẏ

∣∣∣∣
ż=g

(dy − ẏ dx) + c(dz − gdx)

= f̃dx+
∂f

∂ẏ

∣∣∣∣
ż=g

(dy − ẏ dx) + c dz

=: ϕ+ c dz,

where the Routh function f̃ naturally appears. Then the last term c dz = d(cz) is an
unimportant total differential and ϕ may be identified as a Poincaré–Cartan form of the
restricted variational problem by applying a general Theorem 4.1 without any direct calcu-
lation. Therefore f̃ , the coefficient of dx, is the Lagrange function of the restricted problem
and the Routh reduction follows.

This is the idea of our approach which we wish to carry over more general variational
problems in the future.
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3. Hypotheses and Auxiliary Results

In order to avoid technical difficulties we will limit ourselves to the C∞ smooth and local
theory. This gives us the ability to use the existence theorem for ordinary differential equa-
tions and the implicit function theorem.

We will work in the infinite order jet space M(m) (m > 1) with jet coordinates

x, wi
r, (i = 1, . . . ,m; r = 0, 1, . . .),

equipped with the module Ω(m) of contact forms

ω =
m∑

i=1

r(ω)∑
r=0

ai
rω

i
r, where ωi

r := dwi
r − wi

r+1dx. (3.1)

The superscripts r(ω) in (3.1) are finite and we shall occasionally omit them for brevity.
The coefficients

ai
r = ai

r(x,w
1
0 , . . . , w

j
s, . . .)

are C∞-smooth functions, each depending on a finite number of jet coordinates. Throughout
this work we will always suppose that all considered functions are C∞-smooth and that
all functions, hence all contact forms, depend (only) on some finite number of variables
(different from case to case). The space M(m) is universal in the sense that it can be used
in the future study of all higher order integrals, as well.

In this setting a useful tool is the differential operator

D :=
∂

∂x
+

m∑
i=1

∞∑
r=0

wi
r+1

∂

∂wi
r

, (3.2)

which enables us to express the differential of any function f as a suitable combination of
basic contact forms

df = Dfdx+
m∑

i=1

∑
r=0

∂f

∂wi
r

ωi
r. (3.3)

Let us consider the first order scalar variational integral∫
f(x,w1

0, . . . , w
m
0 , w

1
1 , . . . , w

m
1 ) dx,

(
wi

r =
drwi

dxr
, wi = wi(x)

)
, (3.4)

together with its Poincaré–Cartan form

ϕ̆ := fdx+
m∑

i=1

∂f

∂wi
1

ωi
0. (3.5)

A direct computation gives

dϕ̆ =
m∑

i=1

eiω
i
0 ∧ dx mod Ω(m) ∧ Ω(m), (3.6)
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where the coefficients ei are

ei =
∂f

∂wi
0

−D
∂f

∂wi
1

(i = 1, . . . ,m).

Definition 3.1. The equations ei = 0, (i = 1, . . . ,m) are called the Euler–Lagrange
equations of the variational integral (3.4), and any curve P : (a, b) → M(m), P : x �→
(x,w1

0(x), . . . , w
i
r(x), . . .) such that

P
∗ωi

r = 0, P
∗ei = 0 (i = 1, . . . ,m; r = 0, 1, . . .) (3.7)

is said to be an extremal of the variational integral (3.4).

Let us remark that this definition is in accordance with the traditional concepts. Indeed,
(3.71) implies

0 = P
∗(dwi

r − wi
r+1dx) = dwi

r(x) −wi
r+1(x)dx,

whence wi
r+1 = dwi

r(x)/dx which, together with (3.72), gives

0 = P
∗ei = P

∗ ∂f
∂wi

0

− d

dx
P
∗ ∂f
∂wi

1

for i = 1, . . . ,m,

hence the equations (3.72) are really just the traditional Euler–Lagrange equations.

Lemma 3.1. If a curve P satisfies the condition (3.71), then the system of equations (3.72)
is equivalent to any of the following two identities

P
∗(Z� dϕ̆) = 0 for all vector fields Z (3.8)

or

D� dϕ̆ = 0 along P, (3.9)

where “along P” means at any point of the subset P((a, b)) ⊂ M(m).

Proof. Both assertions follow from direct computation.

3.1. Infinitesimal symmetries, Noether’s theorem

Definition 3.2. A vector field Z locally defined on M(m) by

Z := z
∂

∂x
+

m∑
i=1

∞∑
r=0

zi
r

∂

∂wi
r

, (3.10)

where the coefficients z = z(x,w1
0 , . . . , w

j
s, . . .) and zi

r = zi
r(x,w

1
0 , . . . , w

j
s, . . .) are smooth

functions is called (generalized, Lie-Bäcklund) infinitesimal symmetry of the variational
problem (3.4) if

LZΩ(m) ⊂ Ω(m), and LZ ϕ̆ ∈ Ω(m), (3.11)

where LZ is the usual Lie-derivative with respect to the vector field Z.
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In this article we will deal with more special vector field Z, however the proofs of
Theorem 3.1 and Corollary 3.1 do not simplify.

There is a useful characteristic of fields fulfilling the first inclusion (3.111). Since (3.111)
is equivalent to the inclusions LZω

i
r ∈ Ω(m), the congruences

LZ(dwi
r − wi

r+1dx) = dzi
r − zi

r+1dx− wi
r+1dz

= Dzi
rdx− zi

r+1dx− wi
r+1Dz dx mod Ω(m)

imply that (3.111) is expressed by the recurrences

zi
r+1 = Dzi

r − wi
r+1Dz (3.12)

for coefficients zi
r of the vector field Z in (3.10).

On the contrary the second condition (3.112) reads

Z� dϕ̆+ d(Z� ϕ̆) ∈ Ω(m). (3.13)

and gives a close connection between fields and Euler–Lagrange equations.
In order to sketch a link to the usual approach, let us note that the condition (3.11) is

equivalent to

LZΩ(m) ⊂ Ω(m), and LZ(fdx) ∈ Ω(m). (3.14)

Now

LZ(fdx) = Zfdx+ fdz ∼ (Zf + fDz)dx mod Ω(m),

and (3.14) imply the common symmetry requirement

Zf + fDz = 0,

which is useful in particular examples.

Theorem 3.1. Let Z be a vector field satisfying (3.112). Then the function ϕ̆(Z) is constant
on every extremal of the variational integral (3.4).

Proof. If P is an extremal of (3.4), then in view of (3.71), (3.8), and (3.112)

0 = −P
∗(Z� dϕ̆) = P

∗(d(Z� ϕ̆)) = dP∗(Z� ϕ̆) = dP∗ϕ̆(Z).

As a simple corollary we obtain the celebrated Noether’s theorem.

Corollary 3.1. Let Z be an infinitesimal symmetry of the variational integral (3.4). Then
the function

G := ϕ̆(Z) = zf +
m∑

i=1

(zi
0 − wi

1z)
∂f

∂wi
1

(3.15)

is a first integral of the Euler–Lagrange system of (3.4).



March 25, 2011 14:48 WSPC/1402-9251 259-JNMP S1402925111001180

A Route to Routh — The Classical Setting 93

3.2. x-preserving pointwise symmetries, the orbit space M(m)orb

Probably the most surprising and at the same time the most annoying property of vector
fields on M(m) is that in general they do not need to generate any flow. For this and other,
mainly technical reasons we shall henceforth deal only with rather special x-preserving
pointwise infinitesimal symmetries that is with the vector fields

Z :=
m∑

i=1

∞∑
r=0

zi
r

∂

∂wi
r

, zi
0 = zi

0(x,w
1
0 , . . . , w

m
0 ) (3.16)

fulfilling (3.11).
When Z is an x-preserving pointwise infinitesimal symmetry, the recurrences (3.12)

simplify to

zi
r+1 = Dzi

r. (3.17)

This implies that the Lie-brackets

[Z,D] = ZD − DZ =
m∑

i=1

∞∑
r=0

Zwi
r+1

∂

∂wi
r

−
m∑

i=1

∞∑
r=0

Dzi
r

∂

∂wi
r

= 0 (3.18)

vanish identically since Zwi
r+1 = zi

r+1 = Dzi
r.

But the most important consequences are that any pointwise infinitesimal symmetry
(3.16) locally generates certain flow

Fτ
Z : M(m) × (−ε, ε) → M(m), ε > 0,

with very special properties due to the identity (3.18), and that locally any point P ∈ M(m)
is contained in an orbit

{Fτ
Z(P ) : −ε < τ < ε} .

In our setting any two orbits are either disjoint or identical, which gives us the possibility to
work with the factorspace M(m)orb defined in such a way that every (local) orbit of M(m)
is represented by a point of this orbit space M(m)orb.

3.3. Coordinates on M(m), M(m)orb

We shall introduce some suitable (local) coordinates in M(m)orb. To that end let us remind
that any function W locally defined on M(m) and constant on any orbit of the vector
field Z,

W (Fτ
Z(P )) ≡ const(P ), P ∈ M(m), (3.19)

is called a first integral of Z. Clearly instead of (3.19) we could equivalently use the condition

d

dτ
W (Fτ

Z(P )) = 0 for − ε < τ < ε, P ∈ M(m).

But for any P ∈ M(m) and −ε < τ < ε

d

dτ
Fτ

Z(P ) = Z(Fτ
Z(P )), (3.20)
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by the definition of the Z-flow, hence

d

dτ
W (Fτ

Z(P )) = dW (Fτ
Z(P ))

d

dτ
Fτ

Z(P ) = dW (Fτ
Z(P ))Z(Fτ

Z(P )) = ZW (Fτ
Z(P )),

and it follows that ZW ≡ 0 whenever W is a first integral.
The differential equation (3.20) written in terms of the jet coordinates x, wi

r is

d

dτ
x ◦ Fτ

Z = 0,

d

dτ
wi

r ◦ Fτ
Z = zi

r(x ◦ Fτ
Z , w

1
0 ◦ Fτ

Z , . . . , w
m
0 ◦ Fτ

Z , w
1
1 ◦ Fτ

Z , . . . , w
m
r ◦ Fτ

Z), (3.21)

for i = 1, . . . ,m; r = 0, 1, . . . .

Because for r = 0; i = 1, . . . ,m this system is closed and (m + 1)-dimensional, standard
theory of ordinary differential equations grants the (local) existence of m first integrals of
(3.20)

x and W k
0 = W k

0 (x,w1
0, . . . , w

m
0 ) for k = 1, . . . ,m− 1, (3.22)

which are functionally independent, especially

rank
[
∂W k

0

∂wi
0

]
i=1,...,m; k=1,...,m−1

= m− 1. (3.23)

Therefore

ZW k
0 = 0 for k = 1, . . . ,m− 1,

and, in view of the commutativity of Z and D given by (3.18), all functions

W k
r = W k

r (x,w1
0, . . . , w

m
0 , . . . , w

1
r , . . . , w

m
r ) := DrW k

0 , (k = 1, . . . ,m− 1; r = 0, 1, . . .),

are first integrals of Eq. (3.20) as well.
Moreover, let Wm

0 = Wm
0 (x,w1

0 , . . . , w
m
0 ) be a local solution of the partial differential

equation

ZWm
0 =

m∑
i=1

zi
0

∂Wm
0

∂wi
0

= 1. (3.24)

Then, in view of (3.18), all functions

Wm
r = Wm

r (x,w1
0, . . . , w

m
0 , . . . , w

1
r , . . . , w

m
r ) := DrWm

0 , (r = 0, 1, . . .),

are first integrals of Eq. (3.20).
It is easy to see that due to (3.23) and (3.24) all here considered first integrals are

functionally independent. Therefore the following proposition holds.

Proposition 3.1. Let a vector field (3.16) be an x-preserving pointwise infinitesimal sym-
metry of the variational problem (3.4) and W i

r be the functions defined above.
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Then the functions

x, W 1
0 , . . . , W

m−1
0 , Wm

0 ,

W 1
1 , . . . , W

m−1
1 , Wm

1 ,

...
...

...

W 1
r , . . . , W

m−1
r , Wm

r ,

...
...

...

(r = 0, 1, . . .) (3.25)

are local coordinates on M(m), and the functions

x, W 1
0 , . . . , W

m−1
0 ,

W 1
1 , . . . , W

m−1
1 , Wm

1 ,

...
...

...

W 1
r , . . . , W

m−1
r , Wm

r ,

...
...

...

(r = 0, 1, . . .) (3.26)

are local coordinates on M(m)orb.

The last part of Proposition 3.1 follows from the definition of the space M(m)orb as the
factor space of the total space M(m).

Remark 3.1. Following the common conventions, we identify any function V defined on
M(m)orb with its pullback W on M(m). Alternatively saying any (local) first integral W on
M(m) can be represented as a pullback of a function V on M(m)orb. We omit the pullback
notation occasionally and identify W ≡ V .

3.4. The normal case

We have obtained coordinates on M(m) and on M(m)orb. But these coordinates are not
optimal for our purposes because they are not related to the function G introduced in
(3.15).

To remedy this situation, we define the sequence of functions

G1 := G− c, Gr+1 := DrG1, (r = 1, 2, . . .),

where c ∈ R is an arbitrary but fixed constant (parameter). As in the previous cases
Gr = Gr(x,w1

0, . . . , w
m
0 , . . . , w

1
r , . . . , w

m
r ).

Definition 3.3. The situation when the above defined functions

x, W 1
0 , . . . , W

m−1
0 , Wm

0 ,

W 1
1 , . . . , W

m−1
1 , G1,

...
...

...

W 1
r , . . . , W

m−1
r , Gr,

...
...

...

(r = 1, 2, . . .) (3.27)

determine (local) coordinates on M(m) will be called the normal case.
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Just as in Sec. 2 the assumption of the normal case is crucial for our theory. Therefore it
is of paramount importance to have effective criteria of the normal case. This is seemingly
impossible since our (new) definition of the normal case is based on the explicit knowledge
of a complete set of first integrals of the differential equation (3.20). However, and this is a
real surprise, there is one.

Lemma 3.2. For the variational integral (3.4) and the x-preserving pointwise symme-
try (3.16) we have the normal case if and only if

m∑
i=1

m∑
j=1

∂2f

∂wi
1∂w

j
1

zi
0z

j
0 �= 0. (3.28)

Proof. We just have to prove that the system (3.27) is functionally independent. Due to
the structure of its Jacobi matrix this is equivalent to

rank




∂W 1
0

∂w1
0

, . . . ,
∂W 1

0

∂wm
0

...
...

∂Wm−1
0

∂w1
0

, . . . ,
∂Wm−1

0

∂wm
0

∂G

∂w1
1

, . . . ,
∂G

∂wm
1




= m. (3.29)

Since ZW k
0 = 0 for k = 1, . . . ,m− 1 the requirement (3.29) is equivalent to the inequality

m∑
j=1

∂G

∂wj
1

zj
0 �= 0.

But in view of (3.15) and (3.16) we have

∂G

∂wj
1

=
m∑

i=1

∂2f

∂wi
1∂w

j
1

zi
0 for j = 1, . . . ,m,

which concludes the proof.

Let us note that the normal case is trivially satisfied for non-degenerated variational
problems that is for the problems fulfilling

det

[
∂2f

∂wi
1∂w

j
1

]
�= 0.

Example 3.1. Let us try out what is the normal case for the original Routh problem solved
in Sec. 2. Here Z = ∂/∂z, so

G = ϕ̆(Z) =
(
fdx+

∂f

∂ẏ
(dy − ẏ dx) +

∂f

∂ż
(dz − ż dx)

)(
0
∂

∂y
+ 1

∂

∂z

)
=
∂f

∂ż
,
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and the normal case condition (3.28) reads

∂2f

∂ż2
�= 0,

which is in full agreement with the traditional concept (2.4).

Now, similarly to Proposition 3.1, we would like to extend Definition 3.3 to M(m)orb.
To this end we need to refine (3.112) as follows.

Lemma 3.3. Let Z be an x-preserving pointwise infinitesimal symmetry (3.10). Then
LZ ϕ̆ = 0.

Proof. On the one hand in view of (3.11) we have

LZϕ̆ =
m∑

i=1

∑
r=0

ai
rω

i
r,

hence

dLZ ϕ̆ =
m∑

i=1

∑
r=0

dai
r ∧ ωi

r +
m∑

i=1

∑
r=0

ai
rdx ∧ ωi

r+1

=
m∑

i=1

∑
r=0


Dai

rdx+
m∑

j=1

∑
s=0

∂ai
r

∂wj
s

ωj
s


 ∧ ωi

r +
m∑

i=1

∑
r=0

ai
rdx ∧ ωi

r+1

∼
m∑

i=1

∑
r=0

(
Dai

rdx ∧ ωi
r + ai

rdx ∧ ωi
r+1

)
mod all ωi

r ∧ ωj
s. (3.30)

On the other hand in view of (3.6) we have

dLZ ϕ̆ = LZdϕ̆ ∼
m∑

i=1

ei
(
LZω

i
0

) ∧ dx ∼
m∑

i=1

ei(dzi
0 − wi

1dz) ∧ dx

=
m∑

i=1

ei


Dzi

0dx+
m∑

j=1

∂zi
0

∂wj
0

ωj
0 − wi

1


Dzdx+

m∑
j=1

∂z

∂wj
0

ωj
0




 ∧ dx ∼ 0. (3.31)

Now if we compare (3.30) with (3.31), and use the fact that all ai
r depend on a finite number

of jet coordinates, we obtain the system

r(i)∑
r=1

(Dai
r + ai

r−1)ω
i
r + ai

r(i)ω
i
r(i)+1 = 0 i = 1, . . . ,m,

where r(i) are such integers that ai
r = 0 for r > r(i). The backward induction gives ai

r = 0
identically for i = 1, . . . ,m and 0 ≤ r ≤ r(i), therefore LZ ϕ̆ = 0.

Lemma 3.4. Let Z be an x-preserving infinitesimal symmetry (3.16) of the variational
problem (3.4) and W i

r , Gr are the functions defined above.
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Then in the normal case the functions

x, W 1
0 , . . . , W

m−1
0 ,

W 1
1 , . . . , W

m−1
1 , G1,

...
...

...

W 1
r , . . . , W

m−1
r , Gr,

...
...

...

(r = 1, 2, . . .) (3.32)

determine (local) coordinates on M(m)orb.

Proof. By virtue of (3.13) and (3.15)

ZG1 = dG(Z) = d(ϕ̆(Z))(Z) = −dϕ̆(Z,Z) = 0,

hence G1 is a first integral of the equation (3.20) and by (3.18) the same is true for the
whole sequence {Gr}∞r=1. According to Remark 3.1 we can regard all functions x, W i

r , and
Gr in (3.32) as functions on the orbit space M(m)orb. In the normal case the functions
Wm

1 , Wm
2 . . . in (3.26) may be replaced by functions G1, G2, . . . , hence the system (3.32)

determines (local) coordinates on M(m)orb.

Remark 3.2. In terms of alternative coordinates (3.25) on M(m), we have

D =
∂

∂x
+

m∑
i=1

∞∑
r=0

W i
r+1

∂

∂W i
r

, (3.33)

whence the module Ω(m) consists exactly of all forms

ω =
m∑

i=1

r(i)∑
r=0

Ai
rΩ

i
r, (3.34)

where

Ωi
r := dW i

r −W i
r+1dx. (3.35)

The vector field D has a good sense even on the space M(m)orb, namely it may be applied
to any coordinate (3.26) on M(m)orb and therefore to any function on M(m)orb. These
results expressed in alternative coordinates (3.27) or (3.32) should be regarded as lucky
accidents — they cannot be directly generalized to x-destroying groups.

Especially in terms of coordinates (3.26) the field D and the contact forms ω are rep-
resented as in (3.33) and (3.34), however, the terms Wm

1 ∂/∂W
m
0 and Am

0 Ωm
0 should be

removed.

4. Main Results

Before we state our main results concerning a purely geometric formulation of the Routh
reduction we have to prove a fundamental characteristic of the Poincaré–Cartan forms. It
will save us a substantial amount of work in our proofs.
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Theorem 4.1. A one-form

ψ = fdx+
m∑

i=1

∑
r=0

ai
rω

i
r,

is the Poincaré–Cartan form of the variational integral (3.4) iff

dψ = 0 mod all ωi
0, ωi

r ∧ ωj
s. (4.1)

Proof. The necessity of (4.1) follows immediately from the form of dϕ̆ (3.6). In order to
prove its sufficiency let us note that

dψ = df ∧ dx+
m∑

i=1

∑
r=0

(dai
r ∧ ωi

r − ai
rω

i
r+1 ∧ dx)

=

(
Dfdx+

m∑
i=1

∂f

∂wi
0

ωi
0 +

m∑
i=1

∂f

∂wi
1

ωi
1

)
dx

+
m∑

i=1

∑
r=0




Dai

rdx+
m∑

j=1

∑
s=0

∂ai
r

∂wj
s

ωj
s


 ∧ ωi

r − ai
rω

i
r+1 ∧ dx




=
m∑

i=1

[
∂f

∂wi
1

ωi
1 −

∑
r=1

Dai
rω

i
r −

∑
r=0

ai
rω

i
r+1

]
∧ dx mod ωi

0, ωi
r ∧ ωj

s.

Because all sums in the last term are finite, there exist nonnegative integers r(i), i = 1, . . . , n,
such that ai

r = 0 for all r > r(i). The equations

∂f

∂wi
1

ωi
1 −

r(i)∑
r=1

Dai
rω

i
r −

r(i)∑
r=0

ai
rω

i
r+1 = 0, (i = 1, . . . ,m)

give ai
r(i) = 0. Hence by the backward induction we obtain ai

r = 0 for r > 0, i = 1, . . . ,m
and the equations

∂f

∂wi
1

ωi
1 − ai

0ω
i
1 = 0 for i = 1, . . . ,m.

Therefore ψ is the Poincaré–Cartan form of (3.4).

Our main theorem not only gives a generalization of the classical Routh reduction to
pointwise symmetries, but it yields an explicit representation of the Routh function.

In its proof, we introduce a subspace M(m) ⊂ M(m) defined in terms of coordinates
(3.25) by a sequence of equations, and depending on a parameter c ∈ R. The same sequence
of equations, this time in coordinates (3.26), will define the subspace M(m)orb ⊂ M(m)orb.

Arguments analogous to those in Remark 3.2 shows that the vector field D and the
module of contact forms Ω(m) make good sense even for the subspaces M(m) and M(m)orb,
and that they may be expressed by (3.33) and (3.34), where all summands Wm

r+1∂/∂W
m
0

and Am
r Ωm

r (r = 0, 1, . . .) should be removed.
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Theorem 4.2. Let Z :=
∑m

i=1

∑∞
r=0 z

i
r∂/∂w

i
r be an x-preserving pointwise infinitesimal

symmetry of the variational integral (3.4), where the integrand f fulfills the normality
condition

m∑
i=1

m∑
j=1

∂2f

∂wi
1∂w

j
1

zi
0z

j
0 �= 0.

Then for any constant c ∈ R and for any solution Wm
0 = Wm

0 (x,w1
0, . . . , w

m
0 ) of the equation

ZWm
0 = 1

the restriction f̃ of the function f − cDWm
0 to the subspace

M(m) := {Dr(ϕ̆(Z) − c) = 0; r = 0, 1, . . .} ⊂ M(m)

is a Routhian of the original variational integral (3.4). More exactly f̃ can be represented as
a composed function f̃ = f̃(x,W 1

0 , . . . ,W
m−1
0 ,W 1

1 , . . . ,W
m−1
1 ; c) depending on the parame-

ter c, and regarded as a function on M(m)orb.
Moreover the extremals of the Routh variational integral∫

f̃(x,W 1
0 , . . . ,W

m−1
0 ,W 1

1 , . . . ,W
m−1
1 , c) dx

(
W i

r =
drW i

dxr
, W i = W i(x)

)
(4.2)

on the orbit space M(m)orb are just natural projections of the extremals of the original
variational integral (3.4) lying in the subspace M(m).

Proof. We will work in coordinates (3.25) on M(m). Then the variational integral (3.4)
looks like ∫

F (x,W 1
0 , . . . ,W

m
0 ,W

1
1 , . . . ,W

m
1 ) dx, (4.3)

where W i
r = drW i/dxr, W i = W i(x) and the smooth function F is defined by

F (x,W 1
0 , . . . ,W

m
0 ,W 1

1 , . . . ,W
m
1 ) := f(x,w1

0, . . . , w
m
0 , w

1
1 , . . . , w

m
1 ).

Next, for i = 1, . . . ,m consider the coordinate functions W i
0 = W i

0(x,w
1
0 , . . . , w

m
0 ). If we

express the differential dW i
0 in coordinates (3.25) and in original coordinates x, wi

r, we
obtain

W i
1dx+ Ωi

0 and DW i
0dx+

m∑
j=1

∂W i
0

∂wj
0

ωj
0.

Therefore

Ωi
0 =

m∑
j=1

∂W i
0

∂wj
0

ωj
0 for i = 1, . . . ,m.

According to Proposition 3.1 the matrix[
∂W i

∂wj
0

]
i,j=1,...,m
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is invertible, hence

ωi
0 =

m∑
j=1

ai
jΩ

j
0 for i = 1, . . . ,m (4.4)

for suitable smooth functions ai
j = ai

j(x,W
1
0 , . . . ,W

m
0 ,W 1

1 , . . . ,W
m
1 ).

Next, the Poincaré–Cartan form of the original variational integral (3.4) looks in coor-
dinates (3.25) like

ϕ̆ = Fdx+
m∑

i=1

m∑
j=1

∂F

∂W j
1

∂W j
1

∂wi
1

m∑
k=1

ai
kΩ

k
0

= Fdx+
m∑

i=1

AiΩi
0,

where Ai = Ai(x,W 1
0 , . . . ,W

m
0 ,W 1

1 , . . . ,W
m
1 ). The easy part of Theorem 4.1 tells us that

dϕ̆ = 0 mod all ωi
0,

and this together with (4.4) gives

dϕ̆ = 0 mod all Ωi
0.

Now the hard part of Theorem 4.1 implies that ϕ̆ is the Poincaré–Cartan form even for the
transformed variational integral (4.3), therefore

ϕ̆ = Fdx+
m∑

i=1

∂F

∂W i
1

Ωi
0.

In other words the concept of Poincaré–Cartan form has a good geometric sense.
Since Z is an x-preserving pointwise infinitesimal symmetry of (3.4), the same is true

in the new coordinates (3.25), moreover it is easy to see that

Z =
∂

∂Wm
0

,

so

0 = LZ ϕ̆ = (LZF )dx+ F (LZdx) +
m∑

i=1

(
LZ

∂F

∂W i
1

)
Ωi

0 +
m∑

i=1

∂F

∂W i
1

(
LZΩi

0

)

=
∂F

∂Wm
0

dx+
m∑

i=1

(
LZ

∂F

∂W i
1

)
Ωi

0,

hence ∂F/∂Wm
0 = 0. Consequently

F = F (x,W 1
0 , . . . ,W

m−1
0 ,W 1

1 , . . . ,W
m
1 ) (4.5)

is independent of Wm
0 .
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Next, the direct computation gives G = ϕ̆(Z) = ∂F/∂Wm
1 and we see that in the new

coordinates (3.25) the normal case is expressed by

∂2F

∂Wm
1

2 �= 0.

The implicit function theorem thus ensures that we can uniquely solve the equation
ϕ̆(Z) = c for

Wm
1 = g(x,W 1

0 , . . . ,W
m−1
0 ,W 1

1 , . . . ,W
m−1
1 , c).

At this moment all assertions of the theorem can be obtained analogously as the classical
results in Sec. 2. In view of (4.5) the Euler–Lagrange equations of (3.4) are

∂F

∂W i
0

−D
∂F

∂W i
1

= 0 for i = 1, . . . ,m− 1, (4.6a)

∂F

∂Wm
1

= c. (4.6b)

The function f − cDWm
0 restricted to the space M(m) is

f̃ = (F − cWm
1 ) |W m

1 =g = F (x,W 1
0 , . . . ,W

m−1
0 ,W 1

1 , . . . ,W
m−1
1 , g(·)) − cg(·),

and we can easily compute

∂f̃

∂W i
0

−D
∂f̃

∂W i
1

=
∂F

∂W i
0

−D
∂F

∂W i
1

∣∣∣∣
W m

1 =g

for i = 1, . . . ,m− 1,

whence the system

∂f̃

∂W i
0

−D
∂f̃

∂W i
1

= 0 for i = 1, . . . ,m− 1,

∂F

∂Wm
1

= c

is equivalent to the system (4.6).
Because the equations (4.6a) may be identified with the Euler–Lagrange system of the

variational integral (4.2) on the space M(m)orb, the proof is completed.

Corollary 4.1. Let ϕ̆ and ϕ̃ be the Poincaré–Cartan forms of the variational integrals (3.4)
and (4.2) respectively. Then

i∗ϕ̆ = p∗ϕ̃+ cdWm
0 , (4.7)

where

p : M(m) → M(m)orb

is the natural projection, and

i : M(m) → M(m)

is the inclusion mapping.
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Proof. The identity (4.7) follows at once from the formula

i∗ϕ̆ = F |W m
1 =gdx+

m−1∑
i=1

∂F

∂Wm
1

∣∣∣∣∣
W m

1 =g

(
dW i

0 −W i
1dx
)

+ c (dWm
0 −Wm

1 dx)

= f̃ dx+
m−1∑
i=1

∂F

∂Wm
1

∣∣∣∣∣
W m

1 =g

(
dW i

0 −W i
1dx
)

+ cdWm
0

for the restriction to the space M(m).

5. Simple Applications

The following examples transparently illustrates the sense of various choices of function
Wm

0 in Theorem 4.2. The resulting Routh integrals differ by a total differential.

Example 5.1. Let us consider the variational integral (2.1) fulfilling the normality condi-
tion (2.4). The Poincaré–Cartan form of (2.1) is

ϕ̆ = fdx+
∂f

∂ẏ
ωy +

∂f

∂ż
ωz,

where ωα := dα− α̇dx for α ∈ {y, z}.
Consider the vector field

Z :=
∂

∂z
,

then

ϕ̆(Z) =
∂f

∂ż
, LZωy = LZωz = 0,

and due to cyclicity of z

LZ ϕ̆ =
(
LZ

∂f

∂ẏ

)
ωy +

(
LZ

∂f

∂ż

)
ωz ∈ Ω(2),

whence Z is an x-preserving pointwise infinitesimal symmetry of (2.1) and all assumptions
of Theorem 4.2 are fulfilled.

Next any smooth function W (x, y, z) := z+C(x, y) is a solution of the partial differential
equation

1 = ZW

(
=
∂W

∂z

)
,

and

f − cDW = f − c (Cxẋ+ Cyẏ + ż), c ∈ R.

Now

M(2) :=
{

(x, y, z, ż, ż, . . .) :
∂f

∂ż
= c, and Dr ∂f

∂ż
= 0 for r = 1, 2, . . .

}
,
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hence

(f − cDW )|
M(2) = f̃(x, y, ẏ; c) − c(Cxẋ+ Cyẏ),

where f̃ is the classical Routhian. The Routh variational integral is∫
f̃(x, y, ẏ; c) dx − c

∫
(Cxẋ+ Cyẏ) dx =

∫
f̃ dx− c

∫
dC,

where C = C(x, y) is an arbitrary function.

Example 5.2. Let us consider the first order scalar variational integral∫
f(x,w1

0, . . . , w
m
0 , w

1
1, . . . , w

m
1 ) dx,

(
wi

r =
drwi

dxr
, wi = wi(x)

)
, (5.1)

and the infinitesimal symmetry Z :=
∑m

i=1 a
i∂/∂wi

0, (a
i ∈ R). Let the normal case (3.28)

condition

m∑
i=1

m∑
j=1

aiaj ∂2f

∂wi
1∂w

j
1

�= 0

be fulfilled. Equation ZWm
0 = 1 has the solution of the kind

Wm
0 =

m∑
i=1

biwi
0 +C(x, . . . , aiwj

0 − ajwi
0, . . .),

where
∑m

i=1 a
ibi = 1 and C is a general solution of the homogeneous equation ZC = 0.

Now, we have the Routh function

R = f − c

(
m∑

i=1

biwi
1 +

∂C

∂x
+

m∑
i=1

wi
1
∂C

∂wi
0

)

which should be restricted to the subspace

ϕ̆(Z) =
m∑

i=1

ai ∂f

∂wi
1

= c.

Then the Routh variational integral becomes a variational integral on the space of orbits
defined by aiwj

0 − ajwi
0 = const (i, j = 1, . . . ,m), and it is possible to obtain explicit

formulae for particular choice of function f .
The infinitesimal invariance is ensured if

f = F (x, . . . , aiwj
0 − ajwi

0, . . . , w
1
1, . . . , w

m
1 )

which also clarifies the interrelation to the orbit space. The particular choice a1 = b1 =
1, ai = bi = 0, (i = 2, . . . ,m), C = 0 provides the classical multidimensional Routh
theorem.
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Example 5.3. Let us consider again the variational integral (5.1), but this time together
with the infinitesimal symmetry

Z :=
m∑

i=1

aiwi
0

∂

∂wi
0

+
m∑

i=1

aiwi
1

∂

∂wi
1

+ · · · , (ai ∈ R).

Let the normal case condition

m∑
i=1

m∑
j=1

aiajwi
0w

j
0

∂2f

∂wi
1∂w

j
1

�= 0

be fulfilled. Equation ZWm
0 = 1 has a solution

Wm
0 =

m∑
i=1

bi logwi
0 + C(x, . . . , ai logwj

0 − aj logwi
0, . . .),

where
∑m

i=1 a
ibi = 1 and C is a general solution of the homogeneous equation ZC = 0.

Now, we have the Routh function

R = f − c

m∑
i=1


biwi

1

wi
0

+
∂C

∂x
+

m∑
j=1

wj
1

∂C

∂wj
0


 ,

which should be restricted to the subspace

ϕ̆(Z) =
m∑

i=1

aiwi
0

∂f

∂wk
1

= c.

Functions

ai logwj
0 − aj logwi

0, ai logwj
1 − aj logwi

0, and ai logwj
1 − aj logwi

1, (i, j = 1, . . . ,m)

are constant on orbits and the kernel function f is composition of the coordinate x and
these functions.

Example 5.4. Let us consider the Lagrange variational integral

∫ 1
2

m∑
i,j=1

aij q̇iq̇j − V


 dt, (5.2)

where aij and V are functions of configuration variables q1, . . . , qm but independent of the
time t. It is well-known, that the integrand in (5.2) admits the infinitesimal symmetry ∂/∂t.
In order to apply the Routh theorem, let us use the substitution

t = w0
0(x), wi

0(x) = qi(w0
0(x)) (i = 1, . . . ,m),
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whence

dt = w0
1(x)dx, wi

1(x) = q̇i(w0
0(x))w

0
1(x)dx (i = 1, . . . ,m),

in terms of jet coordinates. Then the original integral turns into

∫ 1
2

m∑
i,j=1

aijwi
1w

j
1

1
w0

1

− V w0
1


 dx,

which admits the infinitesimal symmetry Z = ∂/∂w0
0 . The classical Routh theorem can be

applied (with a slight change in the upper indices). Clearly

ϕ̆(Z) = −1
2

m∑
i,j=1

aijwi
1w

j
1

1
(w0

1)2
− V = −1

2

m∑
i,j=1

aij q̇iq̇j − V,

and we obtain the Routh variational integral

∫ 1
2

m∑
i,j=1

aijwi
1w

j
1

1
w0

1

− V w0
1 − cw0

1


 dx =

∫ 1
2

m∑
i,j=1

aij q̇iq̇j − V − c


dt,

on the level set ϕ̆(Z) = c. The final result reads

∫ m∑
i,j=1

aij q̇iq̇jdt =
∫

(2c − V )dt = ±
∫ √√√√ m∑

i,j=1

aij q̇iq̇j
√±2c∓ V dt,

in accordance with the well-known Jacobi–Maupertuis variational principles, see also [3].

Example 5.5. The variational integral∫
F (x, y2 + z2, yy′ + zz′, y′2 + z′2) dx

admits the rotation group, hence the infinitesimal transformation

Z = −z ∂
∂y

+ y
∂

∂z
− z′

∂

∂y′
+ y′

∂

∂z′
− · · · .

Function W = arctan(z/y) satisfies ZW = 1. Moreover

ϕ̆(Z) = −(yFv + 2y′Fw)z + (zFv + 2z′Fw)y = 2(yz′ − y′z)Fw.

We omit the rather complicated normality requirement. The Routh function

f̃ = F − c

(
y′
∂

∂y
+ z′

∂

∂z

)
arctan

z

y
= F − c

yz′ − y′z
y2 + z2

should be considered at the space of orbits (circles x2 + y2 = Const., x = Const.) under the
condition ϕ̆(Z) = c.

For example, let us choose F := y′2 + z′2. Then

f̃ = y′2 + z′2 − c
yz′ − y′z
y2 + z2
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is considered under the condition 2(yz′−y′z) = c. Let us introduce coordinates x, u = y2+z2,
u′ = 2(yy′ + zz′), . . . on the orbit space. Then, after simple calculations

y′2 + z′2 =
u′2 + c2

4u
,

and

f̃ =
u′2 + c2

4u
− c2

2u
.

Therefore the Routh function f̃ is indeed defined on the orbit space. The normality require-
ment u �= 0 can be easily found.

Analogously the Lagrange variational invariant with respect to the rotation can be
reduced to the orbit space of certain circles with constant regular momentum and this
result exactly correspond to the reduction to the level set ϕ̆ = const. of constant energy
mentioned in Example 5.4.
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