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1. Introduction

The classical Laplace invariants [10] were introduced in the context of second-order, linear
hyperbolic systems of the form

z,xy + az,x + bz,y + cz = 0, (1.1)

where a, b and c are given functions and z = z(x, y) is an unspecified solution of this partial
differential equation.

The form of Eq. (1.1) is unchanged under a general transformation z �→ g(x, y)z where
g(x, y) is a sufficiently differentiable, but otherwise arbitrary, function. In fact the coeffi-
cients of the equation are simply mapped into new functions,

a �→ a′ = a + g−1g,y ,

b �→ b′ = b + g−1g,x , (1.2)

c �→ c′ = c + g−1ag,x + g−1bg,y + g−1g,xy
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and it is easily seen that the following two functions are invariant under such a
transformation:

h = a,x + ab − c, (1.3)

k = b,y + ab − c. (1.4)

More than this, the pair {h, k} is a complete set of invariants in that two equations of
the form (1.1) having exactly the same invariants, as functions of x and y, must necessarily
be related by a gauge transformation of the sort described. The family of equations is thus
partitioned into equivalence classes labeled by these pairs of functions. These functions are
called Laplace invariants by many researchers in integrability theory (see e.g. [5, 6, 8, 14,
16, 17, 19]).

Such invariants have played an important role in recent work on the geometrical theory
of integrable systems and soliton equations. It is not our purpose to rehearse these connec-
tions here and we refer the interested reader to Refs. [11, 20] where much of the material is
reviewed. However, it is important to point out that a valuable role is played by the Laplace
map, a differential map between equations of the form (1.1) which acts on the equivalence
classes according to the equations of the two-dimensional Toda lattice [12, 18]. The gener-
alization of the Laplace map to higher dimension and higher rank linear systems is of great
importance [1, 20]. This paper should be regarded as a prolegomenon to a general theory
of such transformations.

There are generalizations of the classical Laplace invariants already in existence. They
are mainly developed to answer questions about factorizability and integrability of partial
differential equations.

Thus in the work of [8, 14, 17] Laplace invariants are constructed for scalar linear
partial differential operators of order greater than two. The accompanying calculations are
computationally demanding and attempts have been made to put the construction into a
more abstract, systematic framework [10, 13].

Another important direction of generalization is to nonlinear systems. In [4] are defined
invariants for Toda lattices via a hyperbolic linearization and in [7] a geometric view is
taken via exterior differential algebra. Here the invariants are defined via localization and
this may be related to the approach of the previous paragraph.

Laplace invariants arise naturally in the theory of the Toda Lattice and in integrable
equations of hydrodynamic type [3, 15].

There is a large body of work on the definition and application of such invariants and
there is no space to be comprehensive here. Further work is cited in the references given.

In Sec. 2 we develop a complete theory of generalized Laplace invariants for n-
dimensional, linear hyperbolic systems. In particular we describe a minimal, complete set
of invariants labeling gauge-equivalence classes. The implementation of Laplace maps on
such invariants will form the subject of another study.

In Sec. 3 we consider the case of an n-dimensional matrix system with fewer than n

independent variables. In this case the scalar coefficients of the first section are effectively
replaced by matrix-valued objects. We are able to give a general prescription for constructing
matrix-valued, generalized Laplace covariants generalizing that of, say, [9]. Invariants in
such circumstances would arise from traces of suitable polynomials in the covariants. We
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do not discuss completeness in this case and again we do not here treat the corresponding
generalized Laplace maps.

Before proceeding let us note that the form (1.1), though symmetric, has a degree of
redundancy about it. We may choose to transform it using a gauge transformation z �→ gz

where g satisfies g,y = −a(x, y)g. In this case the transformed equation is

z,xy +
(∫

{k − h}dy

)
z,y −hz = 0, (1.5)

and the dependence on the equivalence class is explicit. An equation of this reduced form,

z,xy + bz,y + cz = 0, (1.6)

still retains a gauge covariance, namely z �→ g(x)z, the gauge function depending upon x

alone and it is naturally written as a system in z and z,y:(
∂x −βc

1/β ∂y

)(−βz,y
z

)
= 0, (1.7)

where β,x = βb.
Of course, we might equally consider reduced forms

z,xy + az,x + cz = 0, (1.8)

with y dependent gauge transformations, but what we cannot do in general is reduce to the
form

z,xy + cz = 0, (1.9)

as this requires that the special relationship h = k, ∀x, y should hold.
Equally we could start with a general system form(

∂x + h11 h12

h21 ∂y + h22

)(
z1

z2

)
= 0 (1.10)

as is done in [1]. Gauge transformations preserving this form of system are 2 × 2 diagonal
matrices acting on the two component vector of the zi. The gauge invariants are

(12) = h12h21, (1.11)

[12] = h11,y −h22,x +
1
2

ln
(

h12

h21

)
,xy . (1.12)

However the redundancy is also present here and we can use the gauge transformation
to kill the diagonal terms h11 and h22. This leaves us with the canonical form(

∂x h12

h21 ∂y

)(
z1

z2

)
= 0, (1.13)

and residual gauge transformations(
z1

z2

)
�→
(

g1(y) 0
0 g2(x)

)(
z1

z2

)
(1.14)
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with invariants

(12) = h12h21, (1.15)

[12] =
1
2

ln
(

h12

h21

)
,xy . (1.16)

It is not difficult to verify that these invariants are a complete set for the canonical
form (1.13).

In what follows we shall consider n × n systems and discuss the completeness of the
sets of invariants constructed in a similar manner to those presented in this introduction.
We shall also relate them to second-order, matrix equations, i.e. those of the type (1.1) but
having a, b and c as square matrices rather than simple functions.

We use the word dimension to denote the number of independent variables which we shall
henceforth write as x1, x2, . . . , xn. By rank we shall understand the number of components
in the solution vector z: z1, z2, . . . , zr.

2. Invariants for General Hyperbolic Systems

Definition 2.1. Let L be an n × n matrix differential operator

L =




∂1 + h11 h12 · · · h1n

h21 ∂2 + h22 · · · h2n
...

...
. . .

...
hn1 hn2 · · · ∂n + hnn


,

where ∂i stands for ∂/∂xi and the hij are functions of x1, x2, . . . , xn. If g is a diagonal n×n

matrix such that g−1 exists, then H = H(hij ) is invariant under the gauge transformation

L
′ = g−1

Lg,

so long as H(h′
ij ) = H(hij ).

2.1. The case where rank and dimension are equal

In this case we deal with matrix differential operators

L =




∂1 0 · · · 0
0 ∂2 0
...

. . .
...

0 · · · ∂n


+




h11 h12 · · · h1n

h21 h22 h2n
...

. . .
...

hn1 · · · hnn


 (2.1)

and gauge transformations

L �→ L
′ = g−1

Lg (2.2)

of the form

g =




g1 0 · · · 0
0 g2 0
...

. . .
...

0 · · · gn


. (2.3)
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The hij and gi here are functions of all variables x1, x2, . . . , xn but we may choose the
reduced (canonical) form in which the diagonal entries h11, h22, . . . , hnn are gauged away
by solving the n equations: gi,i + hiigi = 0, i = 1, 2, . . . , n.

L =




∂1 0 · · · 0
0 ∂2 0
...

. . .
...

0 · · · ∂n


+




0 h12 · · · h1n

h21 0 h2n
...

. . .
...

hn1 · · · 0


. (2.4)

The residual gauge freedom is

g =




g1(x̂1) 0 · · · 0
0 g2(x̂2) 0
...

. . .
...

0 · · · gn(x̂n)


 (2.5)

where hatted variables are deleted from the list of arguments in each gi. Under such
transformations

hij �→ gi(x̂i)−1gj(x̂j)hij (2.6)

and it is easily seen that the following objects are all invariant: Choose from the n labels
{1, 2, . . . , n} a subset of p distinct ones, {i1, i2, . . . , ip}, and define the symbol:

(i1i2 · · · ip) = hi1i2hi2i3 · · ·hipi1 . (2.7)

We say the symbol (i1i2 · · · ip) has length p. Thus in the case of the symbols of lengths
2 and 3 we have (ij ) = hij hji and (ijk) = hij hjkhki .

Because of the cyclic symmetry in these products there will be n!
p(n−p)! symbols of length

p. The symbols of length p are permuted under the action of Sn, the symmetric group on
n labels.

In addition there are 1
2n(n − 1) invariants denoted by square bracket symbols thus:

[ij ] = −[ji ] =
1
2
∂i∂j ln

(
hij

hji

)
. (2.8)

We call the invariants (2.7) and (2.8) simple. All functions of these symbols are them-
selves invariant but we will now show that within the set of simple invariants there are a
complete subset i.e. a set the knowledge of which is enough to determine the operator L

completely up to gauge transformations.

Lemma 2.2. The functions [ij ] and (i1i2 · · · ip) are invariants.

Proof. We consider the n × n differential operator matrix L

L =




∂1 h12 · · · h1n

h21 ∂2 · · · h2n
...

...
. . .

...
hn1 hn2 · · · ∂n


,
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where hij are functions of x1, x2, . . . , xn. We find the invariants of L by using the gauge
transformation, g−1

Lg = L
′, where g is a n × n diagonal matrix

g =




g1 0 · · · 0
0 g2 · · · 0
...

...
. . .

...
0 0 · · · gn


.

Then g−1
Lg = L

′ gives us

0 = (ln gi),i, (2.9)

h′
ij = g−1

i gjhij , (i �= j). (2.10)

Now

1
2

(
ln

h′
ij

h′
ji

)
,ij

=
1
2

(
ln

hij

hji

)
,ij

+
(

ln
gj

gi

)
,ij

which gives

1
2

(
ln

h′
ij

h′
ji

)
,ij

=
1
2

(
ln

hij

hji

)
,ij

since

gr,r = 0, (2.11)

where r = i, j. This gives us the antisymmetric invariants

[ij ] =
1
2

(
ln

hij

hji

)
,ij

. (2.12)

Finally we consider the following relations

h′
i1i2 = g−1

i1
gi2hi1i2 ,

h′
i2i3 = g−1

i2
gi3hi2i3 ,

h′
i3i4 = g−1

i3
gi4hi3i4 ,

...

h′
ip−1ip = g−1

ip−1
giphip−1ip ,

h′
ipi1 = g−1

ip
gi1hipi1 .

Then we obtain

h′
i1i2h

′
i2i3h

′
i3i4 · · ·h′

ip−1iph
′
ipi1 = hi1i2hi2i3hi3i4 · · ·hip−1iphipi1

to give the p-index invariants:

(i1i2i3 · · · ip) = hi1i2hi2i3hi3i4 · · ·hip−1iphipi1 , (2.13)

where the ir are a choice of p distinct integers in {1, 2, . . . , n}.
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By recalling (2.12) and (2.13) we now collect all the invariants of L as follows:

[ij ] =
1
2

(
ln

hij

hji

)
,ij

,

(i1i2i3 · · · ip) = hi1i2hi2i3hi3i4 · · ·hip−1iphipi1 .

Definition 2.3. The functions [ij ] and (i1i2i3 · · · ip) are called the simple invariants of L.

Theorem 2.4. The simple invariants form a complete set for the equivalence class of L

under gauge transformations, where L is defined by (2.4).

Proof. The proof depends on showing that one can construct a suitable gauge matrix g.
In other words we need to show that

L
′ = g−1

Lg ⇔
{

[ij ]′ = [ij ]
(i1i2i3 · · · ip)′ = (i1i2i3 · · · ip)

}
,

where {i1, i2, i3, . . . , ip} ⊂ {1, 2, . . . , n}.
We already know that “⇒” is true. We only need to prove the “⇐” part. Assume the

RHS is true i.e.

[ij ]′ = [ij ],

(i1i2i3 · · · ip)′ = (i1i2i3 · · · ip),
for all subsets {i1, i2, . . . , ip} ⊆ {1, 2, . . . , n}. Let us choose an n×n diagonal matrix f such
that

f =




f1 0 · · · 0
0 f2 · · · 0
...

...
. . .

...
0 0 · · · fn


,

where

f1 = h12h23h34 · · ·hn−1n,

f2 = h′
12h23h34 · · ·hn−1n,

f3 = h′
12h

′
23h34 · · ·hn−1n,

...

fn−1 = h′
12h

′
23h

′
34 . . . h′

n−2n−1hn−1n,

fn = h′
12h

′
23h

′
34 . . . h′

n−2n−1h
′
n−1n.

Then we obtain

f−1
Lf =




∂1 + h̃11 h̃12 · · · h̃1n

h̃21 ∂2 + h̃22 · · · h̃2n
...

...
. . .

...
h̃n1 h̃n2 · · · ∂n + h̃nn


,
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where

h̃ij = f−1
i fjhij (i �= j),

h̃ii = (ln fi),i (i = 1, 2, . . . , n).

Thus we need to show

h̃ij = h′
ij (i �= j). (2.14)

We easily prove (2.14) as follows:

h̃ij = f−1
i fjhij (i �= j).

Let i < j. Then

fi = h′
12h

′
23 · · ·h′

i−1ihii+1 · · ·hj−1jhjj+1 · · ·hn−1n,

fj = h′
12h

′
23 · · ·h′

i−1ih
′
ii+1 · · ·h′

j−1jhjj+1 · · ·hn−1n.

Thus

h̃ij =
fj

fi
hij =

h′
ii+1h

′
i+1i+2 · · ·h′

j−1j

hii+1hi+1i+2 · · ·hj−1j
hij

=
h′

ii+1h
′
i+1i+2 · · ·h′

j−1jh
′
ji

hii+1hi+1i+2 · · ·hj−1jhji
· hji

h′
ji

· hij

=
(ii + 1i + 2 · · · j)′
(ii + 1i + 2 · · · j) · (ij )

h′
ji

· h′
ij

h′
ij

=
(ij )
(ij )′

· h′
ij

= h′
ij

since (ii + 1i + 2 · · · j)′ = (ii + 1i + 2 · · · j) and (ij )′ = (ij ).
Similarly

h̃ji =
fi

fj
hji =

hii+1hi+1i+2 · · ·hj−1j

h′
ii+1h

′
i+1i+2 · · ·h′

j−1j

hji

=
(ii + 1i + 2 · · · j)
(ii + 1i + 2 · · · j)′h

′
ji

= h′
ji.

Hence for i �= j we obtain

h̃ij = h′
ij .
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So we have

f−1
Lf =




∂1 + h̃11 h′
12 · · · h′

1n

h′
21 ∂2 + h̃22 · · · h′

2n
...

...
. . .

...
h′

n1 h′
n2 · · · ∂n + h̃nn


,

where

h̃ii = (ln fi),i. (2.15)

We now need to seek a single function θ so that

θ−1(f−1
Lf)θ = L

′.

This requires that θ satisfy the following equations:

θ−1θ,i + h̃ii = 0

i.e.

θ,i = −h̃iiθ.

The above equations are consistent ⇔ (θ,i),j = (θ,j),i, which gives

h̃ii,j = h̃jj,i. (2.16)

Recalling (2.15) we write

h̃ii = (ln fi),i,

h̃jj = (ln fj),j ,

and if we substitute these into Eq. (2.16) we obtain

[ij ]′ = [ij ]

since (
fi

fj

)2

=
hij

hji

h′
ji

h′
ij

,

where

fi

fj
=

hij

h′
ij

=
h′

ji

hji
.

So the equality of invariants guarantees that the Frobenius integrability condition is
satisfied: there exists a function θ such that θ−1(f−1

Lf)θ = L
′, i.e.

g−1
Lg = L

′,

where g = θf . Hence the given invariants of L are a complete set.
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It should be noted that the simple invariants are not algebraically independent. For
instance,

(ijk)(ikj ) = (ij )(jk)(ki) (2.17)

so that there must be a smallest set of simple invariants which is still complete. A minimal
complete set is given in the following result.

Theorem 2.5. The simple invariants (1i), [ij ] and (1ij ) form a minimal complete set.

First we prove some lemmas.

Lemma 2.6. We consider a simple invariant of length m

(i1i2i3 · · · im−1im) = hi1i2hi2i3hi3i4 · · · him−1imhimi1 . (2.18)

Let m be a positive integer such that m ≥ 4. Then

(i1i2i3 · · · im−1im) =
(i1i2i3 · · · im−1)(i1im−1im)

(i1im−1)
. (2.19)

Proof.

RHS =
(i1i2i3 · · · im−1)(i1im−1im)

(i1im−1)

=
hi1i2hi2i3 · · ·him−2im−1him−1i1 · hi1im−1him−1imhimi1

hi1im−1him−1i1

= hi1i2hi2i3 · · ·him−2im−1him−1imhimi1

= (i1i2i3 · · · im−1im) = LHS .

Hence we can replace simple invariants of length m ≥ 4 with invariants of length m− 1
up to multiples of invariants of lengths 2 and 3.

Lemma 2.7. Let i, j, k be three positive integers such that i �= j �= k. Then

(ij ) =
(1ij )(1ji)
(1i)(1j)

, (2.20)

(ijk) =
(1ij )(1jk)(1ki)
(1i)(1j)(1k)

. (2.21)

Proof.

(1ij )(1ji)
(1i)(1j)

=
h1ihij hj1 · h1jhjihi1

h1ihi1 · h1jhj1

= hij hji = (ij ) = LHS .
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Similarly

(1ij)(1jk)(1ki)
(1i)(1j)(1k)

=
h1ihijhj1 · h1jhjkhk1 · h1khkihi1

h1ihi1 · h1jhj1 · h1khk1

= hij jjkhki

= (ijk) = LHS .

Lemma 2.8. The invariants (1ij ) are irreducible (i.e. they cannot be written purely in
terms of invariants with length 2).

Proof. We will prove this by contradiction. So assume (1ij ) is reducible. Thus (1ij ) can
be expressed in terms of the invariants (1i), (1j) and (ij). So let

(1ij ) = F [(1i), (1j), (ij )]. (2.22)

If we differentiate Eq. (2.22) with respect to hi1, h1j and hji respectively we obtain the
following partial differential equations:

0 =
∂(1ij )
∂hi1

=
∂F

∂(1i)
· h1i,

0 =
∂(1ij )
∂h1j

=
∂F

∂(1j)
· hj1,

0 =
∂(1ij )
∂hji

=
∂F

∂(ij )
· hij

since (1ij ) = h1ihij hj1 is independent of hi1, h1j and hji .
Thus, we find

∂F

∂(1i)
= 0,

∂F

∂(1j)
= 0,

∂F

∂(ij)
= 0

since h1i �= 0, hj1 �= 0 and hij �= 0.
This shows that (1ij ) = constant. This is a contradiction. Therefore the invariant (1ij )

is irreducible.

Proof of Theorem 2.5. We have considered the following simple invariants of length m:

(i1i2i3 · · · im−1im) = hi1i2hi2i3hi3i4 · · ·him−1imhimi1 .

First we have shown (Lemma 2.6) that these invariants can be reduced up to length 3 and
then we have shown (Lemma 2.7) that the invariant (ij ) can be written in terms of the
simple invariants (1i) and (1ij ) and we have also proved that the simple invariant (ijk) can
be expressed in terms of the invariants (1i) and (1ij ). Finally, we have proved (Lemma 2.8)
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that the invariant (1ij ) is not reducible, in other words, it cannot be reduced to the invariant
of length 2.

Hence the proof of the theorem is complete and the result follows: Any invariant of
length m can be written in terms of the minimal invariants (1i) and (1ij ) where these
minimal invariants together with [ij ] form a complete set.

3. Matrix Covariants for General Hyperbolic Systems

3.1. Matrix covariants

Let us consider the system

Lz = (∂x∂y + a∂x + b∂y + c)z = 0, (3.1)

where a, b and c are m × m square matrices. This case is considered in [9]. The gauge
transformation on the differential operator L is L′ = g−1Lg, where g is a m × m diagonal
matrix which gives

h = a,x + ba − c,

k = b,y + ab − c,
(3.2)

where h and k are gauge covariants for the system (3.1): h′ = g−1hg , k′ = g−1kg . These
covariants are sometimes called invariants in the literature [9].

3.2. Matrix covariants for L

Let us consider L as a (m1 + m2) × (m2 + m1) differential matrix operator such that

L =
(

∂1 + h11 h12

h21 ∂2 + h22

)
,

where h11 ∈ Mm1m1 , h12 ∈ Mm1m2 , h21 ∈ Mm2m1 , h22 ∈ Mm2m2 and Mmimj is the set of
mi × mj matrices.

Strictly speaking we should write Im1∂1 and Im2∂2 for the differential operator entries
where Im1 , Im2 are the unit matrices of dimensions m1 and m2. This should be understood
in what follows.

The “gauge” transformation g on L is L
′ = g−1

Lg for

g =
(

g1 0
0 g2

)
,

where g1 ∈ Mm1m1 and g2 ∈ Mm2m2 are both invertible square matrix functions of x1, x2.
Under this action, L

′ = g−1
Lg, we have

h′
11 = g−1

1 h11g1 + g−1
1 g1,1,

h′
12 = g−1

1 h12g2,

h′
21 = g−1

2 h21g1,

h′
22 = g−1

2 h22g2 + g−1
2 g2,2.
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3.3. Definitions

We call an object H of type Gi ×Gj if H ′ = g−1
i Hgj . Therefore h12 is of type G1 ×G2 and

h21 is of type G2 × G1. Covariants are of type Gi × Gi. In other words H is a covariant if
H ′ = g−1

i Hgi. Invariants are given by the traces of covariants. The operators ∂1 + h11 and
∂2 + h22 are of types G1 × G1 and G2 × G2 respectively:

∂1 + h′
11 = g−1

1 (∂1 + h11)g1,

∂2 + h′
22 = g−1

2 (∂2 + h22)g2.

But they are differential operator covariants. We seek matrix covariants. The simplest
matrix covariants are h12h21 of type G1 × G1 and h21h12 of type G2 × G2 since,

h′
12h

′
21 = g−1

1 (h12h21)g1,

h′
21h

′
12 = g−1

2 (h21h12)g2.

Let us call (12) = h12h21 and (21) = h21h12, where (12) ∈ Mm1m1 and (21) ∈ Mm2m2 .
Note that we use similar notation as before but now (12) �= (21). Our aim is now to form
higher matrix covariants. For simplicity we call ∂1 + h11 = D1 and ∂2 + h22 = D2. The
operators D1 and D2 are of type G1 × G1 and G2 × G2 respectively. Therefore one easily
see that

h21D1 and D2h21 are of type G2 × G1,

h12D2 and D1h12 are of type G1 × G2.

Hence

c11 = h12D2h21D1 − D1h12D2h21 is of type G1 × G1,

c22 = h21D1h12D2 − D2h21D1h12 is of type G2 × G2.

But these are still not matrix covariants, since they have leading differential operator
terms

c11 = −[D1, (12)]∂2 + · · · ,

c22 = −[D2, (21)]∂1 + · · · .

We would like to subtract off multiples of ∂2 + h22 from c11 and ∂1 + h11 from c22 to
remove the differential operators but each operator is of the wrong type. To circumvent this
we turn c11, c22 into respectively G2 × G2 and G1 × G1 of type covariants by:

h21c11h12 = −h21[D1, (12)]∂2h12 + · · ·matrix

= −h21[D1, (12)]h12(∂2 + h22) + · · ·matrix, (3.3)

h12c22h21 = −h12[D2, (21)]h21(∂1 + h11) + · · ·matrix. (3.4)
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Since each part in expression (3.3) is now of type G2 ×G2 and each part in (3.4) of type
G1 × G1, we must have matrix covariants:

[12] = h12c22h21 + h12[D2, (21)]h21(∂1 + h11),

[21] = h21c11h12 + h21[D1, (12)]h12(∂2 + h22).

Simplifying these give

[12] = (12)[D1, h12D2h21] − h12D2h21[D1, (12)] of type G1 × G1, (3.5)

[21] = (21)[D2, h21D1h12] − h21D1h12[D2, (21)] of type G2 × G2 (3.6)

as matrix covariants where [12] ∈ Mm1m1 and [21] ∈ Mm2m2 .

The case m1 = m2 = 1:

We find a reduction of [12] and [21] in the case m1 = m2 = 1. So in this case (12) = h12h21

and (21) = h21h12 are just equal functions and (21) = (12) = (12), the earlier invariant.
By substituting D1 = ∂1 + h11 and D2 = ∂2 + h22 in the covariants [12], [21] and then
by doing some differential and algebraic calculations we obtain the function covariants as
follows:

[12] = −1
4
(12)2,12 − (12)2[12],

[21] = −1
4
(12)2,12 + (12)2[12].

(3.7)

One easily sees that

[12] + [21] = −1
2
(12)2,12,

[21] − [12] = 2(12)2[12].
(3.8)

Thus relating the expressions from the new covariants to the old invariants in this case
(m1 = m2 = 1).

3.4. The case where rank exceeds dimension

It is clear that in the case where the rank r is larger than the dimension n we may attempt
to repeat the arguments of Sec. 2 under the weaker hypothesis that the hij and gi are
matrices and no longer (commuting) functions. The canonical form (2.4) still suffices where
now the hij are rectangular matrices of type mi × mj , where an mi × mi unit matrix is
taken to stand (but omitted) before each operator, ∂i, and where m1 + m2 + · · ·+ mn = r.

The case n = 2:

In this case we consider a differential matrix operator L such that

L =
(

∂1 h12

h21 ∂2

)
, (3.9)

where h12 ∈ Mm1m2 and h21 ∈ Mm2m1 are matrix functions of x1 and x2. We have assumed
a gauge transformation to this form as before.
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The gauge transformation

L �→ L
′ = g−1

Lg, (3.10)

where

g =
(

g1(x2) 0
0 g2(x1)

)
, (3.11)

gives us

h12 �→ h′
12 = g−1

1 h12g2, (3.12)

h21 �→ h′
21 = g−1

2 h21g1, (3.13)

where g1 and g2 are invertible square matrices such that g1 ∈ Mm1m1 and g2 ∈ Mm2m2 . So
the relations (3.12) and (3.13) give us

h′
12h

′
21 = g−1

1 (h12h21)g1,

h′
21h

′
12 = g−1

2 (h21h12)g2.

Thus we have

(12)′ = g−1
1 (12)g1, (3.14)

(21)′ = g−1
2 (21)g2, (3.15)

where (12) ∈ Mm1m1 and (21) ∈ Mm2m2 are matrix covariants such that

(12) = h12h21, (3.16)

(21) = h21h12. (3.17)

By doing some algebraic calculations over (3.12) and (3.13) we obtain

(12)′(h′
12,2h

′
21),1 + h′

12h
′
21,2(12)′,1 = g−1

1 ((12)(h12,2h21),1 + h12h21,2(12),1)g1,

(21)′(h′
21,1h

′
12),2 + h′

21h
′
12,1(21)′,2 = g−1

2 ((21)(h21,1h12),2 + h21h12,1(21),2)g2.

Therefore we have

[12]′ = g−1
1 [12]g1, (3.18)

[21]′ = g−1
2 [21]g2, (3.19)

where we define matrix covariants [12] ∈ Mm1m1 and [21] ∈ Mm2m2 as follows

[12] = (12)(h12,2h21),1 + h12h21,2(12),1, (3.20)

[21] = (21)(h21,1h12),2 + h21h12,1(21),2. (3.21)

Before we move to the case n = 3, we compare our covariants (12), (21), [12], [21] with
Konopelchenko’s covariants (3.2) [9]: h = a,x + ba − c, k = b,y + ab − c, where h and k

are covariants for the hyperbolic system zxy + azx + bzy + cz = 0. This corresponds to
m1 = m2 in the current context. As we already know this system can be written in a

1250024-15 405



September 14, 2012 16:34 WSPC/1402-9251 259-JNMP 1250024

C. Athorne & H. Yilmaz

differential operator form as Lz = (∂x∂y + a∂x + b∂y + c)z = 0, where the differential
operator L = ∂x∂y + a∂x + b∂y + c can be written as

L = (∂x + b)(∂y + a) − h

= (∂y + a)(∂x + b) − k.

Therefore, we can rewrite the above system Lz = 0 as

Au = 0, (3.22)

Bv = 0, (3.23)

where

A =
(

∂x + b −h

−I ∂y + a

)
, u =

(
z1

z

)
; B =

(
∂x + b −I

−k ∂y + a

)
, v =

(
z

z2

)
.

For the system (3.22), we obtain covariant relations:

(12) = (21) = h,

[12] = hhxy,

[21] = hxhy,

(3.24)

where m1 = m2 = m and ∂1 = ∂x, ∂2 = ∂y.
We can easily see that

[12] + [21] =
1
2
(hhy)x. (3.25)

Thus, we have

Tr[12] + Tr[21] =
1
2
[Tr(12)(21)]xy. (3.26)

Similarly, for the system (3.23), we have the following relations:

(12) = (21) = k,

[12] = kykx,

[21] = kkxy.

(3.27)

These relations give us

[12] + [21] =
1
2
(kkx)y. (3.28)

Once again, we have

Tr[12] + Tr[21] =
1
2
[Tr(12)(21)]xy. (3.29)
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The case n = 3:

Here we consider a differential matrix operator L such that

L =


 ∂1 h12 h13

h21 ∂2 h23

h31 h32 ∂3


, (3.30)

where hij ∈ Mmimj (i, j = 1, 2, 3) are functions of x1, x2 and x3.
Applying the gauge transformation

L �→ L
′ = g−1

Lg, (3.31)

where

g =


g1(x2, x3) 0 0

0 g2(x1, x3) 0
0 0 g3(x1, x2)


, (3.32)

gives us

h′
12 = g−1

1 h12g2, h′
13 = g−1

1 h13g3, (3.33)

h′
21 = g−1

2 h21g1, h′
23 = g−1

2 h23g3, (3.34)

h′
31 = g−1

3 h31g1, h′
32 = g−1

3 h32g2, (3.35)

where g1, g2 and g3 are invertible square matrices such that g1 ∈ Mm1m1 , g2 ∈ Mm2m2 and
g3 ∈ Mm3m3 .

By doing some algebraic calculation over the above relations (3.33)–(3.35), we obtain
the following matrix covariants:

(12) = h12h21, (13) = h13h31, (3.36)

(23) = h23h32, (21) = h21h12, (3.37)

(31) = h31h13, (32) = h32h23, (3.38)

(123) = h12h23h31, (132) = h13h32h21, (3.39)

(231) = h23h31h12, (213) = h21h13h32, (3.40)

(312) = h31h12h23, (321) = h32h21h13, (3.41)

[12] = (12)(h12,2h21),1 + h12h21,2(12),1, (3.42)

[13] = (13)(h13,3h31),1 + h13h31,3(13),1, (3.43)

[21] = (21)(h21,1h12),2 + h21h12,1(21),2, (3.44)

[23] = (23)(h23,3h32),2 + h23h32,3(23),2, (3.45)

[31] = (31)(h31,1h13),3 + h31h13,1(31),3, (3.46)

[32] = (32)(h32,2h23),3 + h32h23,2(32),3, (3.47)

where (ij ), (ijk), [ij ] ∈ Mmimi(i, j, k ∈ {1, 2, 3}).
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The question of functional relations between covariants is more subtle than for invariants.

The general case:

Let us consider the following differential operator

L =




Im1∂1 h12 · · · h1n

h21 Im2∂2 · · · h2n
...

...
. . .

...
hn1 hn2 · · · Imn∂n


,

where the hij are functions of x1, x2, . . . , xn and the Imi are unit matrices such that hij ∈
Mmimj and Imi ∈ Mmimi where i, j ∈ {1, 2, . . . , n}.

The gauge transformation

L �→ L
′ = g−1

Lg, (3.48)

where

g =




g1(x2, x3, . . . , xn) 0 · · · 0
0 g2(x1, x3, . . . , xn) 0
...

. . .
...

0 · · · gn(x1, x2, . . . , xn−1)


, (3.49)

gives us

hij �→ h′
ij = g−1

i hij gj , (3.50)

where the gi are square matrices such that gi ∈ Mmimi .
The relations (3.50) gives us the following matrix covariants:

[ij ] = (ij )(hij ,jhji ),i + hijhji,j(ij ),i (3.51)

(i1i2i3 · · · in) = hi1i2hi2i3 · · ·hini1 (3.52)

where [ij ] ∈ Mmimi and (i1i2i3 · · · in) ∈ Mmi1
mi1

.

4. Conclusions and Comments

In this paper, we have dealt with general hyperbolic systems Lz = 0. We have used a suitable
diagonal gauge matrix g, chosen so that it kills diagonal terms hii where i = 1, 2, . . . , n. We
have also obtained the complete set of invariants for general hyperbolic systems where rank
equals dimension by using the gauge transformation L �→ L

′ = g−1
Lg. Further, we have

shown the completeness of a set of simple invariants (reduced invariants). We have proved
that these invariants form a minimal complete set.

We have also considered hyperbolic systems Lz = 0 where the entries hij are matrices.
In this case, we are interested in covariants. We have obtained matrix covariants for the
differential operator L under the gauge transformation. Here we have examined the case
where rank exceeds dimension. The canonical form of L still suffices where hii = 0 and hij

are rectangular matrices. The reduced covariants have been presented but it has not been
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shown that their invariant traces form a complete set. For example, in the case when n = 2,
we ask the question: Do the covariants (12), (21), [12] and [21] form a complete set? The
answer depends on the existence of g(x1, x2) so that when

(12)′ = g−1
1 (12)g1,

(21)′ = g−1
2 (21)g2,

[12]′ = g−1
1 [12]g1,

[21]′ = g−1
2 [21]g2

(4.1)

are given then g must satisfy the relation

g−1
Lg = L

′.

The square matrices (ij ), (ij )′, [ij ], [ij ]′ are thus similar to (4.1) and so possess as equal
invariants the traces, say, of their powers: Ip = Tr(ij )p etc. But equality of such invariants
is not sufficient for gauge equivalence of L

′ and L. There are also invariants associated
with polynomials in (ij ) and [ij ] since gi(ij )[ij ] = (ij )′[ij ]′gi etc., namely, traces of such
polynomials (cf. (3.26)).

Two questions arise for further study:

(1) What relations on the invariants of these general systems correspond to specializations
of L such as self-adjointness?

(2) Can we establish the existence of a complete, minimal set of trace polynomial invariants
for the systems of Sec. 3?
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