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The (2+1)-dimensional Davey-Stewartson-like equations with variable coefficients have the applications in
the ultra-relativistic degenerate dense plasmas and Bose-Einstein condensates. Via the Bell polynomials and
symbolic computation, the bilinear form, Bäcklund transformation and Lax pair for such equations are obtained.
Based on the Hirota method, we construct the soliton solutions, analyze the elastic collisions with the constant
and variable coefficients, and observe that solitons no longer keep rectilinear propagation and display different
shapes because of the variable coefficients. Besides, localized excitations are derived through the variable
separation.
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1. Introduction

Able to describe a (2+1)-dimensional wave packet on the surface of a liquid of finite depth, Davey-
Stewartson (DS) equations are written as [5]

iAT +σ 2(AXX +σ 2AYY )+α |A|2A−AB = 0, (1.1a)

BXX −σ 2BYY = 2α |A|2XX , σ 2 =±1, α =±1, (1.1b)

where the subscripts denote the partial derivatives, X is the scaled horizontal coordinate, Y denotes
the scaled space coordinate perpendicular to X , T is the scaled time, the complex function A is the
amplitude of a surface wave packet, while the real function B is the velocity potential of the mean
flow interacting with the surface wave. The case σ = 1 is called the DSI equations, while σ = i, the
DSII [27]. The parameter α = 1 characterizes the focusing case, while α =−1, the defocusing [27].

Studies have been made on the solutions and integrability of Eqs. (1.1) [1, 4, 5, 8, 15, 18, 22–
24, 27]. Eqs. (1.1) can provide certain (2+1)-dimensional nonlinear localized excitations [18]. A
class of the (2+1)-dimensional nonlinear dispersive equations can be reduced to Eqs. (1.1) through
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the asymptotic considerations [6]. As the extension of the (1+1)-dimensional nonlinear Schrödinger
equation, Eqs. (1.1) are shown to be integrable in some senses, for example, the inverse-scattering-
transformation (IST) integrable [1, 4, 22] and Painlevé integrable [8]. In Ref. [15], the bilinear form
and dromion solutions have been constructed via the Hirota method. The Bäcklund transforma-
tion (BT) of Eq. (1.1) have been obtained through the Zakharov and Shabat method [4, 23]. By
means of the iteration transformations, the Bäcklund-Darboux transformations of Eq. (1.1) have
been given [24, 27]. In Refs. [7, 26], the soliton solutions have been shown to be representable in
terms of the Wronskian determinants. Localized excitations via a variable separation approach have
been derived [33]. Moveover, time evolution of solutions has been investigated via the numerical
analysis and simulations [3, 19, 27].

Constant-coefficient DS-like equations have been found in optics [13, 14, 36], plasmas [29–31],
quantum physics [10] and Bose-Einstein condensates [18, 32]. For example, the constant-coefficient
DS-like equations which describe the slow modulation of (2+1)-dimensional electrostatic wave
packets in the ultra-relativistic degenerate dense plasmas are given as [29, 30]

iωτ + χ1ωξξ + χ2ωηη + χ3|ω |2ω + χ4ων = 0, (1.2a)

χ5νξξ +νηη = χ6|ω |2ξξ , (1.2b)

where ξ is a normalized horizontal propagation direction of the electrostatic wave packets, η is
normalized space propagation direction perpendicular to ξ , τ is the normalized time, ω is the com-
plex amplitude of electrostatic wave packets, the real function ν is the a static field generated due
to the mean motion in plasmas, χi’s (i = 1, · · · ,6) are the constants only in terms of the wave num-
ber and regime’s density, χ1 and χ2 appear due to the wave group dispersion and the evolution of
the electrostatic wave packets, cubic nolinear coefficient χ3 denotes the effect of the carrier wave
self-interaction due to the zeroth harmonic modes, nonlocal quadratic coefficient χ4 represents the
coupling strength between the dynamical field associated with the first harmonic and a static field
generated due to the mean motion in the plasmas, while χ5 and χ6 are decided respectively by the
first harmonic field and the zeroth harmonic static field of the plasmas. Eqs. (1.2) may give rise to
some unstable solutions other than the localization [29].

Based on Eqs. (1.1-1.2), we will consider the variable-coefficient DS-like equations as

iut +P1(t)uxx +P2(t)uyy −Q1(t)|u|2u+Q2(t)uφ = 0, (1.3a)

Rφxx −φyy = S|u|2xx, (1.3b)

where the waves propagate in the two surface directions x and y with the scaled time t, the real
functions P1(t) and P2(t) represent the wave group dispersion, Q1(t) is the cubic nolinear coefficient
and Q2(t) stands for the nonlocal quadratic nonlinearity, R and S are constants, u = u(x,y, t) is the
complex wave envelope and the real function φ = φ(x,y, t) can be regarded as a forcing term. Special
cases of Eqs. (1.3) include the following:

• When P1(t) = 1, P2(t) = 1, Q1(t) = −α , Q2(t) = −1, R = 1 and S = 2α , reducible to
Eqs. (1.1) with σ = 1;

• When P1(t) =−1, P2(t) = 1, Q1(t) =−α , Q2(t) =−1, R =−1 and S =−2α , reducible to
Eqs. (1.1) with σ = i;

• When P1(t) = χ1, P2(t) = χ2, Q1(t) = −χ3, Q2(t) = χ4, R = −χ5 and S = −χ6, reducible
to Eqs. (1.2);
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• When 2P1(t) = 2P2(t) = 2Q1(t) = Q2(t) = β (t) and R = S = 1, where β (t) is real function
with time variable t, reducible to the equations considered in Ref. [35], whose excitation
solutions are obtained via the variable separation approach [25].

Our paper will be organized as follows: In Sec. II, Eqs. (1.3) will be bilinearized via the Bell
polynomials and symbolic computation. In Sec. III, BT and Lax pair for Eqs. (1.3) will be obtained
from the Bilinear form. In Sec. IV, based on the Hirota method, the soliton solutions of Eqs. (1.3)
will be constructed, and the elastic collisions for the soliton solutions with the constant and variable
coefficients will be analyzed. Besides, the localized excitations of the Eqs. (1.3) will be derived
through the variable separation. Finally, conclusions will be given in Sec. V.

2. Bilinear Form for Eqs. (1.3)

Bell polynomials, sometimes, provide a relatively convenient way to obtain the bilinear forms, BTs
and Lax pairs for nonlinear partial differential equations [2, 12, 20]. Assuming that h is a C∞(z)
function of z, and hk = ∂ k

z h (k = 1,2, . . .), the Bell polynomials [2, 12, 20, 21] are defined as follows:

Ynz(h)≡ Yn(h1,h2, . . . ,hn) = e−h∂ n
z eh, n = 1,2, . . . . (2.1)

We can similarly get the two-dimensional generalization of the Bell polynomials:

Ynz1,mz2(Z)≡ Yn,m(Zi, j) = e−Z∂ n
z1

∂ m
z2

eZ , i = 1,2, . . . ,n, j = 1,2, . . . ,m, (2.2)

where Z is a C∞ function of z1, z2, and Zi, j = ∂ i
z1

∂ j
z2Z (i = 1,2, . . . ,n, j = 1,2, . . . ,m) with n and m as

the non-negative integers.
Ref. [12] has shown that the D operator and Bell polynomial have the relation as a result of their

actions on a pair of the exponentials F = exp[ f (z1, . . . ,zl)] and G = exp[g(z1, . . . ,zl)]:

(F ·G)−1Dn
xF ·G ≡Yn(h1,h2, . . . ,hn)

∣∣∣∣∣
hk=

⎧⎨
⎩

wkx,k = even

vkx,k = odd

≡ Ynx(w,v), (2.3)

where w = lnF + lnG = ln(FG), v = lnF − lnG = ln(F/G), and the bilinear differential operators
D [17] is defined by

Dm
ρ Dn

ς Φ(ρ ,ς) ·Ψ(ρ ,ς) =
( ∂

∂ρ
− ∂

∂ρ ′

)m( ∂
∂ς

− ∂
∂ς ′

)n
Φ(ρ ,ς)Ψ(ρ

′
,ς

′
)|ρ ′=ρ ,ς ′=ς .

According to the formulas above, we can bilinearize Eqs. (1.3) into the binary-Bell-polynomial
form.

By setting

u = F/G, φ = 2C(ln G)xx, (C = const) (2.4)

with the assumptions

v = ln(F/G), w = ln(FG), ϕ = w− v = 2lnG, (2.5)
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we can decouple Eqs. (1.3) into the following binary-Bell-polynomial form (for simplification, we
assume that Q1(t)/P2(t) = K):

iYt(v)+P1(t)Y2x(v,w)+P2(t)Y2y(v,w) = 0, (2.6a)

RP2x(ϕ)−P2y(ϕ) = Kev+v∗ , (2.6b)

while the corresponding bilinear form is

[iDt +P1(t)D2
x +P2(t)D2

y ]F ·G = 0, (2.7a)

(RD2
x −D2

y)G ·G = KFF∗, (2.7b)

with the coefficient constraints

C = S/K, KP1(t) = SQ2(t)−RQ1(t). (2.8)

Especially, Eqs. (2.8) explain the choice of the equations’ coeffcients in Ref. [35]. From Eqs. (2.7),
we can not only obtain the BT and Lax pair, but also construct the N-soliton solutions.

3. BT and Lax Pair

3.1. BT

Taking u
′
= F

′
/G

′
as another solution of Eqs. (1.3), at the same time, v

′
= ln(F

′
/G

′
), w

′
= ln(F

′
G

′
)

also satisfy Eqs. (2.6). Let us consider

E1 ≡ [iYt(v
′
)+P1(t)Y2x(v

′
,w

′
)+P2(t)Y2y(v

′
,w

′
)]

−[iYt(v)+P1(t)Y2x(v,w)+P2(t)Y2y(v,w)] = 0, (3.1)

by using of the mixed variables:

v1 = lnG
′
/G,v2 = lnF

′
/F,v3 = lnF

′
/G,v4 = lnG

′
/F,

w1 = lnG
′
G, w2 = lnF

′
F, w3 = lnF

′
G, w4 = lnG

′
F,

we can rewrite Eq. (3.1) as

E1 ≡−[iYt(v1)−P1(t)Y2x(v1,w1)−P2(t)Y2y(v1,w1)]

+[iYt(v2)−P1(t)Y2x(v2,w2)−P2(t)Y2y(v2,w2)]+R1 = 0, (3.2)

with the reminder term

R1 = 2P1(t)[v3,2x + v3,x(v2 − v1)x]+2P2(t)[v3,2y + v3,y(v2 − v1)y]

= 2P1(t)v3,x[lnv3,x +(v2 − v1)]x +2P2(t)v3,y[lnv3,y +(v2 − v1)]y.

Therefore, Eq. (3.2) can be decoupled into

iYt(v1)−P1(t)Y2x(v1,w1)−P2(t)Y2y(v1,w1) = λ (t), (3.3a)

iYt(v2)−P1(t)Y2x(v2,w2)−P2(t)Y2y(v2,w2) = λ (t), (3.3b)

Yx(v3)−μ1ev1−v2 = 0, (3.3c)

Yy(v3)−μ2ev1−v2 = 0, (3.3d)
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the BT of Eqs. (1.3) is obtained as

[iDt −P1(t)D2
x −P2(t)D2

y ]G
′ ·G = λ (t)G

′
G, (3.4a)

[iDt −P1(t)D2
x −P2(t)D2

y ]F
′ ·F = λ (t)F

′
F, (3.4b)

DxF
′ ·G = μ1FG

′
, (3.4c)

DyF
′ ·G = μ2FG

′
, (3.4d)

where λ (t) is an arbitrary function of variable t, μ1 and μ2 are constants.
Through Eqs. (3.4), we can get another solution from the known solution. For example, setting

F = G = 1 and substituting them into Eqs. (20), we obtain

F
′
= λ0 +λ1eax+by+c(t), G

′
= λ2eax+by+c(t), (3.5)

where a = λ2/(λ1μ1), b = λ2/(λ1μ2), c(t) =−i
∫
[a2P1(t)+b2P2(t)]dt, λ0, λ1 and λ2 are constants,

the solution for Eqs. (1.3) is derived

u
′
=

λ0 +λ1eax+by+c(t)

λ2eax+by+c(t)
. (3.6)

3.2. Lax pair

Through the expression

Ynz1,mz2(w = lnψ ,v = Q+w) = ψ−1
n

∑
i=0

m

∑
j=0

Ci
nC

j
mYiz1, jz2(0,Q)∂ n−i

z1
∂ m− j

z2
, (3.7)

where ψ and Q are both the functions of z1 and z2, Expression (2.3) is related to the Lax pair by use
of the Hopf-Cole transformation [20, 21].

Utilizing the Transformation (3.7), vi = lnϕi (i = 1,2,3,4) and eliminating v3 through v3 =

v2 + v, we get the bilinear system for Eqs. (2.7)

iϕ1,t = P1(t)[ϕ1,xx +(w− v)xxϕ1]+P2(t)[ϕ1,yy +(w− v)yyϕ1], (3.8a)

iϕ2,t = P1(t)[ϕ2,xx +(w− v)xxϕ2]+P2(t)[ϕ2,yy +(w− v)yyϕ2], (3.8b)

ϕ1,x =
1
μ1

(ϕ2,xx + vxxϕ2 +μ1vxϕ1 − v2
xϕ2), (3.8c)

ϕ2,y = μ1ϕ1 − vxϕ2. (3.8d)

From the compatibility conditions ϕ1,xt = ϕ1,tx and ϕ2,yt = ϕ2,ty , Eqs. (3.8) are equivalent to
Eqs. (1.3), namely, Eqs. (3.8) are the Lax pair for Eqs.(1.3).

4. Solutions for Eqs. (1.3)

In this section, by using of the Hirota method [17] and symbolic computation [9, 34], we construct
two special solutions for Eqs. (1.3): solitons and localized excitations.
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4.1. Solitons

We expand F and G with respect to a small parameter ε as follows:

F = ε f1 + ε3 f3 + · · · , G = 1+ ε2g2 + ε4g4 + · · · . (4.1)

Next, substituting Eqs. (4.1) into Eqs. (2.7) and collecting the coefficients of each order of ε , we
can derive

ε0 : (RD2
x −D2

y)1 ·1 = 0, (4.2a)

ε1 : [iDt +P1(t)D2
x +P2(t)D2

y ] f1 ·1 = 0, (4.2b)

ε2 : (RD2
x −D2

y)(1 ·g2 +g2 ·1)−K f1 f ∗1 = 0, (4.2c)

ε3 : [iDt +P1(t)D2
x +P2(t)D2

y ]( f1 ·g2 + f3 ·1) = 0. (4.2d)

When truncating F and G as F = ε f1 and G = 1+ε2g2, and substituting them into Eqs. (4.2) we get
f1 = eθ1 , g2 = δ1eθ1+θ ∗

1 . Without loss of generality, by setting ε = 1, one-soliton solution is obtained
as

u =
εeθ1

1+δ1ε2eθ1+θ ∗
1
= exp

[
iθ1I − lnδ1

2

]
sech

(
θ1R +

lnδ1

2

)
, (4.3)

where

θ1 = a1x+b1y+ c1(t)+ k1,

c1(t) =C1 + i
∫ [

a2
1P1(t)+b2

1P2(t)
]
dt,

δ1 =
K

2[R(a1 +a∗1)2 − (b1 +b∗1)2]
,

θ1R and θ1I are respectively the real and imaginary components of θ1.
To constructe the two-soliton solution, we assume F = ε f1+ε3 f3 and G = 1+ε2g2+ε4g4 with

f1 = eθ1 + eθ2 , similarly, the two-soliton solution is obtained as

u =
f1 + f3

1+g2 +g4
, (4.4)

where

θ j = ajx+bjy+ c j(t)+ k j, ( j = 1,2),

c j(t) =Cj + i
∫ [

a2
jP1(t)+b2

jP2(t)]
]
dt, ( j = 1,2),

g2 = δ11eθ1+θ ∗
1 +δ12eθ1+θ ∗

2 +δ21eθ2+θ ∗
1 +δ22eθ2+θ ∗

2 ,

f3 = δ121eθ1+θ2+θ ∗
1 +δ122eθ1+θ2+θ ∗

2 ,

g4 = δ1212eθ1+θ2+θ ∗
1+θ ∗

2 ,
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with

δ11 =
K

2[R(a1 +a∗1)2 − (b1 +b∗1)2]
, δ12 =

K
2[R(a1 +a∗2)2 − (b1 +b∗2)2]

,

δ21 =
K

2[R(a2 +a∗1)2 − (b2 +b∗1)2]
, δ22 =

K
2[R(a2 +a∗2)2 − (b2 +b∗2)2]

,

δ121 =−P1(a1 −a2)[δ11(a1 +a∗1)−δ21(a2 +a∗1)]+P2(b1 −b2)[δ11(b1 +b∗1)−δ21(b2 +b∗1)]
P1(a1 +a∗2)(a2 +a∗2)+P2(b1 +b∗2)(b2 +b∗2)

,

δ122 =−P1(a1 −a2)[δ12(a1 +a∗2)−δ22(a2 +a∗2)]+P2(b1 −b2)[δ12(b1 +b∗2)−δ22(b2 +b∗2)]
P1(a1 +a∗2)(a2 +a∗1)+P2(b1 +b∗2)(b2 +b∗1)

,

δ1212 =− K(δ121 +δ ∗
121 +δ122 +δ ∗

122)

2R(a1 +a∗1 +a2 +a∗2)2 +2(b1 +b∗1 +b2 +b∗2)2

−δ11δ22[R(a1 +a∗1 −a2 −a∗2)
2 − (b1 +b∗1 −b2 −b∗2)

2]

R(a1 +a∗1 +a2 +a∗2)2 +(b1 +b∗1 +b2 +b∗2)2

−δ12δ21[R(a1 +a∗2 −a2 −a∗1)
2 − (b1 +b∗2 −b2 −b∗1)

2]

R(a1 +a∗1 +a2 +a∗2)2 +(b1 +b∗1 +b2 +b∗2)2 ,

where P1 = P1(t) and P2 = P2(t).
Based on the previous solutions’ expressions, we show the propagation and collisions of solitons

in graphics.
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Figs. 1 One soliton via Expressions (4.3). Parameters are k1 = 0.1, a1 =−0.5, b1 =−0.3, R = 3, K = 1, P1(t) = 2sin(t)

and P2(t) = sin(t). Respectively, (a) shows the soliton at y = 0 and (b) is t = 0.

As shown in Figs. 1, though the soliton’s velocity (x axial velocity v1 = − ac(t)
a2+b2 and y axial

velocity v2 =− bc(t)
a2+b2 ) changes with the time t, variable coefficients have no effect on the profile of

the soliton.
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Figs. 2 Interaction of two parallel bell-shape solitons via Expressions (4.4) with constant coefficients at different times.

Parameters are k1 = 0, k2 =−2, a1 = 0.4 , a2 = 0.31+2 i, b1 =−0.6 , b2 =−0.49, R = 3, K = 1, P1(t) = 1 and

P2(t) = 4.

Figs. 2 describe the collision of the two parallel solitons. At t =−4, the shorter soliton is about
to interact with the taller one, at t =−1 they are overlapping, and at t = 2 they recover their original
shapes and respectively move ahead as the beginning. We can see that the solitons collide elastically,
which can also be shown in Figs. 3.
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Figs. 3 Interaction of two solitons via Expressions (4.4) with constant coefficients. Parameters are k1 = 1.2, k2 = 0,

a1 = 0.33 , a2 = 0.34+0.8 i, b1 =−0.3 , b2 =−0.5, R = 3, K = 1, P1(t) = 1 and P2(t) = 4.

As seen in Figs. 3, two obliquely moving solitons display the elastic interaction and keep their
original shapes and velocities invariant after the interaction with the phase shift in the x− t plane.
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Figs. 4 Interaction of two solitons via Expressions (4.4) with variable coefficients. Parameters are k1 = 1.2, k2 = 0,

a1 = 0.33 , a2 = 0.34+0.8 i, b1 =−0.3 , b2 =−0.5, R = 3, K = 1, P1(t) = t and P2(t) = 4t.
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Figs. 5 Interaction of two solitons via Expressions (4.4) with variable coefficients. Parameters are k1 = 1.2, k2 = 0,

a1 = 0.33 , a2 = 0.34+0.8 i, b1 =−0.3 , b2 =−0.5, R = 3, K = 1, P1(t) = sin(t) and P2(t) = 4sin(t).

From Figs. 3-5, we observe the different effects on solitons between the constant coefficients
and variable coefficients where all the parameters are same besides P1(t) and P2(t). Figs. 3 show the
two unparallel solitons’ collision at different y with constant coefficients P1(t) = 1 and P2(t) = 4.
For Figs. 4 and 5, solitons no longer keep the rectilinear propagation and display different shapes
because of the effect of variable coefficients. In Figs. 4, one of the soliton is parabolically typed with
coefficients P1(t) = t and P2(t) = 4t. At y=−30 two solitons intersect at the two parabolic branches,
at y = −10 they intersect at the parabolic vertex, and at y = 10 they separate and move ahead
respectively. In Figs. 5, we can observe that one of the solitons possesses the periodic characteristic
with P1(t) = sin(t) and P2(t) = 4sin(t). In addition, we can modulate the coefficients to obtain more
soliton structures.

4.2. Localized excitations

The dromions, which are the exponentially localized soliton solutions in higher dimensions, have
attracted attention [3, 11, 16, 25, 27]. Dromions may either decay due to the dispersion to be
enhanced by the static field or exhibit blowup due to nonlinearity in a finite time [3, 30]. The
multidromion solutions were constructed by use of the BT [4], later solved by the IST [1, 4] and
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Hirota method [15]. Recent years, the variable separation method has been revisited and improved
for the (2+1)-dimensional equations to obtain the local solutions.

With the transformation x = 1√
R

x
′
+ y

′
, y = 1√

R
x
′ − y

′
, t = t

′
and P1(t) = RP2(t), we can reduce

equations Eqs. (2.7) as

[iDt ′ +2P1(t)D2
x′ +2P2(t)D2

y′ ]F ·G = 0, (4.5a)

Dx′ Dy′ G ·G− K
4

FF∗ = 0. (4.5b)

Through the variable separation [25, 35], assuming u = F/G, φ = 2C(lnG)x′ x′ + p0 + q0,
G = ρ0 + ρ1 p+ ρ2q+ ρ3 pq and F = p1q1eir+is, substituting them into Eqs. (4.5), the solution of
Eqs. (1.3) is obtained

u =
2o1o2

√
(ρ0ρ3 −ρ1ρ2)px′ qy′ e

ir+is

ρ0 +ρ1p+ρ2q+ρ3pq
, (4.6)

where p0 = p0(x
′
, t

′
),q0 = q0(y

′
, t

′
), p= p(x

′
, t

′
), q= q(y

′
, t

′
), r = (x

′
, t

′
), s= s(y

′
, t

′
), p1 = p1(x

′
, t

′
),

q1 = q1(y
′
, t

′
) and o2

1 = o2
2 = 1. The intensity of the wave envelope is given by

|u|2 =
4(ρ0ρ3 −ρ1ρ2)px′ qy′

(ρ0 +ρ1ρ2 +ρ2q+ρ3 pq)2 . (4.7)

When p and q satisfy the relation (ρ0ρ3 − ρ1ρ2)px′ qy′ > 0, u is a coherent soliton solution
localized in some directions or in all directions. Choosing different p(x

′
, t

′
) and q(y

′
, t

′
), different

excitation patterns such as the dromion patterns, solitoff patterns, resonant solitoff patterns will
arise.

For instance, selecting p and q as

p(x
′
, t

′
) = m j

M

∑
j=1

exp[ajx
′
+ c jt

′
+ k j], (4.8)

q(y
′
, t

′
) = nj

N

∑
j=1

exp[bjy
′
+djt

′
+ l j], (4.9)

where m j, nj, aj, bj, c j, dj, k j and l j are arbitrary constants and M, N are the positive integers, we
get the dromion solutions.

5. Conclusions

We have investigated Eqs. (1.3) which have the applications in the ultra-relativistic degenerate dense
plasmas and Bose-Einstein condensates. By virtue of the Bell polynomials and symbolic computa-
tion, Bilinears (2.7), BT (3.4) and Lax pair (3.8) have been obtained. Based on the Hirota method,
we have obtained the soliton solutions in Expressions (4.3) and (4.4), and the propagation charac-
teristics and elastic collisions of the solitons have also been discussed. From Figs. 2 and 3, we have
shown that two-soliton with constant coefficients have the elastic collision, while for the variable
coefficients in Figs. 4 and 5, solitons no longer keep the rectilinear propagation and display the
different shapes. In addition, by means of the variable separation, localized excitations have been
expressed in Eq. (4.6), which is a coherent soliton solution localized in some directions or in all
directions.
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