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Introduction

Lie algebra-valued zero-curvature representations for partial differential equations (PDE) are the
input data for solving Cauchy’s problems by the inverse scattering method [42]. For a system of PDE
with unknowns in two independent variables to be kinematically integrable, a zero-curvature repre-
sentation at hand must depend on a spectral parameter which is non-removable under gauge trans-
formations. In the paper [33] M. Marvan developed a remarkable method for inspection whether a
parameter in a given zero-curvature representation α is (non)removable; this technique refers to a
cohomology theory generated by a differential ∂ α , which was explicitly constructed for every α .

In this paper we show that zero-curvature representations for PDE give rise to a natural class of
non-Abelian variational Lie algebroids. In section 1 (see Fig. 1 on p. 6) we list all the components
of such structures (cf. [25]); in particular, we show that Marvan’s operator ∂ α is the anchor. In sec-
tion 2, non-Abelian variational Lie algebroids are realized via BRST-like homological evolutionary
vector fields Q on superbundles à la [5]. Having enlarged the BRST-type setup to a geometry which
goes in a complete parallel with the standard BV-zoo ( [4], see also [2]), in section 3 we extend the
vector field Q to the evolutionary derivation Q̂(·)∼= [[Ŝ, ·]] whose Hamiltonian functional Ŝ satisfies
the classical master-equation [[Ŝ, Ŝ]] = 0. We then address that equation’s gauge symmetry invari-
ance and Q̂-cohomology automorphisms ( [29], cf. [13] and [18]), which yields the next generation
of Lie algebroids, see Fig. 2 on p. 15.
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Two appendices follow the main exposition. We first recall the notion of Lie algebroids over
usual smooth manifolds. (Appendix A.1 concludes with an elementary explanation why the classical
construction stops working over infinite jet spaces or over PDE such as gauge systems.) Secondly,
we describe the idea of parity-odd neighbours to vector spaces and their use in Z2-graded super-
bundles [39]. In particular, we recall how Lie algebroids or Lie algebroid differentials are realised
in terms of homological vector fields on the total spaces of such superbundles [37].

In the earlier work [25] by the first author and J. W. van de Leur, classical notions, operations,
and reasonings which are contained in both appendices were upgraded from ordinary manifolds to
jet bundles, which are endowed with their own, restrictive geometric structures such as the Cartan
connection ∇C and which harbour systems of PDE. We prove now that the geometry of Lie algebra-
valued connection g-forms α satisfying zero-curvature equation (1.1) gives rise to the geometry of
solutions Ŝ for the classical master-equation

ECME =
{

ih̄∆Ŝ
∣∣
h̄=0 =

1
2 [[Ŝ, Ŝ]]

}
, (0.1)

see Theorem 3.1 on p. 11 below. It is readily seen that realization (0.1) of the gauge-invariant setup
is the classical limit of the full quantum picture as h̄→ 0; the objective of quantization Ŝ 7−→ Sh̄ is
a solution of the quantum master-equation

EQME =
{

ih̄∆Sh̄ = 1
2 [[S

h̄,Sh̄]]
}

(0.2)

for the true action functional Sh̄ at h̄ 6= 0. Its construction involves quantum, noncommutative objects
such as the deformations gh̄ of Lie algebras together with deformations of their duals (cf. [10]). (In
fact, we express the notion of non-Abelian variational Lie algebroids in terms of the homological
evolutionary vector field Q̂ and classical master-equation (0.1) viewing this construction as an inter-
mediate step towards quantization.) A transition from the semiclassical to quantum picture results
in gh̄-valued connections, quantum gauge groups, quantum vector spaces for values of the wave
functions in auxiliary linear problems (1.2), and quantum extensions of physical fields.a

1. Preliminaries

Let us first briefly recall some definitions (see [6,19,34] and [33] for detail); this material is standard
so that we now fix the notation.

1.1. The geometry of infinite jet space J∞(π)

Let Mn be a smooth real n-dimensional orientable manifold. Consider a smooth vector bundle
π : En+m → Mn with m-dimensional fibres and construct the space J∞(π) of infinite jets of sec-
tions for π . A convenient organization of local coordinates is as follows: let xi be some coordinate
system on a chart in the base Mn and denote by u j the coordinates along a fibre of the bundle π

so that the variables u j play the rôle of unknowns; one obtains the collection u j
σ of jet variables

aLie algebra-valued connection one-forms are the main objects in classical gauge field theories. Such physical models
are called Abelian – e.g., Maxwell’s electrodynamics – or non-Abelian – here, consider the Yang–Mills theories with
structure Lie groups SU(2) or SU(3) – according to the commutation table for the underlying Lie algebra. This is why
we say that variational Lie algebroids are (non-)Abelian— referring to the Lie algebra-valued connection one-forms α in
the geometry of gauge-invariant zero-curvature representations for PDE.
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along fibres of the vector bundle J∞(π)→ Mn (here |σ | > 0 and u j
∅ ≡ u j). In this setup, the total

derivatives Dxi are commuting vector fields Dxi = ∇C (∂/∂xi) = ∂/∂xi +∑ j,σ u j
σ i ∂/∂u j

σ on J∞(π).
Consider a system of partial differential equations

E =
{

F`(xi,u j, . . . ,u j
σ , . . .) = 0, `= 1, . . . ,r < ∞

}
;

without any loss of generality for applications we assume that the system at hand satisfies mild
assumptions which are outlined in [19, 34]. Then the system E and all its differential consequences
Dσ (F`) = 0 (thus presumed existing, regular, and not leading to any contradiction in the course of
derivation) generate the infinite prolongation E ∞ of the system E .

Let us denote by D̄xi the restrictions of total derivatives Dxi to E ∞ ⊆ J∞(π). We recall that the
vector fields D̄xi span the Cartan distribution C in the tangent space TE ∞. At every point θ ∞ ∈ E ∞

the tangent space Tθ ∞E ∞ splits in a direct sum of two subspaces. The one which is spanned by the
Cartan distribution E ∞ is horizontal and the other is vertical: Tθ ∞E ∞ = Cθ ∞ ⊕Vθ ∞E ∞. We denote
by Λ1,0(E ∞) = AnnC and Λ0,1(E ∞) = AnnVE ∞ the C∞(E ∞)-modules of contact and horizontal
one-forms which vanish on C and VE ∞, respectively. Denote further by Λr(E ∞) the C∞(E ∞)-
module of r-forms on E ∞. There is a natural decomposition Λr(E ∞) =

⊕
q+p=r Λp,q(E ∞), where

Λp,q(E ∞) =
∧p

Λ1,0(E ∞)∧
∧q

Λ0,1(E ∞). This implies that the de Rham differential d̄ on E ∞ is
subjected to the decomposition d̄ = d̄h + d̄C , where d̄h : Λp,q(E ∞)→ Λp,q+1(E ∞) is the horizontal
differential and d̄C : Λp,q(E ∞)→ Λp+1,q(E ∞) is the vertical differential. In local coordinates, the
differential d̄h acts by the rule

d̄h = ∑i dxi∧ D̄xi .

We shall use this formula in what follows. By definition, we put Λ̄(E ∞) =
⊕

q>0 Λ0,q(E ∞) and we
denote by Hn

(·) the senior dh-cohomology groups (also called senior horizontal cohomology) for
the infinite jet bundles which are indicated in parentheses, cf. [20].

Remark 1.1. The geometry which we analyse in this paper is produced and arranged by using
the pull-backs f ∗(ρ) of fibre bundles ρ under some mappings f . Typically, the fibres of ρ are Lie
algebra-valued horizontal differential forms coming from Λ∗(Mn), or similar objectsb ; in turn, the
mappings f are projections to the base Mn of some infinite jet bundles. We employ the standard
notion of horizontal infinite jet bundles such as J∞

ξ
(χ) or J∞

χ (ξ ) over infinite jet bundles J∞(ξ )

and J∞(χ), respectively ; these spaces are present in Fig. 1 on p. 6 and they occur in (the proof
of) Theorems 2.1 and 3.1 below. A proof of the convenient isomorphism J∞

ξ
(χ) ∼= J∞(ξ ×Mn χ) =

J∞(ξ )×Mn J∞(χ) is written in [27], see also references therein. However, we recall further that,
strictly speaking, the entire picture – with fibres which are inhabited by form-valued parity-even
or parity-odd (duals of the) Lie algebra g – itself is the image of a pull-back under the projection
π∞ : J∞(π)→ Mn in the infinite jet bundle over the bundle π of physical fields. In other words,
sections of those induced bundles are elements of Lie algebra etc., but all coefficients are differential
functions in configurations of physical fields (which is obvious, e. g., from (1.1) in Definition 1.1
on the next page). Fortunately, it is the composite geometry of a fibre but not its location over the
composite-structure base manifold which plays the main rôle in proofs of Theorems 2.1 and 3.1.

bLet us specify at once that the geometries of prototype fibres in the bundles under study are described by g-, g∗-, Πg-, or
Πg∗-valued (−1)-, zero-, one-, two-, and three-forms ; the degree−1 corresponds to the module D1(Mn) of vector fields.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

190



A. V. Kiselev and A. O. Krutov

It is clear now that an attempt to indicate not only the bundles ξ or χ, Πχ∗, Πξ , and ξ ∗ which
determine the intrinsic properties of objects but also to display the bundles that generate the pull-
backs would make all proofs sound like the well-known poem about the house that Jack built.

Therefore, we denote the objects such as pi or α and their mappings (see p. 9 or p. 12) as if
they were just sections, pi ∈ Γ(ξ ) and α ∈ Γ(χ), of the bundles ξ and χ over the base Mn, leaving
obvious technical details to the reader.

1.2. Zero-curvature representations

Let g be a finite-dimensional (complex) Lie algebra. Consider its tensor product (over R) with
the exterior algebra of horizontal differential forms Λ̄(E ∞) on the infinite prolongation of E . This
product is endowed with a Z-graded Lie algebra structure by the bracket [Aµ,Bν ] = [A,B]µ ∧ ν ,
where µ,ν ∈ Λ̄(E ∞) and A,B ∈ g.

Let us focus on the case of g-valued one-forms. In the tensor product, the Jacobi identity for α ,
β , γ ∈ g⊗Λ0,1(E ∞) looks as follows. Let α = Aµ , β = Bν , γ =Cω . We obtain that

[α, [β ,γ]]+ [γ, [α,β ]]+ [β , [γ,α]]

= [Aµ, [B,C]ν ∧ω]+ [Cω, [A,B]µ ∧ν ]+ [Bν , [C,A]ω ∧µ]

= [A, [B,C]]µ ∧ν ∧ω +[C, [A,B]]ω ∧µ ∧ν +[B, [C,A]ν ∧ω ∧µ.

For the one-forms µ , ν , and γ we have that µ ∧ ν ∧ γ = γ ∧ µ ∧ ν = ν ∧ γ ∧ µ so that the above
equality continues with

=
(
[A, [B,C]]+ [C, [A,B]]+ [B, [C,A]]

)
µ ∧ν ∧ω = 0.

Indeed, this expression vanishes due to the Jacobi identity of the Lie algebra g, namely, [A, [B,C]]+

[C, [A,B]]+ [B, [C,A]] = 0.
The horizontal differential dh acts on elements of A⊗µ ∈ g⊗Λ(E ∞) as follows:

dh(A⊗µ) = A⊗dhµ.

Definition 1.1. A horizontal one-form α ∈ g⊗Λ0,1(E ∞) is called a g-valued zero-curvature repre-
sentation for E if α satisfies the Maurer–Cartan equation

EMC =
{

d̄hα− 1
2 [α,α]

.
= 0
}

(1.1)

by virtue of equation E and its differential consequences.

Given a zero-curvature representation α = Ai dxi, the Maurer–Cartan equation EMC can be inter-
preted as the compatibility condition for the linear system

Ψxi = AiΨ, (1.2)

where Ai ∈ g⊗C∞(E ∞) and Ψ is the wave function, that is, Ψ is a (local) section of the principal
fibre bundle P(E ∞,G) with action of the gauge Lie group G on fibres; the Lie algebra of G is g.
Then the system of equations

DxiA j−Dx j Ai +[Ai,A j] = 0, 16 i < j 6 n,

is equivalent to Maurer–Cartan’s equation (1.1).
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1.3. Gauge transformations

Let g be the Lie algebra of the Lie group G and α be a g-valued zero-curvature representation for
a given PDE system E . A gauge transformation Ψ 7→ gΨ of the wave function by an element g ∈
C∞(E ∞,G) induces the change

α 7→ α
g = g ·α ·g−1 + d̄hg ·g−1.

The zero-curvature representation αg is called gauge equivalent to the initially given α; the G-
valued function g on E ∞ determines the gauge transformation of α . For convenience, we make no
distinction between the gauge transformations α 7→ αg and G-valued functions g which generate
them.

It is readily seen that a composition of two gauge transformations, by using g1 first and then
by g2, itself is a gauge transformation generated by the G-valued function g2 ◦g1. Indeed, we have
that

(αg1)g2 = (d̄hg1 ·g−1
1 +g1 ·α ·g−1

1 )g2 = d̄hg2 ·g−1
2 +g2 · (d̄hg1 ·g−1

1 +g1 ·α ·g−1
1 ) ·g−1

2

= (d̄hg2 ·g1 +g2 · d̄hg1) ·g−1
1 ·g

−1
2 +g2 ·g1 ·α ·g−1

1 ·g
−1
2

= d̄h(g2 ·g1) · (g2 ·g1)
−1 +(g2 ·g1) ·α · (g2 ·g1)

−1.

We now consider infinitesimal gauge transformations generated by elements of the Lie group G
which are close to its unit element 1. Suppose that g1 = exp(λ p1) = 1+λ p1 +

1
2 λ 2 p2

1 +o(λ 2) and
g2 = exp(µ p2)= 1+µ p2+

1
2 µ2 p2

2+o(µ2) for some p1, p2 ∈ g and µ , λ ∈R. The following lemma,
an elementary proof of which refers to the definition of Lie algebra, is the key to a construction of
the anchors in non-Abelian variational Lie algebroids.

Lemma 1.1. Let α be a g-valued zero-curvature representation for a system E . Then the commu-
tant g1 ◦ g2 ◦ g−1

1 ◦ g−1
2 of infinitesimal gauge transformations g1 and g2 is an infinitesimal gauge

transformation again.

Proof. By definition, put g = g1 ◦g2 ◦g−1
1 ◦g−1

2 . Taking into account that g−1
1 = 1−λ p1+

1
2 λ 2 p2

1+

o(λ 2) and g−1
2 = 1−µ p2 +

1
2 µ2 p2

2 +o(µ2), we obtain that

g = g1g2g−1
1 g−2

2 = 1+λ µ · (p1 p2− p2 p1)+o(λ 2 +µ
2).

We finally recall that [p1, p2] ∈ g, whence follows the assertion.

An infinitesimal gauge transformation g = 1 + λ p + o(λ ) acts on a given g-valued zero-
curvature representation α for an equation E ∞ by the formula

α
g = d̄h(1+λ p+o(λ )) · (1−λ p+o(λ ))+(1+λ p+o(λ )) ·α · (1−λ p+o(λ ))

= λ d̄h p+α +λ (pα−α p)+o(λ ) = α +λ (d̄h p+[p,α])+o(λ ).

From the coefficient of λ we obtain the operator ∂̄ α = d̄h+[·,α]. Lemma 1.1 implies that the image
of this operator is closed under commutation in g, that is, [im ∂̄ α , im ∂̄ α ] ⊆ im ∂̄ α . Such operators
and their properties were studied in [25, 26]. We now claim that the operator ∂̄ α yields the anchor
in a non-Abelian variational Lie algebroid, see Fig. 1;

this construction is elementary (see Remark 1.1 on p. 3). Namely, the non-Abelian Lie algebroid
(π∗∞ ◦χ∗∞(ξ ),∂ α , [ , ]g) consists of
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-
?r

6

J∞
χ (ξ )

[ , ]g

χ∞ ◦χ∗∞(ξ )

Mn

x

-
∂ α = dh +[ · ,α]

-
?r

6

6

6

6

6

J∞

ξ
(χ)

[ , ]

ξ∞ ◦ξ ∗∞(χ)
Mn

x

Fig. 1. Non-Abelian variational Lie algebroid.

• the pull-back of the bundle ξ for g-valued gauge parameters p ; the pull-back is obtained
by using the bundle χ for g-forms α and (again by using the infinite jet bundle π∞ over) the
bundle π of physical fields,
• the (restriction ∂̄ α to E ∞ ⊆ J∞(π) of the) anchor ∂ α that generates infinitesimal gauge

transformations α̇ = ∂ α(p) in the bundle χ of g-valued connection one-forms, and
• the Lie algebra structure [ , ]g on the anchor’s domain of definition.

We refer to Appendix A.1 for more detail and to p. 18 for discussion on that object’s structural
complexity.

1.4. Noether identities for the Maurer–Cartan equation

In the meantime, let us discuss Noether identities [6, 19, 34] for Maurer–Cartan equation (1.1).
Depending on the dimension n of the base manifold Mn, we consider the cases n = 2, n = 3, and
n > 3. We suppose that the Lie algebra g is equippedc with a nondegenerate ad-invariant metric ti j.
The paring 〈 , 〉 is defined for elements of g⊗Λ(Mn) as follows,

〈Aµ,Bν〉= 〈A,B〉µ ∧ν ,

where the coupling 〈A,B〉 is given by the metric ti j for g. From the ad-invariance 〈[A,B],C〉 =
〈A, [B,C]〉 of the metric ti j we deduce that

〈[Aµ,Bν ],Cρ〉= 〈[A,B]µ ∧ν ,Cρ〉= 〈[A,B],C〉µ ∧ν ∧ρ = 〈A, [B,C]〉µ ∧ν ∧ρ

= 〈Aµ, [B,C]ν ∧ρ〉= 〈Aµ, [Bν ,Cρ]〉.

Let us denote by F =−dhα+ 1
2 [α,α] the left-hand side of Maurer–Cartan equation (1.1). We recall

from section 1.3 that α̇ = ∂ α(p) is a gauge symmetry of Maurer–Cartan equation (1.1). Moreover,
for all n > 1 the operator ∂

†
α produces a Noether identity for (1.1), which is readily seen from the

following statement.

cNotice that the Lie algebra g is canonically identified with its dual g∗ via nondegenerate metric ti j.
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Proposition 1.1. The left-hand sides F = −dhα + 1
2 [α,α] of Maurer–Cartan’s equation satisfy

the Noether identity (or Bianchi identity for the curvature two-form)

∂
†
α(F ) =−dhF − [F ,α]≡ 0. (1.3)

Proof. Applying the operator ∂
†
α to the left-hand sides of Maurer–Cartan’s equation, we obtain

∂
†
α(F ) = ∂

†
α

(
−dhα + 1

2 [α,α]
)
= (−dh− [·,α])

(
−dhα + 1

2 [α,α]
)
=

= (dh ◦dh)α− 1
2 dh
(
[α,α]

)
+[dhα,α]− 1

2 [α, [α,α]] =

=−[dhα,α]+ [dhα,α]− 1
2 [α, [α,α]] = 0.

The third term in the last line is zero due to the Jacobi identity, whereas the first two cancel out.

Let n = 2. The Maurer–Cartan equation’s left-hand sides F are top-degree forms, hence every
operator which increases the form degree vanishes at F .

Consider the case n = 3; we recall that Maurer–Cartan equation (1.1) is Euler–Lagrange in this
setup (cf. [1, 2, 40]).

Proposition 1.2. If the base manifold M3 is 3-dimensional, then Maurer–Cartan’s equation is
Euler–Lagrange with respect to the action functional

SMC =
∫

L =
∫ {
−1

2〈α,dhα〉+ 1
6〈α, [α,α]〉

}
. (1.4)

Note that its Lagrangian density L is a well-defined top-degree form on the base threefold M3.

Proof. Let us construct the Euler–Lagrange equation:

δ

∫ {
−1

2〈α,dhα〉+ 1
6〈α, [α,α]〉

}
= 〈δα,−dhα〉+ 1

6(〈δα, [α,α]〉+ 〈α, [δα,α]〉+ 〈α, [α,δα]〉

= 〈δα,−dhα + 1
2 [α,α]〉.

This proves our claim.

Proposition 1.3. For each p ∈ g⊗Λ0(M3), the evolutionary vector field ~∂
(α)

A(p) with generating

section A(p) = ∂ α(p) = dh p+[p,α] is a Noether symmetry of the action SMC,d

~∂
(α)

A(p)(SMC)∼= 0 ∈ Hn
(χ).

The operator A = ∂ α = dh +[·,α] determines linear Noether’s identity (1.3),

Φ(x,α,F ) = A†(F )≡ 0,

for left-hand sides of the system of Maurer–Cartan’s equations (1.1).

Proof. We have

~∂
(α)

A(p)SMC ∼= 〈A(p), δ

δα
SMC〉 ∼=

〈(
`
(F )
Φ

)†
(p),F

〉
∼= 〈p, `(F )

Φ
(F )〉= 〈p,Φ(F )〉= 〈p,A†(F )〉.

In Proposition 1.1 we prove that A†(F ) ≡ 0. So for all p we have that 〈p,A†(F )〉 ∼= 0, which
concludes the proof.

dHere ∼= denotes the equality up to integration by parts and we assume the absence of boundary terms.
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Finally, we let n > 3. In this case of higher dimension, the Lagrangian L = 〈α, 1
6 [α,α]−

1
2 dhα〉 ∈ Λ3(Mn) does not belong to the space of top-degree forms and Proposition 1.2 does not
hold. However, Noether’s identity ∂

†
α(F )≡ 0 still holds if n > 3 according to Proposition 1.1.

2. Non-Abelian variational Lie algebroids

Let ~e1, . . ., ~ed be a basis in the Lie algebra g. Every g-valued zero-curvature representation for a
given PDE system E ∞ is then α = αk

i~ek dxi for some coefficient functions αk
i ∈C∞(E ∞). Construct

the vector bundle χ : Λ1(Mn)⊗g→Mn and the trivial bundle ξ : Mn×g→Mn with the Lie alge-
bra g taken for fibre. Next, introduce the superbundle Πξ : Mn×Πg→Mn the total space of which
is the same as that of ξ but such that the parity of fibre coordinates is reversede (see Appendix A.2
on p. 24). Finally, consider the Whitney sum J∞(χ)×Mn J∞(Πξ ) of infinite jet bundles over the
parity-even vector bundle χ and parity-odd Πξ .

With the geometry of every g-valued zero-curvature representation we associate a non-Abelian
variational Lie algebroid [25]. Its realization by a homological evolutionary vector field is the dif-
ferential in the arising gauge cohomology theory (cf. [37] and [2, 18, 25, 29, 33]).

Theorem 2.1. The parity-odd evolutionary vector field which encodes the non-Abelian variational
Lie algebroid structure on the infinite jet superbundle J∞(χ×Mn Πξ )∼= J∞(χ)×Mn J∞(Πξ ) is

Q =~∂
(α)
[b,α]+dhb +

1
2
~∂

(b)
[b,b], [Q,Q] = 0 ⇐⇒ Q2 = 0, (2.1)

where for each choice of respective indexes,

• αk
µ is a parity-even coordinate along fibres in the bundle χ of g-valued one-forms,

• bk is a parity-odd fibre coordinate in the bundle Πξ ,
• ck

i j is a structure constant in the Lie algebra g so that [bi,b j]k = bick
i jb

j and [bi,α j]k =

bick
i jα

j,
• dh is the horizontal differential on the Whitney sum of infinite jet bundles,
• the operator ∂ α = dh+[·,α] : J∞

χ (Πξ )∼= J∞(χ×Mn Πξ )→ J∞

Πξ
(χ)∼= J∞(χ×Mn Πξ ) is the

anchor.

Proof. The anticommutator [Q,Q] = 2Q2 of the parity-odd vector field Q with itself is again an
evolutionary vector field. Therefore it suffices to prove that the coefficients of~∂/∂α and~∂/∂b are
equal to zero in the vector field

Q2 =
(
~∂

(α)
[b,α]+dhb +

1
2
~∂

(b)
[b,b]

)(
~∂

(α)
[b,α]+dhb +

1
2
~∂

(b)
[b,b]

)
.

We have [b,b]k = bick
i jb

j by definition. Hence it is readily seen that (1
2
~∂

(b)
bick

i jb j)
2 = 0 because g is a

Lie algebra [39] so that the Jacobi identity is satisfied by the structure constants. Since the bracket

eThe odd neighbour Πg of the Lie algebra is introduced in order to handle poly-linear, totally skew-symmetric maps of
elements of g so that the parity-odd space Πg carries the information about the Lie algebra’s structure constants ck

i j still
not itself becoming a Lie superalgebra.
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[b,b] does not depend on α , we deduce that (~∂ (α)
[b,α]+dhb)(

1
2
~∂

(b)
[b,b]) = 0. Therefore,

Q2 =
(
~∂

(α)
[b,α]+dhb +

1
2
~∂

(b)
[b,b]

)(
~∂

(α)
[b,α]+dhb

)
=−~∂ (α)

[b,[b,α]+dhb]+
1
2
~∂

(α)
[[b,b],α]+dh([b,b])

=~∂
(α)

−[b,[b,α]+dhb]+ 1
2 [[b,b],α]+ 1

2 dh([b,b])
.

Now consider the expression −[b, [b,α] + dhb] + 1
2 [[b,b],α] + 1

2 dh([b,b]), viewing it as a bi-
linear skew-symmetric map Γ(ξ )× Γ(ξ ) → Γ(χ). First, we claim that the value

(1
2 [[b,b],α]−

[b, [b,α]]
)
(p1, p2) at any two sections p1, p2 ∈ Γ(ξ ) vanishes identically. Indeed, by taking an alter-

nating sum over the permutation group of two elements we have that

1
2 [[p1, p2],α]− 1

2 [[p2, p1],α]−[p1, [p2,α]]+[p2, [p1,α]] = [[p1, p2],α]−[p1, [p2,α]]−[p2, [α, p1]]

=−[α, [p1, p2]]− [p1, [p2,α]]− [p2, [α, p1] = 0.

At the same time, the value of bi-linear skew-symmetric mapping 1
2 dh([b,b])− [b,dhb] at sections

p1 and p2 also vanishes,

1
2 dh([p1, p2])− 1

2 dh([p2, p1])− [p1,dh p2]+ [p2,dh p1] = dh([p1, p2])− [p1,dh p2]− [dh p1, p2] = 0.

We conclude that

Q2
∣∣∣
(p1,p2)

=~∂
(α)

{−[b,[b,α]+dhb]+ 1
2 [[b,b],α]+ 1

2 dh([b,b])}(p1,p2)
=~∂

(α)
0 = 0,

which proves the theorem.

Finally, let us derive a reparametrization formula for the homological vector field Q in the course
of gauge transformations of zero-curvature representations. We begin with some trivial facts [7,11].

Lemma 2.1. Let α be a g-valued zero-curvature representation for a PDE system. Consider two
infinitesimal gauge transformations given by g1 = 1+ ε p1 + o(ε) and g2 = 1+ ε p2 + o(ε). Let
g∈C∞(E ∞,G) also determine a gauge transformation. Then the following diagram is commutative,

αg g2−−−−→ βxg
xg

α
g1−−−−→ αg1 ,

if the relation p2 = g · p1 ·g−1 is valid.

Proof. By the lemma’s assumption we have that (αg1)g = (αg)g2 . Hence we deduce that

g · (1+ ε p1) = (1+ ε p2) ·g ⇐⇒ g · p1 = p2 ·g,

which yields the transformation rule p2 = g · p1 · g−1 for the g-valued function p1 on E ∞ in the
course of gauge transformation g : α 7→ αg.

Using the above lemma we describe the behaviour of homological vector field Q in the non-
Abelian variational setup of Theorem 2.1.
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Corollary 2.1. Under a coordinate change

α 7→ α
′ = g ·α ·g−1 +dhg ·g−1, b 7→ b′ = g ·b ·g−1,

where g ∈C∞(Mn,G), the variational Lie algebroid’s differential Q is transformed accordingly:

Q 7−→ Q′ =~∂
(α ′)
[b′,α ′]+dhb′+

1
2
~∂

(b′)
[b′,b′].

3. The master-functional for zero-curvature representations

The correspondence between zero-curvature representations, i.e., classes of gauge-equivalent solu-
tions α to the Maurer–Cartan equation, and non-Abelian variational Lie algebroids goes in parallel
with the BRST-technique, in the frames of which ghost variables appear and gauge algebroids arise
(see [3, 22]). Let us therefore extend the BRST-setup of fields α and ghosts b to the full BV-zoo
of (anti)fields α and α∗ and (anti)ghosts b and b∗ (cf. [4, 5, 15]). We note that a finite-dimensional
‘forefather’ of what follows is discussed in detail in [2], which is devoted to Q- and QP-structures
on (super)manifolds. Those concepts are standard; our message is that not only the approach of [2]
to QP-structures on G-manifolds X and ΠT ∗

(
X ×ΠT G/G

)
' ΠT ∗X × g∗×Πg remains applica-

ble in the variational setup of jet bundles (i.e., whenever integrations by parts are allowed, whence
many Leibniz rule structures are lost, see Appendix A), but even the explicit formulas for the BRST-
field Q and the action functional Ŝ for the extended field Q̂ are valid literally. In fact, we recover the
third and fourth equivalent formulations of the definition for a variational Lie algebroid (cf. [2, 37]
or a review [30]).

Let us recall from section 2 that α is a tuple of even-parity fibre coordinates in the bundle
χ : Λ1(Mn)⊗g→Mn and b are the odd-parity coordinates along fibres in the trivial vector bundle
Πξ : Mn×Πg→Mn. We now let all the four neighbours of the Lie algebra g appear on the stage:
they are g (in χ), g∗, Πg (in Πξ ), and Πg∗ (see [39] and reference therein). Let us consider the
bundle Πχ∗ : D1(Mn)⊗Πg∗ → Mn whose fibres are dual to those in χ and also have the parity
reversed.f We denote by α∗ the collection of odd fibre coordinates in Πχ∗.

Remark 3.1. In what follows we do not write the (indexes for) bases of vectors in the fibres of
D1(Mn) or of covectors in Λ1(Mn); to make the notation short, their couplings are implicit. Nev-
ertheless, a summation over such “invisible” indexes in ∂/∂xµ and dxν is present in all formulas
containing the couplings of α and α∗. We also note that (α∗)

←−
dh is a very interesting object because

α∗ parametrizes fibres in D1(Mn)⊗Πg∗; the horizontal differential dh produces the forms dxi which
are initially not coupled with their duals from D1(Mn). (However, such objects cancel out in the
identity Q̂2 = 0, see (3.4) on p. 13.)

Secondly, we consider the even-parity dual ξ ∗ : Mn× g∗ → Mn of the odd bundle Πξ ; let us
denote by b∗ the coordinates along g∗ in the fibres of ξ ∗.

fIn terms of [2], the Whitney sum J∞(χ)×Mn J∞(Πχ∗) plays the rôle of ΠT ∗X for a G-manifold X ; here g is the Lie
algebra of a Lie group G so that Πg'ΠT G/G.
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Finally, we fix the ordering

δα ∧δα
∗+δb∗∧δb (3.1)

of the canonically conjugate pairs of coordinates. By picking a volume form dvol(Mn) on the base
Mn we then construct the odd Poisson bracket (variational Schouten bracket [[ , ]]) on the senior dh-
cohomology (or horizontal cohomology) space Hn

(χ×Mn Πχ∗×Mn Πξ×Mn ξ ∗); we refer to [20,21]
for a geometric theory of variations.

Theorem 3.1. The structure of non-Abelian variational Lie algebroid from Theorem 2.1 is encoded
on the Whitney sum J∞(χ ×Mn Πχ∗×Mn Πξ ×Mn ξ ∗) of infinite jet (super)bundles by the action
functional

Ŝ =
∫

dvol(Mn)
{
〈α∗, [b,α]+dh(b)〉+ 1

2〈b
∗, [b,b]〉

}
∈ Hn

(χ×Mn Πχ
∗×Mn Πξ ×Mn ξ

∗)

which satisfies the classical master-equation

[[Ŝ, Ŝ]] = 0.

The functional Ŝ is the Hamiltonian of odd-parity evolutionary vector field Q̂ which is defined on
J∞(χ)×Mn J∞(Πχ∗)×Mn J∞(Πξ )×Mn J∞(ξ ∗) by the equality

Q̂(H )∼= [[Ŝ,H ]] (3.2)

for any H ∈ Hn
(χ×Mn Πχ∗×Mn Πξ ×Mn ξ ∗). The odd-parity field isg

Q̂ =~∂
(α)
[b,α]+dh(b)

+~∂
(α∗)

(α∗)
←−
ad∗b

+ 1
2
~∂

(b)
[b,b]+

~∂
(b∗)

−ad∗α (α∗)+(α∗)
←−
dh+ad∗b(b∗)

, (3.3)

where 〈(α∗)
←−
ad∗b,α〉

def
= 〈α∗, [b,α]〉 and 〈ad∗b(b

∗), p〉 = 〈b∗, [b, p]〉 for any α ∈ Γ(χ) and p ∈ Γ(ξ ).
This evolutionary vector field is homological,

Q̂2 = 0.

Proof. In coordinates, the master-action Ŝ =
∫

L̂ dvol(Mn) is equal to

Ŝ =
∫

dvol(Mn)
{

α
∗
a (b

µca
µνα

ν +dh(ba))+ 1
2 b∗µbβ cµ

βγ
bγ

}
;

here the summation over spatial degrees of freedom from the base Mn in implicit in the horizontal
differential dh and the respective contractions with α∗. By the Jacobi identity for the variational
Schouten bracket [[ , ]] (see [21]), the classical master equation [[Ŝ, Ŝ]] = 0 is equivalent to the homo-
logical condition Q̂2 = 0 for the odd-parity vector field defined by (3.2). The conventional choice

gThe referee points out that the evolutionary vector field Q̂ is the jet-bundle upgrade of the cotangent lift of the field Q,
which is revealed by the explicit formula for the Hamiltonian Ŝ. Let us recall that the cotangent lift of a vector field
Q = Qi ∂/∂qi on a (super)manifold Nm is the Hamiltonian vector field on T ∗Nm given by Q̂ = Qi(q)∂/∂qi − p j ·
∂Q j(q)/∂qi ∂/∂ pi; its Hamiltonian is S = pi Q

i(q). An example of this classical construction is contained in the
seminal paper [2].
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of signs (3.1) yields a formula for this graded derivation,

Q̂ =~∂
(α)

−~δL̂ /δα∗
+~∂

(α∗)
~δL̂ /δα

+~∂
(b)
~δL̂ /δb∗

+~∂
(b∗)
−~δL̂ /δb

,

where the arrows over ~∂ and ~δ indicate the direction along which the graded derivations act and
graded variations are transported (that is, from left to right and rightmost, respectively). We explic-
itly obtain thath

Q̂ =~∂
(αa)

bµ ca
µν αν+dh(ba)+

~∂
(α∗ν )

α∗a bµ ca
µν
+~∂

(bµ )
1
2 bβ cµ

βγ
bγ
+~∂

(b∗µ ){
−α∗a ca

µν αν+(α∗µ )
←−
dh+b∗aca

µν bν

}.

Actually, the proof of Theorem 2.1 contains the first half of a reasoning which shows why Q̂2 =

0. (It is clear that the field Q̂ consists of (2.1) not depending on α∗ and b∗ and of the two new
terms.) Again, the anticommutator [Q̂, Q̂] = 2Q̂2 is an evolutionary vector field. We claim that the
coefficients of~∂/∂α∗ν and~∂/∂b∗µ in it are equal to zero.

Let us consider first the coefficient of~∂/∂α∗ at the bottom of the evolutionary derivation~∂ (α∗)
{...}

in Q̂2; by contracting this coefficient with α = (αν) we obtain

〈α∗a ,bλ ca
λ µ

bqcµ

qνα
ν − 1

2 bβ cµ

βγ
bγca

µνα
ν〉.

It is readily seen that α∗ is here coupled with the bi-linear skew-symmetric operator Γ(ξ )×Γ(ξ )→
Γ(χ) for any fixed α ∈ Γ(χ), and we show that this operator is zero on its domain of definition.
Indeed, the comultiple | 〉 of 〈α∗| is [b, [b,α]]− 1

2 [[b,b],α] so that its value at any arguments p1, p2 ∈
Γ(ξ ) equals

[p1, [p2,α]]− [p2, [p1,α]]− [1
2 [p1, p2]− 1

2 [p2, p1],α] = 0

by the Jacobi identity.
Let us now consider the coefficient of~∂/∂b∗µ in the vector field Q̂2,

−
[
α
∗
ã bµ̃cã

µ̃a

]
ca

µνα
ν +α

∗
a ca

µν

[
bµ̃cν

µ̃ν̃
α

ν̃ +dh(bν)
]
+
([

α
∗
ã bµ̃cã

µ̃µ

])←−
dh

+
[
−α

∗
ã cã

aν̃
α

ν̃ +(α∗a )
←−
dh +b∗ãcã

aν̃
bν̃

]
ca

µνbν +b∗aca
µν ·
[

1
2 bβ̃ cν

β̃ γ̃
bγ̃

]
;

here we mark with a tilde sign those summation indexes which come from the first copy of Q̂ acting
from the left on ~∂

(b∗µ )
{...} in Q̂ ◦ Q̂. Two pairs of cancellations occur in the terms which contain the

horizontal differential dh. First, let us consider the terms in which the differential acts on α∗. By

hNote that
〈
α∗,
−→
dh (b)

〉 ∼= −〈(α∗)←−dh ,b
〉

in the course of integration by parts, whence the term (α∗µ )
←−
dh that comes

from −~δL̂ /δbµ does stand with a plus sign in the velocity of b∗µ .
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contracting the index µ with an extra copy b = (bµ), we obtain

(α∗a )
←−
dh bλ ca

λ µ
bµ +(α∗a )

←−
dh ca

µλ
bλ bµ . (3.4)

Due to the skew-symmetry of structure constants ck
i j in g, at any sections p1, p2 ∈ Γ(ξ ) we have that

(α∗a )
←−
dh ·

(
pλ

1 ca
λ µ

pµ

2 − pλ
2 ca

λ µ
pµ

1 + ca
µλ

pλ
1 pµ

2 − ca
µλ

pλ
2 pµ

1

)
= 0.

Likewise, a contraction with b = (bµ) for the other pair of terms with dh, now acting on b, yields

α
∗
a ca

µλ
dh(bλ )bµ +α

∗
a dh(bλ )ca

λ µ
bµ . (3.5)

At the moment of evaluation at p1 and p2, expression (3.5) cancels out due to the same mechanism
as above.

The remaining part of the coefficient of~∂/∂b∗µ in Q̂2 is

−α
∗
z bλ cz

λaca
µνα

ν +α
∗
z cz

µνbicν
i jα

j−α
∗
z cz

aνα
νca

µ jb
j

+b∗
λ

cλ
aγbγca

µ jb
j +b∗

λ
cλ

µγ · 1
2 bβ cγ

βδ
bδ . (3.6)

It is obvious that the mechanisms of vanishing are different for the first and second lines in (3.6)
whenever each of the two is regarded as mapping which takes b = (bµ) to a number from the field k.
Therefore, let us consider these two lines separately.

By contracting the upper line of (3.6) with b = (bµ), we rewrite it as follows,

〈−α
∗
z ,b

λ cz
λaca

µνα
νbµ − cz

µνbicν
i jα

jbµ + cz
aνα

νca
µ jb

jbµ〉.

Viewing the content of the co-multiple | 〉 of 〈−α∗| as bi-linear skew-symmetric mapping Γ(ξ )×
Γ(ξ )→ Γ(χ), we conclude that its value at any pair of section p1, p2 ∈ Γ(ξ ) is

[p2, [p1,α]]− [p1, [p2,α]]+ [[p1, p2],α]

− [p1, [p2,α]]+ [p2, [p1,α]]− [[p2, p1],α] = 0−0 = 0,

because each line itself amounts to the Jacobi identity.
At the same time, the contraction of lower line in (3.6) with b = (bµ) gives

〈b∗
λ
,cλ

aγbγca
µ jb

jbµ + cλ
µγ · 1

2 bβ cγ

βδ
bδ bµ〉.

The term | 〉 near 〈b∗| determines the tri-linear skew-symmetric mapping Γ(ξ )×Γ(ξ )×Γ(ξ )→
Γ(ξ ) whose value at any p1, p2, p3 ∈ Γ(ξ ) is defined by the formula

∑
σ∈S3

(−)σ

{[
[pσ(1), pσ(2)], pσ(3)

]
+
[
pσ(1),

1
2 [pσ(2), pσ(3)]

]}
.

This amounts to four copies of the Jacobi identity (indeed, let us take separate sums over even
and odd permutations). Consequently, the tri-linear operator at hand, hence the entire coefficient of
~∂/∂b∗, is equal to zero so that Q̂2 = 0.
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4. Gauge automorphisms of the Q̂-cohomology groups

We finally describe the next generation of Lie algebroids; they arise from infinitesimal gauge sym-
metries of the quantum master-equation (0.2) or its limit [[Ŝ, Ŝ]] = 0 as h̄→ 0. The construction
of infinitesimal gauge automorphisms illustrates general principles of theory of differential graded
Lie- or L∞-algebras (see [2, 29] and [18]).

Theorem 4.1. An infinitesimal shift Ŝ 7→ Ŝ(ε) = Ŝ + ε[[Ŝ,F ]] + o(ε), where F is an odd-parity
functional, is a gauge symmetry of the classical master-equation [[Ŝ, Ŝ]] = 0. A simultaneous shift
η 7→ η(ε) = η + ε[[η ,F ]]+o(ε) of all functionals η ∈ Hn

(χ×Mn Πχ∗×Mn Πξ ×Mn ξ ∗), but not of
the generator F itself, preserves the structure of Q̂-cohomology classes.

Proof. Let F be an odd-parity functional and perform the infinitesimal shift Ŝ 7→ Ŝ+ε[[Ŝ,F ]]+o(ε)
of the Hamiltonian Ŝ for the differential Q̂. We have that

[[Ŝ(ε), Ŝ(ε)]] = [[Ŝ, Ŝ]]+2ε[[Ŝ, [[Ŝ,F ]]]]+o(ε).

By using the shifted-graded Jacobi identity for the variational Schouten bracket [[ , ]] (see [21]) we
deduce that

[[Ŝ, [[Ŝ,F ]]]] = 1
2 [[[[Ŝ, Ŝ]],F ]],

so that the infinitesimal shift is a symmetry of the classical master-equation [[Ŝ, Ŝ]] = 0.
Now let a functional η mark a Q̂-cohomology class, i.e., suppose [[Ŝ,η ]] = 0. In the course of

simultaneous evolution Ŝ 7→ Ŝ(ε) for the classical master-action and η 7→ η(ε) for Q̂-cohomology
elements, the initial condition [[Ŝ,η ]] = 0 at ε = 0 evolves as fast as

[[[[Ŝ,F ]],η ]]+ [[Ŝ, [[η ,F ]]]] = [[[[Ŝ,η ]],F ]] = 0

due to the Jacobi identity and the cocycle condition itself. In other words, the Q̂-cocycles evolve to
Q̂(ε)-cocycles.

At the same time, let all functionals h ∈ Hn
(χ ×Mn Πχ∗ ×Mn Πξ ×Mn ξ ∗) evolve by the

law h 7→ h(ε) = h + ε[[h,F ]] + o(ε). Consider two representatives, η and η + [[Ŝ,h]], of the Q̂-
cohomology class for a functional η . On one hand, the velocity of evolution of the Q̂-exact term
[[Ŝ,h]] is postulated to be [[[[Ŝ,h]],F ]]; we claim that the infinitesimally shifted functional [[Ŝ,h]](ε)
remains Q̂(ε)-exact. Indeed, on the other hand we have that, knowing the change Ŝ 7→ Ŝ(ε) and
h 7→ h(ε), the exact term’s calculated velocity is

[[[[Ŝ,F ]],h]]+ [[Ŝ, [[h,F ]]]] = [[[[Ŝ,h]],F ]]

(the Jacobi identity for [[ , ]] works again and the assertion is valid irrespective of the parity of h
whenever F is parity-odd). This shows that the postulated and calculated evolutions of Q̂-exact
terms coincide, whence Q̂-coboundaries become Q̂(ε)-coboundaries after the infinitesimal shift.
We conclude that the structure of Q̂-cohomology group stays intact under such transformations of
the space of functionals.
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( f ·)� 0̄ | 1̄ 3 F

J∞
α, α∗

b, b∗

[[ , ]]

F
odd

-
Ω
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· quantum
master-action
· observables

α, α∗

b, b∗J∞

Fig. 2. The next generation of Lie algebroids: gauge automorphisms of the (quantum) BV-cohomology.

The above picture of gauge automorphisms is extended verbatim to the full quantum setupi, see
Fig. 2 and [20, § 3.2] for detail. Ghost parity-odd functionals F ∈ Hn

(χ×Mn Πχ∗×Mn Πξ ×Mn ξ ∗)

are the generators of gauge transformations

d
dεF

Sh̄ = Ω
h̄(F);

a parameter εF ∈ R is (formally) associated with every odd functional F . The observables f arise
through expansions Sh̄ +λ f + o(λ ) of the quantum master-action ; their evolution is given by the
coefficient

d
dεF

f = [[ f ,F ]]

of λ in the velocity of full action functional. It is clear also why the evolution of gauge generators
F – that belong to the domain of definition of Ω

h̄ but not to its image – is not discussed at all.
Let us recall from [20, § 3.2] and [21] that the commutator of two infinitesimal gauge transfor-

mations with ghost parity-odd parameters, say X and Y, is determined by the variational Schouten
bracket of the two generators :(

d
dεY
◦ d

dεX
− d

dεX
◦ d

dεY

)
Sh̄ = Ω

h̄([[X,Y]]).
Moreover, we discover that parity-even observables f play the rôle of “functions” in the world of
formal products of integral functionals. Namely, we have that

[[ f ·X,Y]] = f · [[X,Y]]− (−)|X|·|Y| d
dεY

( f ) ·X.

In these terms, we recover the classical notion of Lie algebroid — at the quantum level of hor-
izontal cohomology modulo imdh in the variational setup; that classical concept is reviewed in
Appendix A.1, see p. 22. The new Lie algebroid is encoded by

iThe Batalin–Vilkovisky differential Ω
h̄ stems from the Schwinger–Dyson condition of effective independence – of the

ghost parity-odd degrees of freedom – for Feynman’s path integrals of the observables ; in earnest, the condition expresses
the intuitive property 〈1〉= 1 of averaging with weight factor exp

( i
h̄ Sh̄), see [4, 15] and [20].
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• the parity-odd part of the superspace Hn
(χ×Mn Πχ∗×Mn Πξ×Mn ξ ∗) fibred over the infinite

jet space for the Whitney sum of bundles (cf. Remark 1.1 on p. 3);
• the quantum Batalin–Vilkovisky differential Ω

h̄, which is the anchor ;
• the Schouten bracket [[ , ]], which is the Lie (super)algebra structure on the infinite-

dimensional, parity-odd homogeneity component of Hn
(χ×Mn Πχ∗×Mn Πξ ×Mn ξ ∗) con-

taining the generators of gauge automorphisms in the quantum BV-model at hand.

We see that the link between the BV-differential Ω
h̄ and the classical Lie algebroid in Fig. 2 is

exactly the same as the relationship between Marvan’s operator ∂ α and the non-Abelian variational
Lie algebroid in Fig. 1.

Let us conclude this paper by posing an open problem of realization of the newly-built clas-
sical Lie algebroid via the master-functional S and Schouten bracket in the bi-graded, infinite-
dimensional setup over the superbundle of ghost parity-odd generators of gauge automorphisms (see
Theorem 4.1). We further the question to the problem of deformation quantization in the geometry
of that classical master-equation for S, see [28]. The difficulty which should be foreseen at once
is that the cohomological deformation technique (see [4, 28] or [15, 38] and references therein) is
known to be not always valid in the infinite dimension. A successful solution of the deformation
quantization problem – or its (re-)iterations at higher levels, much along the lines of this paper –
will yield the deformation parameter(s) which would be different from h̄ ; for the Planck constant is
engaged already in the picture. On the other hand, a rigidity statement would show that there can be
no deformation parameters beyond the Planck constant h̄.

Conclusion

Let us sum up the geometries we are dealing with. We started with a partial differential equation E
for physical fields; it is possible that E itself was Euler–Lagrangej and it could be gauge-invariant
with respect to some Lie group. We then recalled the notion of g-valued zero-curvature represen-
tations α for E ; here g is the Lie algebra of a given Lie group G and α is a flat connection’s
1-form in a principal G-bundle over E ∞. By construction, this g-valued horizontal form satisfies the
Maurer–Cartan equation

EMC =
{

dhα
.
= 1

2 [α,α]
}

(1.1)

by virtue of E and its differential consequences which constitute E ∞. System (1.1) is always gauge-
invariant so that there are linear Noether’s identities (1.3) between the equations; if the base mani-
fold Mn is three-dimensional, then the Maurer–Cartan equation EMC is Euler–Lagrange with respect
to action functional (1.4). The main result of this paper (see Theorem 3.1 on p. 11) is that – whenever
one takes not just the bundle χ for g-valued 1-forms but the Whitney sum of four (infinite jet bun-
dles over) vector bundles with prototype fibers built from g, Πg, g∗, and Πg∗ – the gauge invariance
in (1.1) is captured by evolutionary vector field (3.3) with Hamiltonian Ŝ that satisfies the classical

jThe class of admissible models is much wider than it may first seem; for example, the Korteweg–de Vries equation
wt =− 1

2 wxxx +3wwx is Euler–Lagrange with respect to the action functional S0 =
∫ { 1

2 vxvt − 1
4 v2

xx− 1
2 v3

x
}

dx∧dt if one
sets w = vx. In absence of the model’s own gauge group, its BV-realization shrinks but there remains gauge invariance in
the Maurer–Cartan equation.
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master-equation [2, 13],

ECME =
{

ih̄∆Ŝ
∣∣
h̄=0 =

1
2 [[Ŝ, Ŝ]]

}
. (0.1)

We notice that, by starting with the geometry of solutions to Maurer–Cartan’s equation (1.1), we
have constructed another object in the category of differential graded Lie algebras [29]; namely,
we arrive at a setup with zero differential ih̄∆

∣∣
h̄=0 and Lie (super-)algebra structure defined by the

variational Schouten bracket [[ , ]]. That geometry’s genuine differential at h̄ 6= 0 is given by the
Batalin–Vilkovisky Laplacian ∆ (see [4] and [20] for its definition). Let us now examine whether
the standard BV-technique ( [4, 15], cf. [8]) can be directly applied to the case of zero-curvature
representations, hence to quantum inverse scattering ( [35] and [32], also [10, 12]).

It is obvious that the equations of motion E upon physical fields u= φ(x) co-exist with the Mau-
rer-Cartan equations satisfied by zero-curvature representations α . The geometries of non-Abelian
variational Lie algebroids and gauge algebroids [3,22] are two manifestations of the same construc-
tion; let us stress that the respective gauge groups can be unrelated: there is the Lie group G for
g-valued zero-curvature representations α and, on the other hand, there is a gauge group (if any, see
footnote j) for physical fields and their equations of motion E = {δS0/δu = 0}.

We recalled in section 1.4 that the Maurer–Cartan equation EMC itself is Euler–Lagrange with
respect to functional (1.4) in the class of bundles over threefolds, cf. [1, 2, 40]. One obtains the
Batalin–Vilkovisky action by extending the geometry of zero-curvature representations in order
to capture Noether’s identities (1.3). It is readily seen that the required set of Darboux variables
consists of

• the coordinates F along fibres in the bundle g∗⊗Λ2(M3) for the equations EMC,
• the antifields F † for the bundle Πg⊗Λ1(M3) which is dual to the former and which has

the opposite Z2-valued ghost parity,k and also
• the antighosts b† along fibres of g∗⊗Λ3(M3) which reproduce syzygies (1.3), as well as
• the ghosts b from the dual bundle Πg×M3→M3.

The standard Koszul–Tate term in the Batalin–Vilkovisky action is then 〈b,∂ †
α(α

†)〉: the classical
master-action for the entire model is thenl

(S0 + 〈BV-terms〉)+(SMC + 〈Koszul-Tate〉);

the respective BV-differentials anticommute in the Whitney sum of the two geometries for physical
fields and flat connection g-forms.

The point is that Maurer–Cartan’s equation (1.1) is Euler–Lagrange only if n = 3; however, the
system EMC remains gauge invariant at all n> 2 but the attribution of (anti)fields and (anti)ghosts to
the bundles as above becomes ad hoc if n 6= 3. We therefore propose to switch from the BV-approach
to a picture which employs the four neighbours g, Πg, g∗, and Πg∗ within the master-action Ŝ. This

kThe co-multiple |F 〉 of a g-valued test shift 〈δα| with respect to the Λ3(M3)-valued coupling 〈 , 〉 refers to g∗ at the
level of Lie algebras (i.e., regardless of the ghost parity and regardless of any tensor products with spaces of differential
forms). This attributes the left-hand sides of Euler–Lagrange equations EMC with g∗⊗Λ2(M3). However, we note that
the pair of canonically conjugate variables would be α for g⊗Λ1(M3) and α† for Πg∗⊗Λ2(M3) whenever the Maurer–
Cartan equations EMC are brute-force labelled by using the respective unknowns, that is, if the metric tensor ti j is not
taken into account in the coupling 〈δα,F 〉.
lWe recall that the Koszul–Tate component of the full BV-differential DBV is addressed in [38] by using the language of
infinite jet bundles — whereas it is the BRST-component of DBV which we focus on in this paper.
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argument is supported by the following fact [17]: let n> 3 for Mn, suppose E is nonoverdetermined,
and take a finite-dimensional Lie algebra g, then every g-valued zero-curvature representation α

for E is gauge equivalent to zero (i.e., there exists g ∈ C∞(E ∞,G) such that α = dhg · g−1). It is
remarkable that Marvan’s homological technique, which contributed with the anchor ∂ α to our
construction of non-Abelian variational Lie algebroids, was designed for effective inspection of the
spectral parameters’ (non)removability at n = 2 but not in the case of higher dimensions n > 3 of
the base Mn.

We conclude that the approach to quantisation of kinematically integrable systems is not
restricted by the BV-technique only; for one can choose between the former and, e.g., flat deforma-
tion of (structures in) equation (0.1) to the quantum setup of (0.2). It would be interesting to pursue
this alternative in detail towards the construction of quantum groups [10] and approach of [32, 35]
to quantum inverse scattering and quantum integrable systems. This will be the subject of another
paper.

Discussion

Non-Abelian variational Lie algebroids which we associate with the geometry of g-valued zero-
curvature representations are the simplest examples of such structures in a sense that the bracket
[ , ]A on the anchor’s domain is a priori defined in each case by the Lie algebra g. That linear bracket
is independent of either base points x ∈Mn or physical fields φ(x). Another example of equal struc-
tural complexity is given by the gauge algebroids in Yang–Mills theory [3]. Indeed, the bracket [ , ]A
on the anchor’s domain of definition is then completely determined by the multiplication table of the
structure group for the Yang–Mills field. The case of variational Poisson algebroids [14,25] is struc-
turally more complex: to determine the bi-differential bracket [ , ]A it suffices to know the anchor A;
however, the bracket can explicitly depend on the (jets of) fields or on base points. The full general-
ity of variational Lie algebroids setup is achieved for 2D Toda-like systems or gauge theories beyond
Yang–Mills (e.g., for gravity). Therefore, the objects which we describe here mediate between the
Yang–Mills and Chern–Simons models. It is remarkable that “reasonable” Chern–Simons models
can in retrospect narrow the class of admissible base manifolds Mn for (gauge) field theories; for
the quantum objects determine topological invariants of threefolds (e.g., via knot theory [36, 41]).
Here we also admit that a triviality of the boundary conditions is assumed by default throughout
this paper (see footnote d on p. 7 and also [2]). This is of course a model situation; a selection of
“reasonable” geometries could in principle overload the setup with non-vanishing boundary terms.
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Appendix A. Lie algebroids: an overview

For consistency, let us recall the standard construction of a Lie algebroid over a usual smooth mani-
fold Nm. By definition (see below) it is a vector bundle ξ : Ωd+m→Nm such that the C∞(N)-module
Γ(ξ ) of its sections is endowed with a Lie algebra structure [ , ]A and with an anchor,

A ∈Mor(ξ ,T N)' HomC∞(N)(Γ(ξ ),Γ(T N)), (A.1)

which satisfies Leibniz rule (A.5) for [ , ]A. By introducing the odd neighbour Πξ : ΠΩ→ N of the
vector bundle ξ , one represents [37] the Lie algebroid over N in terms of an odd-parity derivation
Q in the ring C∞(ΠΩ)' Γ(

∧•
Ω∗) of smooth functions on the total space ΠΩ of the new superbun-

dle Πξ .
Let us indicate in advance the elements of the classical definition which are irreparably lost as

soon as the base manifold becomes the total space of an infinite jet bundle π∞ : J∞(π)→Mn for a
given vector bundle π over the new base.m The new anchor almost always becomes a positive order
operator in total derivatives; it takes values in the space of π∞-vertical, evolutionary vector fields that
preserve the Cartan distribution on J∞(π). But Newton’s binomial formula for the derivatives in A
prescribes that the old identification A( f ·X) = f ·A(X) of the two module structures for Γ(Ω) 3 X

and Γ(T N) is no longer valid (and isomorphism (A.1) is lost). Simultaneously, Leibniz rule (A.5) is
not valid, e.g., even if one takes A = id for ξ = π .

To resolve the arising obstructions, for the new definition of a variational Lie algebroid over
J∞(π) we take the proven Frobenius property,

[imA, imA]⊆ imA, (A.2)

of the anchor to be the Lie algebra homomorphism
(
ΓΩ, [ , ]A

)
→
(
Γ(T N), [ , ]

)
. In other words,

we postulate an implication but not the initial hypothesis of classical construction. Such resolution

mTo recognize the old manifold Nm in this picture and to understand where the new bundle π over Mn stems from, one
could view Nm as a fibre in a locally trivial fibre bundle π over Mn, so that the new anchor takes values in Γ(π∗∞(T π))
for the bundle induced over J∞(π) from the tangent T π to π . It is then readily seen that the classical construction
corresponds to the special case n = 0 and Mn = {pt} (equivalently, one sets Γ(π)' Nm so that only constant section are
allowed), see Fig. 3. However, in a generic situation of non-constant smooth sections one encounters differential operators
A : Γ(π∗∞(ξ ))→ Γ(π∗∞(T π)) for ξ : Ωn+d →Mn; likewise, the ‘functions’ standing in coefficients of all object become
differential functions of arbitrary finite order on J∞(π).
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to variational Lie algebroids
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)
.

was proposed in [25] for the (graded-)commutative setup of Poisson geometry on J∞(π) or for
the geometry of 2D Toda-like systems and BV-formalism for gauge-invariant models such as the
Yang-Mills equation (see [22] and also [3] in which an attempt to recognize the classical picture is
made in a manifestly jet-bundle setup). In this paper we show that the new approach is equally well
applicable in the non-Abelian case of Lie algebra-valued zero-curvature representations for partial
differential equations E ∞ ⊆ J∞(π) (which could offer new insights in the arising gauge cohomology
theories [33]).

A.1. The classical construction of a Lie algebroid

Let Nm be a smooth real m-dimensional manifold (1 ≤ m ≤ +∞) and denote by F = C∞(Nm) the
ring of smooth functions on it. The space κ = Γ(T N) of sections of the tangent bundle T N is an
F -module. Simultaneously, the space κ is endowed with the natural Lie algebra structure [ , ] which
is the commutator of vector fields,

[X ,Y ] = X ◦Y −Y ◦X , X ,Y ∈ Γ(T N). (A.3)

As usual, we regard the tangent bundle’s sections as first order differential operators with zero free
term.

The F -module structure of the space Γ(T N) manifests itself for the generators of κ through
the Leibniz rule,

[ f X ,Y ] = ( f X)◦Y − f ·Y ◦X−Y ( f ) ·X , f ∈F . (A.4)

The coefficient −Y ( f ) of the vector field X in the last term of (A.4) belongs again to the prescribed
ring F .

Let ξ : Ωm+d → Nm be another vector bundle over N and suppose that its fibres are d-
dimensional. Again, the space ΓΩ of sections of the bundle ξ is a module over the ring F of
smooth functions on the manifold Nm.

Definition ( [37]). A Lie algebroid over a manifold Nm is a vector bundle ξ : Ωd+m→ Nm whose
space of sections ΓΩ is equipped with a Lie algebra structure [ , ]A together with a bundle morphism
A : Ω→ T N, called the anchor, such that the Leibniz rule

[ f ·X,Y]A = f · [X,Y]A−
(
A(Y) f

)
·X (A.5)

holds for any X,Y ∈ ΓΩ and any f ∈C∞(Nm).
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Example. Lie algebras are toy examples of Lie algebroids over a point. The other standard exam-
ples are the tangent bundle and the Poisson algebroid structure of the cotangent bundle to a Poisson
manifold [31].

Lemma ( [16]). The anchor A maps the bracket [ , ]A for sections of the vector bundle ξ to the Lie
bracket [ , ] for sections of the tangent bundle to the manifold Nm.

This property is a consequence of Leibniz rule (A.5) and the Jacobi identity for the Lie algebra
structure [ , ]A in ΓΩ. Remarkably, the assertion of this Lemma is often postulated (for convenience,
rather than derived) as a part of the definition of a Lie algebroid, e. g., see [37, 39] vs [16, 31].

In the course of transition from usual manifolds Nm to jet spaces J∞(π) it is natural that maps of
spaces of sections become nonnegative-order linear differential operators. For example, the anchors
will be operators in total derivatives A ∈ C Diff

(
Γ(π∗∞(ξ ))→ Γ(π∗∞(T π))

)
for spaces of sections

of induced vector bundles; note that the π∞-vertical component of the tangent bundle to J∞(π) is
the target space.n Whenever that differential order is strictly positive, one loses the property of A
to be a homomorphism over the algebra F (π) = C∞(J∞(π)) of differential functions of arbitrary
finite order. Indeed, consider the first-order anchor ∂ α = [·,α]+dh, which we discuss in this paper
(cf. [33]): even though [ f · p,α] = f · [p,α], the horizontal differential dh acts by the Leibniz rule so
that ∂ α( f · p) 6= f ·∂ α(p) if f 6= const. We see that such map of horizontal module of sections for
a bundle π∗∞(ξ ) induced over J∞(π) is not completely determined by the images of a basis of local
sections in ξ , which is in contrast with the classical case in (A.1).

Likewise, the Leibniz rule expressed by (A.5) does not hold whenever a section Y∈ Γ(π∗∞(ξ ))'
Γ(ξ )⊗C∞(M)C∞(J∞(π)) contains derivatives uσ of fibre coordinates u in π . A (counter)example is
as follows: take ξ = T π and set A = id :

(
Γ(π∗∞(T π)), [ , ]A

)
→
(
Γ(π∗∞(T π)), [ , ]

)
, where both Lie

algebra structures are the commutator of evolutionary vector fields. Let X,Y ∈ Γ
(
π∗∞(T π)

)
and

f ∈C∞(J∞(π)). Then we have that

[ f X,Y]A = ∂
(u)
f X(Y)−∂

(u)
Y ( f ·X) = f · [X,Y]A−A(Y)( f ) ·X

+ ∑
|σ |>0

∑
ρ∪τ=σ

|ρ|>0

d|ρ|

dxρ
( f ) · d

|τ|

dxτ
(X) · ∂

∂uσ

(Y).

As soon as the above two ingredients of the classical definition are lost, we take for definition of an
anchor in a variational Lie algebroid over J∞(π) the involutivity [imA, imA] ⊆ imA of image of a
linear operator A ∈ C Diff

(
Γ(π∗∞(ξ )),Γ(π

∗
∞(T π))

)
whose values belong to the space of generating

sections of evolutionary vector fields on J∞(π) (alternatively, the anchor could take values in a
smaller Lie algebra of infinitesimal symmetries for a given equation E ∞ ⊆ J∞(π)). Notice that
the anchor is then a Lie algebra homomorphism by construction, namely, A :

(
Γ(π∗∞(ξ )), [ , ]A

)
→(

κ(π), [ , ]
)
. Note further that, on one hand, the bracket [ , ]A could be induced on Γ(π∗∞(ξ ))/kerA

by the property [A(p1),A(p2)] = A([p1, p2]A) of commutation closure for the image of A. (Such is
the geometry of Liouville-type Toda-like systems or the BRST- and BV-approach to gauge field
models, see [22, 24, 25] and references therein). On the other hand, the bracket [ , ]A can be present
ab initio in the picture: such is the case of Hamiltonian operators A in the Poisson formalism or the

nWe recall that both junior and senior Hamiltonian differential operators have positive differential orders for all Drinfel’d–
Sokolov hierarchies associated with the root systems; this construction yields a class of variational Poisson algebroids.
The anchors which are linear operators of zero differential order are a rare exception (however, see [23] in this context).
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geometry of zero-curvature representations (indeed, we then have [ , ]A = [ , ]g for the Lie algebra g

of a gauge group G). This alternative yields four natural examples of variational Lie algebroids.

A.2. The odd neighbour Πξ : ΠΩ→ Nm and differential Q2 = 0.

The odd neighbour of a vector bundle ξ : Ωm+d→ Nm over a smooth real manifold Nm is the vector
bundle Πξ : ΠΩm+d → Nm over the same base and with the same vector space Rd taken as the
prototype for the fibre over each point x ∈Uα ⊆ Nm: the coordinate diffeomorphism is ϕα : Uα ×
Rd →ΠΩd+m. Moreover, the topology of the bundle Πξ coincides with that of ξ so that the gluing
transformations gΠ

αβ
∈ GL(d,R) in the fibres over intersections Uα ∩Uβ ⊆ Nm of charts, smoothly

depending on x ∈ Uα ∩Uβ , are exactly the same as the fibres’ reparametrizations gαβ (x) in the
bundle ξ . However, notice that these linear mapping can not feel any grading of the object which
they transform (in particular, gαβ can not grasp the Z2-valued parity of such Rd); this indifference is
the key element in a construction of the odd neighbour. Namely, let the coordinates b1, . . . ,bd along
the fibres (Πξ )−1(x) ' Rd be Z2-parity odd,o i.e., introduce the Z2-grading |·| : xi 7→ 0̄, b j 7→ 1̄
for the ring of smooth R-valued functions on the total space ΠΩ of the superbundle (the grading
then acts by a multiplicative group homomorphism |·| : C∞(ΠΩ)→ Z2). We have that C∞(ΠΩ) '
Γ(
∧•

Ω∗), where Ω∗ denotes the space of fibrewise-linear functions on Ω. By construction, the new
space of graded coordinate functions on ΠΩ is an R-algebra and a C∞(N)-module.

Notice further that the space of the bundle’s sections in principle stays intact; however, it is
not the sections of Πξ which will be explicitly dealt with in what follows but it is a convenient
handling of cochains and cochain maps for Γ(ξ ) by coding those objects and structures in terms of
fibrewise-homogeneous functions on ΠΩ.

Remark. It is important to distinguish between sections p ∈ Γ(ξ ), p : Nm → Ωm+d , and fibre
coordinates p j on the total space Ω of the vector bundle ξ . Indeed, ∂ p j/∂xi ≡ 0 by definition
whereas the value at x ∈ Nm of a derivative ∂

∂xi (p j)(x) of a section p could be any number. In
particular, consider the Jacobi identity for the Lie algebra structure [ , ]A : Γ(ξ )×Γ(ξ )→ Γ(ξ ) in a
Lie algebroid. Let pµ = pi

µ~ei be sections of ξ , here µ = 1, 2, 3, and denote by ck
i j(x) the values at

x ∈ Nm of the structure constants of [ , ]A with respect to a natural basis~ei of local sections. Then we
have that

0 = ∑
�
[[p1, p2]A, p3]A = ∑

�
[pi

1ck
i j(x)p j

2 ·~ek, p`3 ·~e`]A

= ∑
�

pi
1 p j

2 p`3 ·
{

ck
i j(x)c

n
kl(x) ·~en−

(
A
∣∣
x(~e`)

)
(ck

i j(x)) ·~ek

}
+∑
�

ck
i j(x) ·

{
pi

1 p j
2 ·
(
A
∣∣
x(~ek)

)
(p`3)(x) ·~e`− p j

2 p`3 ·
(
A
∣∣
x(~e`)

)
(pi

1)(x) ·~ek

− pi
1 p`3 ·

(
A
∣∣
x(~e`)

)
(p j

2)(x) ·~ek

}
. (A.6)

Clearly, if the coefficients pi
µ are viewed as local coordinates along fibres in Ω over x ∈ Nm

parametrized by x1, . . . ,xm, then the vector fields A(~e`) ∈ Γ(T N) no longer act on such pi
µ ’s so

that the entire last sum in (A.6) vanishes.

oThe parity reversion Π : p� b acts on the fibre coordinates but not on a basis ~ei in Rd . To keep track of a distinction
between the two geometries, we formally denote by ei = Π~ei the basis in Rd which referes to the Z2-graded setup.
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We refer to [22, 25] for a discussion on the immanent presence and recovery of the ’standard,’
vanishing terms in the course of transition C∞(ΠΩ)→C∞(Ω)→ Alt

(
Γ(ξ )×·· ·×Γ(ξ )→ Γ(ξ )

)
from homogeneous functions of the odd fibre coordinates to Γ(ξ )-valued cochains (and cochain
maps such as the Lie algebroid differential dA). A detailed analysis of properties and interrelations
between the four neighbours g, Πg, g∗, and Πg∗ is performed in [39] (here m = 0, Nm = {pt}, and
the Lie algebroid Ω is a Lie algebra g).

Proposition ( [37]). The Lie algebroid structure on Ω is encoded by the homological vector field Q
on ΠΩ, i.e., by a derivation in the ring C∞(ΠΩ) = Γ(

∧•
Ω∗),

Q = Aα
i (x)bi ∂

∂xα
− 1

2 bick
i j(x)b j ∂

∂bk , [Q,Q] = 0 ⇐⇒ 2Q2 = 0,

where

• (xα) is a system of local coordinates near a point x ∈ Nm,
• (pi) are local coordinates along the d-dimensional fibres of Ω and (bi) are the respective

coordinates on ΠΩ, and
• the formula [~ei,~e j]A = ck

i j(x)~ek gives the structure constants for a d-element local basis (~ei)

of sections in ΓΩ over the point x, and A(~ei) = Aα
i (x) · ∂/∂xα is the image of~ei under the

anchor A.

Sketch of the proof. The reasoning goes in parallel with the proof of Theorem 2.1. First, we recall
that the anchor A = ‖Aα

i ‖
16α6m
16i6d is the Lie algebra homomorphism by the previous Lemma on

p. 23. Second, we note that the homogeneous (in odd-parity coordinates b j) coefficients of ∂/∂bk,
16 k6 d, in Q2 encode the tri-linear, totally skew-symmetric map ω3 : Γ(ξ )×Γ(ξ )×Γ(ξ )→ Γ(ξ )

whose value at any p1, p2, p3 ∈ Γ(ξ ) is twice the right-hand side of Jacobi’s identity (A.6). Here we
use the fact that cyclic permutations of three objects are even (in terms of permutation’s Z2-parity),
whence it is legitimate to extend the summation ∑� to a sum over the entire permutation group S3:

∑
�

ω3(pσ(1), pσ(2), pσ(3)) =
1
2 ∑

σ∈S3

(−)σ
ω3(pσ(1), pσ(2), pσ(3)).

The presence of zero section in the left-hand side of Jacobi identity (A.6) implies that the respective
coefficient of ∂/∂b in Q vanishes.p

Remark. The coefficient +1
2 in the homological evolutionary vector field Q in Theorem 2.1, but not

the opposite value −1
2 in the canonical formula (see the Proposition on p. 25) is due to our choice

of sign in a notation for the zero-curvature representation α = Ai ·dxi: one sets either Ψxi +AiΨ = 0
or Ψxi = AiΨ for the wave function Ψ. The second option is adopted by repetition but it tells us that
the gauge connection’s g-valued one-form is minus α .

Remark. The correspondence fk↔ ωk between homogeneous functions fk(x;b, . . . ,b) ∈C∞(ΠΩ)

on the total space of the superbundle Πξ and k-chain maps ωk : Γ(ξ )×·· ·×Γ(ξ )→C∞(N) corre-
lates the homological vector field Q with the Lie algebroid differential dA that acts by the standard

pNotice that the second step of this reasoning is simplified further in the case of non-Abelian variational Lie algebroids
(see p. 8) because in that case the bracket [ , ]A is a given Lie algebra structure in g; it is described globally by using the
structure constants ck

i j regardless of the base manifold.
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Cartan formula. Namely, the following diagram is commutative,

dA : ωk −−−−→ ωk+1y y
Q : fk −−−−→ fk+1.

The wedge product of k- and `-chains corresponds under the vertical arrows of this diagram to the
ordinary Z2-graded multiplication of the respective functions from C∞(ΠΩ).

The main examples of this construction are the de Rham differential on a manifold Nm (as
before, set ξ := π and let A = id), the Chevalley–Eilenberg differential for a Lie algebra g (let
m = 0, Nm = {pt}, and take (Ω, [ , ]A) = (g, [ , ]g) and A = 0), and the de Rham differential on a
symplectic manifold (here ξ : Λ1(Nm)→ Nm, A = [[P, ·]] is the Poisson differential given by a bi-
vector P satisfying [[P,P]] = 0 and having the inverse symplectic two-form P−1, and [ , ]A is the
Koszul–Dorfman–Daletsky–Karasëv bracket [9, 31]).

The Hamiltonian homological evolutionary vector field Q that encodes the variational Poisson
algebroid structure over a jet space J∞(π) was de facto written in [14]. The BRST-differential Q is
another example of such construction over jet spaces J∞(π) ⊇ E ∞ containing the Euler–Lagrange
equations for gauge-invariant models.
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