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Spatial modulated coupled nonlinear Schrödinger systems with symmetry reduction to integrable Ermakov and
Ermakov-Painlevé subsystems are investigated.

1. Introduction

Physical systems with spatial modulation arise in a range of important contexts. In classical contin-
uum mechanics, they occur ‘inter alia’ in elastodynamics, visco-elastodynamics and in crack and
loading boundary value problems in the elastostatics of inhomogeneous media (see e.g. [2,12,13,20]
and work cited therein). Nonlinear Schrödinger (NLS) equations with modulation have, in recent
years, been shown to have importance in the theory of Bose-Einstein condensates and in nonlinear
optics, in particular, in the area of soliton management [6, 7, 22, 44, 48–50]. Nonlinear coupled sys-
tems of Ermakov-Ray-Reid type with origin in classical work in [16] and subsequently developed
in [24–26] likewise have extensive physical applications (see e.g. [1, 14, 15, 17–19, 27–31, 43, 46]).

In recent work, prototype integrable Ermakov-Painlevé II and Ermakov-Painlevé IV systems
have been derived as symmetry reductions of Manakov-type and resonant NLS systems of physical
interest [32, 33]. Here, canonical reduction of modulated NLS-Ermakov systems is investigated.

2. Modulated Nonic NLS Systems: Ermakov Reduction

Localised and periodic wave patterns admitted by single component unmodulated nonic NLS equa-
tions have recently been isolated by use of key invariants of motion in [9]. Here, coupled spatially
modulated nonic NLS-Ermakov systems are investigated of the type

i Φt +Φxx−
[
Ω(x)+Σ4

k=1hk(x)(|Φ|2 + |Ψ|2)k
]

Φ =
1

|Φ|3|Ψ|
S
(∣∣∣∣ΨΦ

∣∣∣∣)Φ ,

i Ψt +Ψxx−
[
Ω(x)+Σ4

k=1hk(x)(|Φ|2 + |Ψ|2)k
]

Ψ =
1

|Ψ|3|Φ|
T
(∣∣∣∣ΦΨ

∣∣∣∣)Ψ .

(2.1)
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In the sequel, we introduce the wave packet ansätze

Φ = q1(x)exp[−i µt + i r1(x)] , Ψ = q2(x)exp[−i µt + i r2(x)] (2.2)

and proceed with modulations

hk(x) = Hk

(
q1

q2

)
/ρ

4+2k , k = 1, ...,4 . (2.3)

It is remarked that, symmetry reduction of an unmodulated Manakov system under such represen-
tations has been previously used to isolated periodic and quasi-periodic solutions by Christiansen et
al in [10].

Insertion of (2.2) into (2.1) produces the coupled nonlinear system

q1xx +µq1− r2
1xq1−

[
Ω(x)+Σ4

k=1hk(x)(q2
1 +q2

2)
k
]

q1 =
1

q2
1q2

S
(

q2

q1

)
,

q2xx +µq2− r2
2xq2−

[
Ω(x)+Σ4

k=1hk(x)(q2
1 +q2

2)
k
]

q2 =
1

q1q2
2

T
(

q1

q2

) (2.4)

together with

2 r1xq1x + r1xxq1 = 0 , 2 r2xq2x + r2xxq2 = 0 (2.5)

whence

r1x = kI/q2
1 , r2x = kII/q2

2 (2.6)

where kI,kII are arbitrary constants of integration.
Substitution of the modulations (2.3) and the relations (2.6) into (2.4) now yields

q1xx +[µ−Ω(x)]q1 =
1

q2
1q2

S∗
(

q2

q1

)
+

q1

ρ4 Σ4
k=1Hk

(
q1

q2

)[(
q1

ρ

)2

+

(
q2

ρ

)2
]k

,

:=
q1

q4
2

φ(q1/q2)+
q1

ρ4 ψ(q1/ρ, q2/ρ)

q2xx +[µ−Ω(x)]q2 =
1

q2
2q1

T ∗
(

q1

q2

)
+

q2

ρ4 Σ4
k=1Hk

(
q1

q2

)[(
q1

ρ

)2

+

(
q2

ρ

)2
]k

,

:=
q2

q4
1

χ(q1/q2)+
q2

ρ4 ψ(q1/ρ, q2/ρ)

(2.7)

where

S∗(q2/q1) = S(q2/q1)+ k2
I (q2/q1) , T ∗(q1/q2) = T (q1/q2)+ k2

II(q1/q2) . (2.8)

If the above pair of coupled nonlinear equations is augmented by the generalised Ermakov equation

ρxx +[µ−Ω(x)]ρ =
1

ρ3 ψ(q1/ρ, q2/ρ) (2.9)

then the resultant triad constitutes a three-component Ermakov system as originally introduced in a
multi-layer hydrodynamic context in [34].
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On introduction of the change of dependent and independent variables according to

q1 = q∗1(z)φ
∗ , q2 = q∗2(z)φ

∗ ,

ρ = ρ∗(z)φ ∗ ,
(2.10)

with

z = ψ
∗/φ

∗ (2.11)

where φ ∗,ψ∗ are linearly independent solutions with unit Wronskian of

∆xx +[µ−Ω(x)]∆ = 0 (2.12)

the non-autonomous triad determined by (2.7)−(2.9) is reduced to the corresponding autonomous
form

q∗1zz =
q∗1
q∗42

φ(q∗1/q∗2)+
q∗1
ρ∗4

ψ(q∗1/ρ∗, q∗2/ρ∗) ,

q∗2zz =
q∗2
q∗41

χ(q∗1/q∗2)+
q∗2
ρ∗4

ψ(q∗1/ρ∗, q∗2/ρ∗) ,

ρ∗zz =
1

ρ∗3
ψ(q∗1/ρ∗, q∗2/ρ∗) .

(2.13)

Thus, it is seen that

ρ∗q∗1zz−q∗1ρ∗zz =
q∗1ρ∗

q∗42
φ(q∗1/q∗2) ,

ρ∗q∗2zz−q∗2ρ∗zz =
q∗2ρ∗

q∗41
χ(q∗1/q∗2) ,

(2.14)

whence on setting

u∗ = q∗1/ρ
∗ = q1/ρ , v∗ = q∗2/ρ

∗ = q2/ρ , (2.15)

and introduction of a reciprocal-type transformation

dz∗ =
1

ρ∗2
dz , ρ

∗∗ =
1

ρ∗
, (2.16)

(2.14) becomes an autonomous two-component Ermakov-Ray-Reid system

u∗z∗z∗ =
1

u∗2v∗
S∗
(

v∗

u∗

)
, v∗z∗z∗ =

1
v∗2u∗

T ∗
(

u∗

v∗

)
, (2.17)

while

ρ
∗∗
z∗z∗+ψ(u∗,v∗)ρ∗∗ = 0 . (2.18)

The latter linear equation in ρ∗∗ becomes determinate once the Ermakov variables u∗,v∗ have been
obtained via the system (2.17).
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The Ermakov-Ray-Reid system (2.17) is Hamiltonian with

1
u∗2v∗

S∗
(

v∗

u∗

)
=

∂V
∂u∗

,
1

v∗2u∗
T ∗
(

u∗

v∗

)
=

∂V
∂v∗

(2.19)

provided it adopts the form [27]

u∗z∗z∗ =
2

u∗3
J∗(v∗/u∗)+

v∗

u∗4
J∗
′
(v∗/u∗) , v∗z∗z∗ =−

1
u∗3

J∗(v∗/u∗) (2.20)

with Ermakov invariant

E ∗ =
1
2
(v∗u∗z∗−u∗v∗z∗)

2 +

(
u∗2 + v∗2

u∗2

)
J∗(v∗/u∗) , (2.21)

and Hamiltonian

H ∗ =
1
2
(u∗2z∗ + v∗z∗)

2 +
1

u∗2
J∗(v∗/u∗) . (2.22)

This pair of invariant relations in E ∗ and H ∗ may be used to established the integrability of the
Ermakov-Ray-Reid system (2.20) in an algorithmic manner as described in [27]. Three-component
Ermakov systems of the type (2.13) have been investigated in detail in [34]. Novel connections of
such Ermakov systems and 3-body problems have been recently established in [35].

In [6,7], a symmetry reduction of a single component NLS equation with modulation h(x)∼ ρ−6

of the cubic nonlinear term was considered where ρ is driven by

ρxx +[µ−Ω(x)]ρ =
kIII

ρ3 , (2.23)

namely, the classical Ermakov equation. Modulated single-component cubic NLS equations associ-
ated with standard Ermakov-Ray-Reid systems have recently been investigated in [36]. Here, in the
present context of the coupled nonic NLS system (2.1), the class of modulations

hk(x) = ck/ρ
4+2k , k = 1, ...,4 (2.24)

is next adopted wherein ρ is constrained by (2.23). The symmetry reduction of the corresponding
modulated system (2.1) via (2.2) then yields

q1xx +[µ−Ω(x)]q1 =
1

q2
1q2

S
(

q2

q1

)
+

k2
I

q3
1
+

q1

ρ4 Σ4
k=1ck

[(
q1

ρ

)2

+

(
q2

ρ

)2
]k

,

q2xx +[µ−Ω(x)]q2 =
1

q2
2q1

T
(

q1

q2

)
+

k2
II

q3
2
+

q2

ρ4 Σ4
k=1ck

[(
q1

ρ

)2

+

(
q2

ρ

)2
]k

.

(2.25)

Combination with the Ermakov equation (2.23) now shows that

ρq1xx−q1ρxx =
ρ

q2
1q2

S
(

q2

q1

)
+

ρk2
I

q3
1
− kIIIq1

ρ3 +
q1

ρ3 Σ4
k=1ck

[(
q1

ρ

)2

+

(
q2

ρ

)2
]k

,

ρq2xx−q2ρxx =
ρ

q2
2q1

T
(

q1

q2

)
+

ρk2
II

q3
2
− kIIIq2

ρ3 +
q2

ρ3 Σ4
k=1ck

[(
q1

ρ

)2

+

(
q2

ρ

)2
]k

(2.26)
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whence, on setting

u = q1/ρ , v = q2/ρ ,

dx∗ = ρ−2dx ,
(2.27)

a Ermakov-Ray-Reid type system is obtained, viz

ux∗x∗− [Σ4
k=1 ck(u2 + v2)k− kIII]u =

k2
I

u3 +
1

u2v
S
( v

u

)
,

vx∗x∗− [Σ4
k=1 ck(u2 + v2)k− kIII]v =

kII

v3 +
1

v2u
T
(u

v

)
,

(2.28)

with invariant

E =
1
2
(vux∗−uvx∗)

2 +
∫

ξ=v/u
S(ξ )dξ +

∫
η=u/v

T (η)dη +
1
2

[
k2

I

( v
u

)2
+ k2

II

(u
v

)2
]
. (2.29)

If S and T admit the parametrisations in terms of J(v/u) associated with underlying Hamiltonian
structure so that

S = 2
v
u

J(v/u)+
( v

u

)2
J′(v/u) , T =−

( v
u

)2
J′(v/u) (2.30)

then the system (2.28) admits a second invariant

H =
1
2

[
u2

x∗+ v2
x∗+

(
kI

u

)2

+

(
kII

v

)2

+ kIII(u2 + v2)−Σ
4
k=1

ck

k+1
(u2 + v2)k+1

]
+

1
u2 J(v/u)

(2.31)
while the Ermakov invariant relation (2.29) becomes

E =
1
2
(vux∗−uvx∗)

2 +
1
2

[
k2

I

( v
u

)2
+ k2

II

(u
v

)2
]
+

(
u2 + v2

u2

)
J(v/u) . (2.32)

The identity

(u2 + v2)(u2
x∗+ v2

x∗)− (vux∗−uvx∗)
2 ≡ (uux∗+ vvx∗)

2 , (2.33)

on use of the pair of invariants E and H now gives, ‘in extenso’,

Σ

[
2H −

(
kI

u

)2

−
(

kII

v

)2

− kIIIΣ−
2
u2 J(v/u)+Σ4

k=1
ck

k+1
Σk+1

]
−2E + k2

I

( v
u

)2
+ k2

II

(u
v

)2
+

2
u2 ΣJ(v/u) =

1
4

Σ2
x∗

(2.34)

where Σ = u2 + v2. On reduction, (2.34) produces a nonlinear equation independent of J(v/u) in Σ

alone, namely

Σ

[
2H − kIII Σ+Σ

4
k=1

ck

k+1
Σ

k+1
]
−
[
2E + k2

I + k2
II
]
=

1
4

Σ
2
x∗ . (2.35)
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Moreover, the Ermakov invariant relation (2.32), in turn, determines the ratio Λ = v/u via the
quadrature

∫ d(tan−1 Λ)√
2E − k2

I Λ2− k2
IIΛ
−2−2(1+Λ2)J(Λ)

=±X∗ (2.36)

where

dX∗ = Σ
−1dx∗ . (2.37)

Then,

q1 =±ρ

√
Σ

1+Λ2 , q2 =±ρΛ

√
Σ

1+Λ2 , (2.38)

where ρ is determined by the Ermakov equation (2.23). The rk(x), k = 1,2 are obtained by integra-
tion of the relations in (2.6).

3. A Class of Jacobi Elliptic Solutions

Here, by way of illustration, alignment of (2.35) is imposed with the nonlinear equation

Σ
2
x∗+1− k2 +(k2−2)Σ2 +Σ

4 = 0 (3.1)

where k here corresponds to the modulus of a Jacobi elliptic function. Thus, we set H = 0 together
with c1 = c3 = c4 = 0 and

2E + k2
I + k2

II =
1− k2

4
, kIII =

k2−2
4

,

c2 =−
3
4
.

(3.2)

The reduction (3.1) admits the particular solution

Σ = dn x∗ > 0 (3.3)

whence, the relation (2.37) yields

X∗ =
∫

nd(x∗,k)dx∗ = k
′−1 cos−1(cd(x∗,k)) , (3.4)

where k′ =
√

1− k2 is the complementary modulus.
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If we proceed with the specialisation

J(v/u) = const/
[

1+
( v

u

)2
]
, (3.5)

then (2.36) adopts the form

∫ d(tan−1 Λ)√
2Ē − k2

I

( v
u

)2
− k2

II

( v
u

)−2
=±X∗ (3.6)

where it is required that

Ē >
1
2

[
k2

I

( v
u

)2
+ k2

II

( v
u

)−2
]
> 0 . (3.7)

Under the transformation

u∗ =− C

1+
( v

u

)2 , (3.8)

it is seen that, on taking the +ve sign in (3.6), the latter adopts the form∫ du∗√
(u∗−λ )(µ−u∗)

= 2CX∗ (3.9)

where

λ +µ = 2C−1(Ē + k2
I ) , λ µ = k2

I ,

C=−
√

2Ē + k2
I + k2

II .
(3.10)

On setting

u∗ = λ cos2
θ +µ sin2

θ , λ ,µ > 0 , (3.11)

integration of (3.9) gives,

θ =±CX∗ , (3.12)

up to an additive constant, whence

u∗ = λ +(µ−λ )sin2CX∗ . (3.13)

The ratio Λ = v/u is thereby given in terms of X∗ via the relation (3.8). It can then be expressed in
terms of x∗ by means of the relation (3.4).

It remains to determine x∗ in terms of the original spatial variable x via the relation (2.27)3 where
ρ is governed by the classical Ermakov equation (2.23). The latter admits a well-known nonlinear
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superposition principle readily established via Lie group methods (see e.g. [37, 38]). Thus,

ρ =
√

aρ2
1 +2cρ1ρ2 +bρ2

2 (3.14)

where ρ1,ρ2 are linearly independent solutions of (2.12) and the constants a,b and c constrained by
the relation

ab− c2 =
kIII

W 2

where W (ρ1;ρ2) = ρ1ρ2x−ρ1xρ2 is the Wronskian of ρ1,ρ2. Accordingly, here

x∗ =
∫ dx

aρ2
1 +2cρ1ρ2 +bρ2

2
. (3.15)

In [48], in the context of Bloch wave propagation in optical lattices as described by a single
component modulated cubic NLS equation, a periodic external potential Ω(x)∼ cos2x was adopted
in which case ρ is given as a nonlinear superposition of Mathieu functions. If the external potential
Ω is constant with µ −Ω = ω2 > 0 then the modulations as given by (2.24) of the coupled NLS
system (2.1) are periodic with

hk(x) =
ck

[acos2 ωx+2ccosωxsinωx+bsin2
ωx]2+k

, k = 1, ...,4 . (3.16)

In general, a range of alignments of the nonlinear equation (2.35) in Σ with canonical equations
which admit Jacobi elliptic solutions may be made. In the present context, it is required that Σ be
positive. In that connection, in particular, it may be shown that the three-parameter class of nonlinear
equations [9]

Σ2
x∗ =−A2

0− (3b+ k2−2)Σ2− [3b2 +2(k2−2)b+1− k2]
Σ4

A2
0

−[b3 +(k2−2)b2 +(1− k2)b]
Σ6

A4
0

(3.17)

admits a positive, periodic solution

Σ =
A0√

dn2x∗+b
, A0 > 0 . (3.18)

This result was exploited in [9] to isolate dark solitary pulse solutions of an unmodulatd single
component nonic NLS equation. Therein, the parameters A0 and b were associated with the peak
and trough of a wave train. In the present context of the modulated nonic NLS system (2.1), it is
seen that alignment of (2.35) with (3.18) applies to a class with c1 = c3 = 0, c2 6= 0, c4 6= 0.

4. Modulated NLS Systems of Ermakov-Painlevé Type

4.1. A Ermakov-Painlevé II NLS System

A hybrid NLS-Ermakov system with spatial modulation is introduced here of the type

i Φt +Φxx +
[ x

2
+ ε(|Φ|2 + |Ψ|2)

]
Φ =

1
|Φ|3|Ψ|

S
(∣∣∣∣ΨΦ

∣∣∣∣)Φ ,

i Ψt +Ψxx +
[ x

2
+ ε(|Φ|2 + |Ψ|2)

]
Ψ =

1
|Ψ|3|Φ|

T
(∣∣∣∣ΦΨ

∣∣∣∣)Ψ .

(4.1)
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By way of motivation, it is remarked that the single component similarly modulated cubic NLS
equation

i σt +σxx +(δx+ ε|σ |2)σ = 0 (4.2)

was shown by Chen and Liu in [8] to admit reduction to the canonical integrable NLS equation

i τT + τxx + ε|τ|2τ = 0 (4.3)

under the changes of variable

σ = τ exp i(δXT +(2/3)δ 2T 3) ,

x = X +δT 2 , t = T .
(4.4)

Thus, the single component modulated NLS equation (4.2) is amenable to methods of modern soli-
ton theory such as the inverse scattering procedure as well as admitting geometric properties asso-
ciated with invariance under a Bäcklund transformation with its concomitant nonlinear superposi-
tion principle. Here, the modulated two-component NLS system (4.1) is shown to admit symmetry
reduction via (2.2) to an integrable hybrid Ermakov-Painlevé II system as recently set down in [39].

Thus, on introduction of the wave packet representations (2.2) into (4.1), a Ermakov-Painlevé II
system results, namely

q1xx +
[
µ +

x
2
+ ε(q2

1 +q2
2)
]

q1 =
1

q2
1q2

S∗(q2/q1) ,

q2xx +
[
µ +

x
2
+ ε(q2

1 +q2
2)
]

q2 =
1

q1q2
2

T ∗(q1/q2)

(4.5)

where S∗ and T ∗ are given by (2.8) and r1,r2 are determined by (2.6). Here, we proceed with the
requirement that

1
q2

1q2
S∗(q2/q1) =

∂V
∂q1

,
1

q1q2
2

T ∗(q1/q2) =
∂V
∂q2

(4.6)

in which case, the system (4.5) may be parametrised in terms of arbitrary J(q2/q1) according to

q1xx +
[
µ +

x
2
+ ε(q2

1 +q2
2)
]

q1 =
2
q3

1
J(q2/q1)+

q2

q4
1

J′(q2/q1) ,

q2xx +
[
µ +

x
2
+ ε(q2

1 +q2
2)
]

q2 =−
1
q3

1
J′(q2/q1) .

(4.7)

and admits the Ermakov invariant

E =
1
2
(q1q2x−q2q1x)

2 +

(
q2

1 +q2
2

q2
1

)
J(q2/q1) . (4.8)

The identity

(q2
1 +q2

2)(q
2
1x +q2

2x)− (q1q2x−q2q1x)
2 ≡ (q1q1x +q2q2x)

2 (4.9)

on use of (4.8), gives

q2
1x +q2

2x−
2E

Σ
+

2J(q2/q1)

q2
1

=
1
4

Σ2
x

Σ
(4.10)
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where Σ = q2
1 +q2

2, whence

q1xq1xx +q2xq2xx +E
Σx

Σ2 +d
[

J(q2/q1)

q2
1

]
/dx =

1
4

ΣxΣxx

Σ
− 1

8
Σ3

x

Σ2 =
1
2
(Σ1/2)xx

Σ1/2 Σx . (4.11)

The Ermakov-Painlevé II system (4.7) also shows that

q1xq1x +q2xq2x +
(

µ +
x
2
+ ε(q2

1 +q2
2)
)
(q1q1x +q2q2x) = d

[
J(q2/q1)

q2
1

]
/dx (4.12)

and combination with (4.11) produces a single component Ermakov-Painlevé II equation in Σ1/2,
namely

(Σ1/2)xx +
(

µ +
x
2
+ εΣ

)
Σ

1/2 =
2E

Σ3/2 . (4.13)

In terms of Σ and with the translation z = 2µ + x, (4.13) delivers the canonical integrable
Painlevé XXXIV equation

Σxx−
Σ2

z

2Σ
+ zΣ+2εΣ

2 +
(α− ε/2)2

2Σ
= 0 (4.14)

with

E =−1
8
(α− ε/2)2 , ε

2 = 1 (4.15)

and where, in the present context, it is required that Σ > 0, J(q2/q1)< 0.
Interestingly, the importance of positive solutions of Painlevé XXXIV arises naturally elsewhere

in connection with boundary value problems for a Painlevé II reduction of the classical two-ion
Nernst-Planck system as described in [3]. Therein, the scaled electric field E is governed by the
canonical integrable Painlevé II equation

Ezz = 2E3 + zE +α , (4.16)

while the associated ion concentrations c± are given by

c± =±Ez +E2 +
z
2
. (4.17)

The c±, which are necessarily positive, may be shown to be governed by Painlevé XXXIV. The link
between the latter and Painlevé II has been previously established in the literature via a Hamilto-
nian representation for PII. Thus, each of the canonical Painlevé equations admits a Hamiltonian
representation (see [23])

∂q
∂ z

=
∂

∂ p
H(p,q,z) ,

∂ p
∂ z

=− ∂

∂q
H(p,q,z) . (4.18)

In particular, a Hamiltonian associated with PII is

HII =
1
2

p2−
(

q2 +
z
2

)
p−
(

α +
1
2

)
q , (4.19)
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whence

dq
dz

= p−q2− z
2

,
d p
dz

= 2pq+α +
1
2
. (4.20)

Elimination of p in (4.20) produces PII in q while elimination of q delivers PXXXIV in p. It is
readily shown, more generally, that if q is governed by PII then

Σ = qz− εq2− ε
z
2

, ε
2 = 1 (4.21)

is a solution of PXXXIV as given by (4.14). In [3], this connection was used to generate sequences
of exact solutions for the latter and hence the concentrations c± via the iterated action of the
Bäcklund transformation due to Lukashevich [21] which is admitted by PII. The exact solutions so
generated involve either Yablonski-Vorob’ev polynomials or classical Airy functions. The positivity
constraints imposed on such solutions of PXXXIV were investigated in detail in [3]. These results
carry over ‘mutatis mutandis’ in the present context of symmetry reduction via the wave packet rep-
resentations (2.2) of the modulated NLS-Ermakov system (4.1). It is remarked that PXXXIV has
also been recently derived in [40] in connection with integrable structure underlying the Korteweg
capillarity system. Therein, it was recorded that the rational solutions of PXXXIV with α = n, n∈N
are given compactly by

pn(z) =
rn+1(z)rn−1(z)

2r2
n(z)

, (4.22)

where the rn(z) are the Yablonskii-Vorob’ev polynomials determined by the quadratic recurrence
relations [11, 45, 47]

rn+1rn−1 = zr2
n +4[r2

n,z− rnrn,zz] ,

r−1(z) = r0(z) = 1
(4.23)

The analogous Airy-type solutions of PXXXIV corresponding to α = n−1/2 are given by

pn−1/2(z) =
sn+1(z)sn−1(z)

2s2
n(z)

(4.24)

where the sn are given by the Toda-type recurrence relations

sn+1sn−1 = 4[s2
n,z− snsn,zz] ,

s0(z) = 1 , s1(z) = φ(z)
(4.25)

with φ(z) given by the classical Airy equation

φzz +
1
2

zφ = 0 . (4.26)

With Σ = q2
1 +q2

2 determined in terms of the rn(z) or sn(z), the ratio Λ = q2/q1 is given via the
Ermakov invariant relation (4.8) with specified form of J(q2/q1) and then

q1 =±
√

Σ

1+Λ2 , q2 =±Λ

√
Σ

1+Λ2 . (4.27)
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It is remarked that the class of Ermakov-Painlevé II systems with

J(q2/q1) =
E

1+(q2/q1)2 −
a2

4

(
q2

1−q2
2

q2
1 +q2

2

)2m

[1+(q1/q2)
2] (4.28)

has been recently discussed in [41]. A conventional Ermakov-Ray-Reid system with J(q2/q1) of
this type and m = 0 arises in nonlinear optics in the variational analysis of the co-propagation of the
optical pulses in a plane wave guide [28].

4.2. A Ermakov-Painlevé IV NLS System

Here, a hybrid NLS-Ermakov system incorporating a quadratic spatial modulation is introduced
according to

i Φt +Φxx−
[

3
4
(|Φ|2 + |Ψ|2)2 +2x(|Φ|2 + |Ψ|2)+ x2−ζ

]
Φ =

1
|Φ|3|Ψ|

S
(∣∣∣∣ΨΦ

∣∣∣∣)Φ ,

i Ψt +Ψxx−
[

3
4
(|Φ|2 + |Ψ|2)2 +2x(|Φ|2 + |Ψ|2)+ x2−ζ

]
Ψ =

1
|Ψ|3|Φ|

T
(∣∣∣∣ΦΨ

∣∣∣∣)Ψ .

(4.29)

On insertion of the wave packet representations (2.2) into the above, one obtains the Ermakov-
Painlevé IV system

q1xx−
[

3
4
(q2

1 +q2
2)

2 +2x(q2
1 +q2

2)+ x2−ζ −µ

]
q1 =

1
q2

1q2
S∗(q2/q1) ,

q2xx +

[
3
4
(q2

1 +q2
2)

2 +2x(q2
1 +q2

2)+ x2−ζ −µ

]
q2 =

1
q1q2

2
T ∗(q1/q2)

(4.30)

where S∗(q2/q1) and T ∗(q1/q2) are as given in (2.8) and the rk(x), k = 1,2 are to be obtained by
integration of the relations (2.6).

Ermakov-Painlevé IV systems of the type (4.30) have been recently introduced in a more general
setting in [39]. It is readily shown that, in this case, Σ = q2

1 + q2
2 is governed by the canonical

integrable Painlevé IV equation

Σxx =
1
2

Σ2
x

Σ
+

3
2

Σ
3 +4xΣ

2 +2(x2−α)Σ+
β

Σ
(4.31)

with α = ζ + µ and β = 4E where E is the Ermakov invariant given in the Hamiltonian case by
the relation (4.8). The ratio Λ = q2/q1 is again determined via the Ermakov invariant relation and
q1, q2 then by the relations in (4.27).

The diversity of Bäcklund and Schlesinger-type transformations admitted by Painlevë IV has
been catalogued in the comprehensive work of [4]. With regard to the positivity constraint on Σ,
the iterated action of a Bäcklund transformation on a seed bound state solution set down in [5] has
recently been used in [42] to generate an infinite sequence of bound state solutions Σn of Painlevé
IV. These Σn have regions separated by zeros on which they are positive.
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