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Spatial modulated coupled nonlinear Schrédinger systems with symmetry reduction to integrable Ermakov and
Ermakov-Painlevé subsystems are investigated.

1. Introduction

Physical systems with spatial modulation arise in a range of important contexts. In classical contin-
uum mechanics, they occur ‘inter alia’ in elastodynamics, visco-elastodynamics and in crack and
loading boundary value problems in the elastostatics of inhomogeneous media (see e.g. [2,12,13,20]
and work cited therein). Nonlinear Schrodinger (NLS) equations with modulation have, in recent
years, been shown to have importance in the theory of Bose-Einstein condensates and in nonlinear
optics, in particular, in the area of soliton management [6,7,22,44,48-50]. Nonlinear coupled sys-
tems of Ermakov-Ray-Reid type with origin in classical work in [16] and subsequently developed
in [24-26] likewise have extensive physical applications (see e.g. [1,14,15,17-19,27-31,43,46]).
In recent work, prototype integrable Ermakov-Painlevé II and Ermakov-Painlevé IV systems
have been derived as symmetry reductions of Manakov-type and resonant NLS systems of physical
interest [32,33]. Here, canonical reduction of modulated NLS-Ermakov systems is investigated.

2. Modulated Nonic NLS Systems: Ermakov Reduction

Localised and periodic wave patterns admitted by single component unmodulated nonic NLS equa-
tions have recently been isolated by use of key invariants of motion in [9]. Here, coupled spatially
modulated nonic NLS-Ermakov systems are investigated of the type
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In the sequel, we introduce the wave packet ansitze
®=g(x)exp[—iut+ir(x)] , ¥=qga(x)exp[—iut+ir(x)] (2.2)

and proceed with modulations

i (x) = Hk<q )/p4+2k . k=1,..4. (2.3)

It is remarked that, symmetry reduction of an unmodulated Manakov system under such represen-
tations has been previously used to isolated periodic and quasi-periodic solutions by Christiansen et
al in [10].

Insertion of (2.2) into (2.1) produces the coupled nonlinear system

1 92
Qa+ gy~ — [0+ S g+ ) T = S (q) ,
1

2.4)
1
et e~ e~ (90 +EE e + ) = o7 ()
QIQQ q92
together with
2r1xq1x+rlqu1 =0 , 2r2xq2x+r2qu2 =0 (2.5)
whence
roe=ki/qi , rx=ku/qg (2.6)
where ki, kyp are arbitrary constants of integration.
Substitution of the modulations (2.3) and the relations (2.6) into (2.4) now yields
1 q1 o\ (@) ‘
et = o (&) + Gt ()| (5) +(5) |
| Wl 611% q1 p* k= q2 p p
q1 q1
= 0(q1/q2)+ Ew(ql/p, a/p)
: ) 2.7)
1 q1 qz
Qoxx + ‘LL—Q.X *7T* () 24 Hk ) )
| (®la: Ba \q)  p**! p
2@/ a)+ 2 © war/p, a2/p)
q1 p
where
S (q2/q1) = S(@2/ ) +hi(a2/a1) T (qr/q2) =T(q1/q2) +ki(q1/q2) - (2.8)

If the above pair of coupled nonlinear equations is augmented by the generalised Ermakov equation

Pt 11— Q(x)]p = p13w(q1/p, 42/p) 2.9)

then the resultant triad constitutes a three-component Ermakov system as originally introduced in a
multi-layer hydrodynamic context in [34].
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On introduction of the change of dependent and independent variables according to

q1 :CIT(Z)d’* ’ 42243(2)(1)* )

(2.10)
p=p(2)¢",
with
2=y /" 2.11)
where ¢*, y* are linearly independent solutions with unit Wronskian of
A+ [ —Q(x)]A=0 (2.12)

the non-autonomous triad determined by (2.7)—(2.9) is reduced to the corresponding autonomous
form

d. = —a9i/6) + 3 v(qi/p", 5/p") ,
q, p
Q2ZZ—FX(Q1/Q2)+WW(Q1/P , 45/P%) (2.13)
1
* 1 * * k *
Pz = FW(ql/p ) QZ/p ) .
Thus, it is seen that
P 4. —diPL: = ;*4 (gi/a3) »
2 (2.14)
p 2z, — 4P = q2*4 %(QI/qZ) s
1
whence on setting
w=qi/pT=aq/p , V=a/p =a/p, (2.15)
and introduction of a reciprocal-type transformation
dz* ! d p* ! (2.16)
= —5az = %> .
p*2 p
(2.14) becomes an autonomous two-component Ermakov-Ray-Reid system
MZ*Z* = ms <u*> ; VZ*Z* = WT (v*) , (217)
while
P+ yu v )p™ =0, (2.18)

The latter linear equation in p** becomes determinate once the Ermakov variables u*,v* have been
obtained via the system (2.17).
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The Ermakov-Ray-Reid system (2.17) is Hamiltonian with

1 v v 1 u* oV
g _ N (i A 2.19
M*ZV* <I/l* ) au* ’ V*ZI/!* < P > av* ( )

provided it adopts the form [27]

* * v 1ok ok * 1 * 7k %k
”z*z 7.] ( /M )+WJ (V /M ) s VZ*Z* = —F‘] (V /M ) (220)
with Ermakov invariant
1 M*Z-I-V*z
£ = Lt —u (u2> POt (2.21)
and Hamiltonian
* 1 *2 * \2 1 * [ % *
= E(uz* +v75) +WJ (v /u”) . (2.22)

This pair of invariant relations in &* and " may be used to established the integrability of the
Ermakov-Ray-Reid system (2.20) in an algorithmic manner as described in [27]. Three-component
Ermakov systems of the type (2.13) have been investigated in detail in [34]. Novel connections of
such Ermakov systems and 3-body problems have been recently established in [35].

In [6,7], a symmetry reduction of a single component NLS equation with modulation /(x) ~ p ~°
of the cubic nonlinear term was considered where p is driven by

ki
Prc+ [ —Q(x)|p = F )
namely, the classical Ermakov equation. Modulated single-component cubic NLS equations associ-
ated with standard Ermakov-Ray-Reid systems have recently been investigated in [36]. Here, in the

present context of the coupled nonic NLS system (2.1), the class of modulations

(2.23)

h(x) =ci/p** | k=1,..,4 (2.24)

is next adopted wherein p is constrained by (2.23). The symmetry reduction of the corresponding
modulated system (2.1) via (2.2) then yields

= Q0))g = — S( >+k +Lowe <‘“>2+<q2>2 k
q1xx —a2alX 5 Ck - )
T da \a) g pt p p
. (2.25)
= Q())g = T( >+kﬂ+ 9 54 <QI>2+(q2>2
q2xx — 34X 5 Ck -
T Ba \a2) @ T\ p
Combination with the Ermakov equation (2.23) now shows that
2 2k
P 92 pkt kulCh q1 92
pq1xx_q1pxx:75 <>+_ x} Ck - + 1| = 5
A \ai) 4 P p3 S p p
(2.26)

k

2 2

p pkn kma:  q2 o4 <6]1> (@)
xx o = —5—1 +=X_c —_ + | =
Pl = @2Pu= 2 (qz> @ p p T\ p p
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whence, on setting

u=qi/p , v=q/p, 02
dx* = p~2dx , ‘

a Ermakov-Ray-Reid type system is obtained, viz

K1 (v
Uy yr — [22:1 Ck(uz +V2)k _kIH]M = u—g —+ 7S <;) ,
(2.28)

kn 1 u

4 2 2\k o

Ve — (X ck(u” +v7)  —km|v = 5+ vTT <;> ’
with invariant

& = ;(vux*—uvx* +/ s §+/n P ydn + & [kl( ) +kﬁ(’v’)1. (2.29)

If S and T admit the parametrisations in terms of J(v/u) associated with underlying Hamiltonian

structure so that
2 2
S= 2£J(v/u) + (5) JOju) , T=-— (5) T (v/u) (2.30)

then the system (2.28) admits a second invariant

1 k\> (ki c 1
S = 3 wr A+ i+ <MI> + (\?) + k(U +v*) — T = k (u2+v2)k+1] —i—;J(v/u)
(2.31)
while the Ermakov invariant relation (2.29) becomes
1 1 V2 u\ 2 u? +v?
£ =S lue —uwve )P+ 5 [k% (;) i (;) ] +< - ) Jv/u) . (2.32)
The identity
(U V) (U2 V%) — (Ve — uve)? = (utne +vvps)? (2.33)
on use of the pair of invariants & and ¢ now gives, ‘in extenso’,
k k 2
[2% ( I> — <H> —kIHZ——J(v/u —|—Zk 1 ]
u v = (2.34)

2 2 1
264K (5) +i2 (%) + SEI(v/u) = 72

where ¥ = u? 4+ v?. On reduction, (2.34) produces a nonlinear equation independent of J(v/u) in £

alone, namely

1
by [2% —km X+ X, ki"lzk“} — 28+ +hg| = Zzﬁ* : (2.35)
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Moreover, the Ermakov invariant relation (2.32), in turn, determines the ratio A = v/u via the
quadrature

/ d(tan”'A) — X (2.36)
V26 —BA—BA2—2(1+AD)I(A)
where
dx* =3x"lax* . (2.37)
Then,

X [ X
=4 =3+pAy/ —— 2.38
q1 p 1+A2 y 42 Y 1—|—A2 ) ( )

where p is determined by the Ermakov equation (2.23). The r(x), k = 1,2 are obtained by integra-
tion of the relations in (2.6).

3. A Class of Jacobi Elliptic Solutions

Here, by way of illustration, alignment of (2.35) is imposed with the nonlinear equation
A1)+t =0 3.1

where k here corresponds to the modulus of a Jacobi elliptic function. Thus, we set 77 = 0 together
with ¢; = ¢3 = ¢4 =0 and

1—k* -2
4 7 4 (3.2)
Cr = ——.

26 +ki+ ki =

The reduction (3.1) admits the particular solution
Y=dnx">0 3.3)
whence, the relation (2.37) yields

X*= / nd(x*,k)dx* =k ~'cos ! (cd(x*,K)) (3.4)

where k' = v/1 — k2 is the complementary modulus.
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If we proceed with the specialisation

2
J(v/u) = const/ [1 + (K> ] ; (3.5)
u
then (2.36) adopts the form
d(tan"'A) oy 3.6)
5 12 K 2 K -2
V2e-5 (2) -4 (2)
where it is required that
_ 1 5[V 2 s [V -2
>3 B+ (2) 7] 0. 6
Under the transformation
u* = —L (3.9)

v 2
u

it is seen that, on taking the +ve sign in (3.6), the latter adopts the form

/ du =2CX* (3.9)
V(= 2) (1 —u)
where
A+pu=2C"YE+K) , A=k,
~ (3.10)
C=—\/28+k+ Kk .
On setting
u' =Acos?O+pusin’0 , A,u>0, (3.11)
integration of (3.9) gives,
6 = +CX*, (3.12)
up to an additive constant, whence
u =24+ (u—A)sin® CX* . (3.13)

The ratio A = v/u is thereby given in terms of X* via the relation (3.8). It can then be expressed in
terms of x* by means of the relation (3.4).

It remains to determine x* in terms of the original spatial variable x via the relation (2.27)3 where
p is governed by the classical Ermakov equation (2.23). The latter admits a well-known nonlinear
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superposition principle readily established via Lie group methods (see e.g. [37,38]). Thus,

p = y/ap? +2cpip2+ bp? (3.14)

where p1, py are linearly independent solutions of (2.12) and the constants a, b and ¢ constrained by
the relation

k
ab—c* = %
where # (p1;02) = P1P2x — P1xP2 is the Wronskian of p;, p>. Accordingly, here

. dx
* :/ ) bp?
apy +2cpi1p2 +bp;

(3.15)

In [48], in the context of Bloch wave propagation in optical lattices as described by a single
component modulated cubic NLS equation, a periodic external potential Q(x) ~ cos2x was adopted
in which case p is given as a nonlinear superposition of Mathieu functions. If the external potential
Q is constant with 4 — Q = ®? > 0 then the modulations as given by (2.24) of the coupled NLS
system (2.1) are periodic with
hy(x) = -

[acos? wx + 2c cos wxsin wx + bsin® wx]2+*

L k=1,..,4. (3.16)

In general, a range of alignments of the nonlinear equation (2.35) in £ with canonical equations
which admit Jacobi elliptic solutions may be made. In the present context, it is required that ¥ be
positive. In that connection, in particular, it may be shown that the three-parameter class of nonlinear
equations [9]

24
Y2 = A3 — (3b+k* —2)£2 — 3% +2(k* —2)b+ 1 — k?] v
56 0 (3.17)
—[b* + (K —=2)0* + (1 —k*)b] =
Ap
admits a positive, periodic solution
A
y=—0 A;>0. (3.18)
dn’x* +b

This result was exploited in [9] to isolate dark solitary pulse solutions of an unmodulatd single
component nonic NLS equation. Therein, the parameters Ay and b were associated with the peak
and trough of a wave train. In the present context of the modulated nonic NLS system (2.1), it is
seen that alignment of (2.35) with (3.18) applies to a class with c; =c3 =0, ¢ # 0, ¢4 # 0.

4. Modulated NLS Systems of Ermakov-Painlevé Type
4.1. A Ermakov-Painlevé I1 NLS System

A hybrid NLS-Ermakov system with spatial modulation is introduced here of the type

X 1 v
i<I>t+<I>xx+[—+8(|<I>|2+\‘PIZ)}<P— S(‘ DCD,

2 ~jePle |
“4.1)
i, +Y +[f+s(|¢|2+\\y|2)}T:LT 2 g
T2 W@~ \|W
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By way of motivation, it is remarked that the single component similarly modulated cubic NLS
equation

i 6,4 G+ (Sx+€|lc])o=0 (4.2)
was shown by Chen and Liu in [8] to admit reduction to the canonical integrable NLS equation
i+ Tt el T=0 (4.3)
under the changes of variable

o =1 exp i(6XT +(2/3)8%T?) ,
(4.4)
x=X+686T> |, t=T.

Thus, the single component modulated NLS equation (4.2) is amenable to methods of modern soli-
ton theory such as the inverse scattering procedure as well as admitting geometric properties asso-
ciated with invariance under a Bécklund transformation with its concomitant nonlinear superposi-
tion principle. Here, the modulated two-component NLS system (4.1) is shown to admit symmetry
reduction via (2.2) to an integrable hybrid Ermakov-Painlevé II system as recently set down in [39].

Thus, on introduction of the wave packet representations (2.2) into (4.1), a Ermakov-Painlevé 11
system results, namely

X 1
G+ [,u+ 3 +€(61%+6]§)} @ =—5—S(@2/q1) ,
a2 (4.5)

X 1
Quet |43 +e(@ )| a2 = — T (a1/a2)
q149;

where §* and T* are given by (2.8) and ry,r, are determined by (2.6). Here, we proceed with the
requirement that

1 A% 1 oV
S* — , T* = — 4.6
™ (q2/q1) 90, v (q1/492) o0 (4.6)

in which case, the system (4.5) may be parametrised in terms of arbitrary J(g»/q1) according to

X 2 qQ
Qe+ [u +3 +e(qi +q%>} @ == J@/a)+ 5 (@/q1) ,
@ % 4.7)

X 1
Qoo+ [u +5 +3(CI%+CI%)} =5 J(q2/q1) -
1

and admits the Ermakov invariant

&= 5((11%( — 1) + (ql q2q2> J(q2/q1) - (4.8)
1
The identity
(@} +33)(dh + ) — (0102 — 0291x)* = (@191 + G202:)° (4.9)

on use of (4.8), gives

2 2 2 2J Zx
- - 4.10
QIx QZx z % 12 ( )
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where ¥ = g% + ¢3, whence

) J(q2/q1 15X 13 1 (zl2
qlxqm+q2xq2xx+£§+d{(q%/) /dx=4"2”—8§=2(21/2)”2x. 4.11)

The Ermakov-Painlevé II system (4.7) also shows that

X J
qixqix + q2eqoe + (u +5+elgi+ q%)) (9191x + 0292¢) = d [(q;éql)} Jdx (4.12)
1

and combination with (4.11) produces a single component Ermakov-Painlevé II equation in £!/2,
namely
1/2 X 1/2 _ 2¢8
(X )xx+(u+2+82)2 =53 (4.13)
In terms of X and with the translation z = 2 4 x, (4.13) delivers the canonical integrable
Painlevé XXXIV equation

¥ ) (a—g/2)?
with
1
é":—g(a—e/z)z , e2=1 (4.15)

and where, in the present context, it is required that ¥ > 0, J(¢2/¢1) < 0.

Interestingly, the importance of positive solutions of Painlevé XXXIV arises naturally elsewhere
in connection with boundary value problems for a Painlevé II reduction of the classical two-ion
Nernst-Planck system as described in [3]. Therein, the scaled electric field E is governed by the
canonical integrable Painlevé Il equation

E.=2F4zE+a, (4.16)

while the associated ion concentrations c4 are given by
b4

cy =+E.+E*+ 5

(4.17)
The c4, which are necessarily positive, may be shown to be governed by Painlevé XXXIV. The link
between the latter and Painlevé II has been previously established in the literature via a Hamilto-
nian representation for PII. Thus, each of the canonical Painlevé equations admits a Hamiltonian
representation (see [23])

dg  d ap__ 0
aiz_%H(pWIvZ) ) aiz_ %H(p7Q7Z> (418)

In particular, a Hamiltonian associated with PII is

R AN 1
%’ﬁ—zp—<q +2)p <a+2>q, 4.19)
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whence

dq 2 Z d P 1

—h_g2_ = E i } o+ — . 4.20
o PmT Ty s TPty (4.20)
Elimination of p in (4.20) produces PII in ¢ while elimination of ¢ delivers PXXXIV in p. It is

readily shown, more generally, that if ¢ is governed by PII then

Z:%_EQZ_S% , =1 4.21)
is a solution of PXXXIV as given by (4.14). In [3], this connection was used to generate sequences
of exact solutions for the latter and hence the concentrations c4 via the iterated action of the
Bicklund transformation due to Lukashevich [21] which is admitted by PII. The exact solutions so
generated involve either Yablonski-Vorob’ev polynomials or classical Airy functions. The positivity
constraints imposed on such solutions of PXXXIV were investigated in detail in [3]. These results
carry over ‘mutatis mutandis’ in the present context of symmetry reduction via the wave packet rep-
resentations (2.2) of the modulated NLS-Ermakov system (4.1). It is remarked that PXXXIV has
also been recently derived in [40] in connection with integrable structure underlying the Korteweg
capillarity system. Therein, it was recorded that the rational solutions of PXXXIV with ¢ =n, ne N
are given compactly by

pn( ): rn+1(Z)rn,1(Z)

TR (4.22)

where the r,(z) are the Yablonskii-Vorob’ev polynomials determined by the quadratic recurrence
relations [11,45,47]

) 2
FnstTn—1 =2y +4r . — alnz] s

(4.23)
roi(z) = ro(z) =1
The analogous Airy-type solutions of PXXXIV corresponding to & = n — 1/2 are given by
Snt1(2)Sn-1(2)
Puo1p(2) = =5 (4.24)
2 253(2)
where the s, are given by the Toda-type recurrence relations
Sn+18Sn—1 = 4[‘91%,1 - Snsn,zz] s
(4.25)
so2) =1, s1(2)=9(2)
with ¢(z) given by the classical Airy equation
1

With £ = g% + ¢3 determined in terms of the 7,(z) or s,(z), the ratio A = g2 /¢ is given via the
Ermakov invariant relation (4.8) with specified form of J(g2/¢1) and then

T [ X
g1 =% TTAZ g2 = A ToA2 (4.27)
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It is remarked that the class of Ermakov-Painlevé II systems with

2m
Jq2/q1) = 1+(£ < (q%_q%> [1+(q1/92)*] (4.28)

@/q)?* 4 \gt+43

has been recently discussed in [41]. A conventional Ermakov-Ray-Reid system with J(g2/q1) of
this type and m = 0 arises in nonlinear optics in the variational analysis of the co-propagation of the
optical pulses in a plane wave guide [28].

4.2. A Ermakov-Painlevé IV NLS System

Here, a hybrid NLS-Ermakov system incorporating a quadratic spatial modulation is introduced
according to

. 3 1 ¥
1 ¢t +q)xX — |:4(|(I)|2—|— ‘IP|2)2+2)C(‘¢|2+ |lII|2) +x2 — C:| D = W S <’(I)‘> D s
(4.29)

3 1 o)
W+ W — | (PP PP+ 2x(| PP+ PP+ 2| W= T (|| |-
P R P 200+ 1) 0 €| = ([

On insertion of the wave packet representations (2.2) into the above, one obtains the Ermakov-
Painlevé IV system

3 1
qixx — |:4(Q% +q%)2 +2X(Q% +q%) +x7 - C - H] q1= 55— S*(QZ/QO )
s (4.30)

3 |
Gore+ [4(q?+q%)2+2xm%+qg) +x*—¢ —u] 2= T*(q1/q2)
2

where S*(g2/q1) and T*(q1/q2) are as given in (2.8) and the r(x), k = 1,2 are to be obtained by
integration of the relations (2.6).

Ermakov-Painlevé IV systems of the type (4.30) have been recently introduced in a more general
setting in [39]. It is readily shown that, in this case, X = q% —|—q§ is governed by the canonical
integrable Painlevé IV equation

1x2 3 B
Y= =24 Y 4?2 — )+ & 4.31
x 224—2 +4xE"+2(x a)+2 4.31)

with o« = { 4+ p and B = 4& where & is the Ermakov invariant given in the Hamiltonian case by
the relation (4.8). The ratio A = ¢»/q; is again determined via the Ermakov invariant relation and
q1, gq» then by the relations in (4.27).

The diversity of Biacklund and Schlesinger-type transformations admitted by Painlevé IV has
been catalogued in the comprehensive work of [4]. With regard to the positivity constraint on X,
the iterated action of a Bicklund transformation on a seed bound state solution set down in [5] has
recently been used in [42] to generate an infinite sequence of bound state solutions X, of Painlevé
IV. These X, have regions separated by zeros on which they are positive.
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