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Under investigation in this work is the time-fractional generalized KdV-type equation, which occurs in different

contexts in mathematical physics. Lie group analysis method is presented to explicitly study its vector fields and

symmetry reductions. Furthermore, two straightforward methods are employed to consider its travelling wave

solutions and power series solutions, respectively. Finally, based on the new conservation theorem, conservation

laws of the equation are well constructed with a detailed derivation.
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1. Introduction

It is well known that finding an exact solution of a nonlinear partial differential equation is always

one of the central themes arising in physics, mathematics and in many scientific fields. In the past

few years, much research have been done on the basic of the group theory and its applications

to differential equations [3, 15, 24, 25]. In recent years, the fractional calculus was widely applied

to describe many complex nonlinear phenomena arising in the areas of heat transfer, diffusion,

solid mechanics, wave propagation and other topics. Therefore, the fractional differential equations

(FDEs) play a more and more important role in describing physics, engineering, and other scientific

fields [5, 17, 26, 27] etc. In 2009, Gazizov and Kasatkin [8] extended Lie symmetry approach to

investigate several FDEs. The way for some FDEs are also performed with the aid of Riemann-

Liouville derivative [6, 9, 13, 20, 28, 39, 40].

The celebrated Noether theorem [23] establishes a connection between symmetries and conser-

vation laws of differential equations. Over the past few years, the application of the Noether theorem
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has been extended by plenty of mathematicians. Ibragimov [16] and Lukashchuk [21] had made a

great contribution to find conservation laws for FDEs that does not admit a fractional Lagrangian.

Additionally, conservation laws of some FDEs have been presented with the use of the fractional

generalization of the Noether operators [10].

In this paper, we would like to consider the following time-fractional generalized KdV-type

equation

Dα
t u+aunx+bumux = 0, (0 < α ≤ 1), (1.1)

where u = u(x, t), a,b,m are all real parameters, n is a positive integer and Dα
t u is the Riemann-

Liouville fractional derivative of order α with respect to the variable t. Invariant analysis of the

special form for Eq.(1.1) has been investigated. However, to the best of authors’ knowledge, Lie

symmetry analysis, conservation laws and analytical solutions of Eq.(1.1) have not been reported in

the previous papers.

Eq.(1.1) contains a number of important nonlinear partial differential equations (NLEEs) and

FDEs [1, 11, 14, 41, 42] as its special case. Next, we will present some special cases.

Case 1: Taking α = 1,a = 1,b = 6,m = 1,n = 3, Eq.(1.1) reduces to the classical KdV equation

ut +6uux+uxxx = 0, (1.2)

which has been found to describe many physical and engineering phenomena [1].

Case 2: Taking 2m = 1,n = 3, Eq.(1.1) can reduce to the time-fractional Schamel-KdV equation

Dα
t u+b

√
uux+auxxx = 0, (1.3)

which can describe nonlinear propagation of dust-ion-acoustic (DIA) waves in a one-dimensional

and unmagnetized plasma [11].

Case 3: Taking n = 2,a = 1, Eq.(1.1) can be transformed into the following time-fractional

Burgers equation

Dα
t u+bumux+uxx = 0, (0 < α ≤ 1). (1.4)

Its Lie symmetry analysis and exact solution are succinctly constructed in [28, 41].

Case 4: Taking n = 5,a = 1, Eq.(1.1) can be reduced to the time-fractional five-order KdV

equations

Dα
t u+bumux+uxxxxx = 0, (0 < α ≤ 1). (1.5)

It have been considered by using the Lie symmetry analysis method in [42].

The primary purpose of the present paper is to investigate the symmetry properties, the travel-

ling wave solutions and power series solutions of Eq.(1.1) by means of three important methods,

respectively. Additionally, conservation laws of Eq.(1.1) are also derived by using the Lie point

symmetries of the equation.

The rest of this paper is structured as follows. In section 2, a brief review of the main definitions

and properties of FDEs are presented to provide a convenient reference. In section 3, the general

similarity forms and symmetry reductions of Eq.(1.1) are established. In section 4, two important

method are presented to succinctly construct analytical solutions of Eq.(1.1). In section 5, conser-

vation laws of Eq.(1.1) are constructed by using the new conservation theorem. Finally, conclusions

and discussion are presented in the last section.
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2. Preliminaries

In this section, we briefly recall the main procedure to deal with symmetries for FDEs. Firstly, let’s

consider the symmetries for a FDE of the form

Dα
t u(x, t) = F(t,u,ux,uxx, · · ·), (α > 0), (2.1)

in which Dα
t u is defined as below. Suppose that u(x, t) is a piecewise continuous function on the

(0,∞) and the integrable on any finite sub-interval of [0,∞). we can use equality of the following

Riemann-Liouville derivative [18]

Dα
t u =

1

Γ(n−α)

∂n

∂tn

∫ t

0

u(x, τ)

(t−τ)α+1−n dτ; n−1 < α < n, n ∈ N. (2.2)

Additionally, the modified Riemann-Liouville derivative is given by

Dα
x f (x) =

1

Γ(n−α)

∂n

∂tn

∫ x

0

f (τ)− f (0)

(t−τ)α+1−n dτ; n−1 < α < n, n ∈ N. (2.3)

Next, let us consider a one-parameter Lie group of infinitesimal transformation

t∗ = t+ ετ(t, x,u)+o(ε2),

x∗ = x+ εξ(t, x,u)+o(ε2),

u∗ = u+ εη(t, x,u)+o(ε2),

∂αu∗

∂t∗α
=
∂αu
∂tα
+ εηαt(t, x,u)+o(ε2),

∂nu∗

∂x∗n
=
∂nu
∂xn + εη

nx(t, x,u)+o(ε2), n = 1,2,3, · · ·, (2.4)

where ε is a group parameter. The exact expressions of ηnx are given by

ηx = Dx(η)−utDx(τ)−uxDx(ξ),

η2x = Dx(ηx)−uxxDx(ξ)−uxtDx(τ), · · ·, (2.5)

in which the total derivative operator Dx is defined by

Dx =
∂

∂x
+ux

∂

∂u
+uxx

∂

∂ux
+ · · · , (2.6)

with the associated Lie algebra represented by

X = ξ(x, t,u)
∂

∂x
+τ(x, t,u)

∂

∂t
+η(x, t,u)

∂

∂u
, (2.7)

here the coefficient functions ξ,τ,η are to be known later.

If the vector field (2.7) can generate a symmetry of Eq.(1.1), then X have to meet the condi-

tion Pr(n)X(Δ)|Δ=0 = 0, where Δ = Dα
t u− F(t,u,ux,uxx, · · ·). Let the lower limit of the integral be

fixed in (2.2), the explicit form of ηαt can be explicitly obtained by using Leibnitz rule. Then, by

applying prolongation of the fractional vector field to Eq.(1.1), the Lie point symmetries of Eq.(1.1)

canbe spanned by the corresponding vector fields. Eq.(1.1) should be invariant with regard to such

a transformation (2.4). The invariance condition must arrive at τ(t, x,u)|t=0 = 0.
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According to [8], the developed infinitesimal ηαt have the following form

ηαt = Dα
t (η)+ ξDα

t (ux)−Dα
t (ξux)+Dα

t (Dt(τ)u)−Dα+1
t (τu)+Dα+1

t (u), (2.8)

in which Dα
t is the total fractional derivative operator. According to the generalized Leibnitz rule in

Ref. [22], we have

Dα
t ( f (t)g(t)) =

∞∑
n=0

(
α

n

)
Dα

t f (t)Dn−α
t g(t), (2.9)

where (
α

n

)
=

(−1)n−1Γ(n−α)

Γ(1−α)Γ(n+1)
. (2.10)

In view of (2.8),(2.9) and (2.10), we have

ηαt = Dα
t (η)−αDt(τ)Dα

t u−
∞∑

n=0

(
α

n

)
Dn

t (ξ)Dα−n
t (ux)−

∞∑
n=1

(
α

n+1

)
Dn+1

t (τ)Dα−n
t (u). (2.11)

Linking the generalized chain rule for a composite function [27] of the form

dng( f (t))
dtn =

n∑
k=0

k∑
r=0

(
k
r

)
1

k!

[− f (t)
]r dn

dtn

[
( f (t))k−r

] dkg( f (t))
d f (t)k , (2.12)

and the Leibnitz rule (2.9), it is easy to obtain the explicit form of ηαt

ηαt =

∞∑
n=1

[(
α

n

)
∂nηu

∂tn −
(
α

n+1

)
Dn+1

t (τ)

]
Dα−n

t (u)+
∂αη

∂tα
+

[
ηu−αDt(τ)

] ∂αu

∂tα
−u

∂αηu

∂tα

−
∞∑

n=1

(
α

n

)
Dn

t (ξ)Dα−n
t (ux)+μ. (2.13)

where

μ =

∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1

k!

tn−α

Γ(n+1−α)
(−1)rur ∂

m

∂tm (uk−r)
∂n−m−kη

∂tn−m∂uk . (2.14)

In the next section, the above detailed analysis of a FDE is applied to investigate the symmetry

properties of time-fractional generalized KdV-type equation (1.1).

3. Symmetry group analysis

According to the Lie theory, applying the prolongation prn to Eq.(1.1), we can obtain the following

expression

η0
α+aηnx+bumηx+bmηum−1ux = 0. (3.1)

Inserting (2.5) and (2.13) into (3.1), then collecting the coefficients of various power of partial

derivatives of u, we obtain some determining equations. By solving these obtained equations, we
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have

ξ = c1x+ c2, τ =
nc1

α
t, η =

(1−n)c1

m
u, (3.2)

where c1,c2 are arbitrary constants. According to (3.2), we obtain the corresponding vector fields

X = (c1x+ c2)
∂

∂x
+

nc1t
α

∂

∂t
+

(1−n)c1u
m

∂

∂u
. (3.3)

Via the above discussion, the following assertion holds.

Theorem 3.1. The Lie point symmetries of the time-fractional generalized KdV-type equation (1.1)

is spanned by the following vector fields

X1 =
∂

∂x
, X2 = x

∂

∂x
+

nt
α

∂

∂t
+

(1−n)u
m

∂

∂u
. (3.4)

According to (3.4), it is not hard to check that the vector fields (3.4) are closed under the Lie

bracket, respectively

[X1,X1] = 0, [X1,X2] = X1, [X2,X1] = −X1, [X2,X2] = 0. (3.5)

For the generator X1, we can obtain the invariant solutions u = atα−1 of Eq.(1.1), where a is an

arbitrary constant.

For the generator X2, we can obtain the characteristic equation

dx
x
=
αdt
nt
=

mdu
(1−n)u

(3.6)

and the corresponding invariant

A = xt−
α
n , u = t

α(1−n)
nm G(A). (3.7)

Through the above discussion, we find that Eq.(1.1) can be transformed into a nonlinear frac-

tional ordinary differential equation (FODE). In order to achieve our aim, to begin with, let us

introduce the following Erdély-Kober fractional differential operator [19]

(
pτ,αβ G

)
=

n−1∏
j=0

(
τ+ j− ξ

β

d
dξ

) (
Kτ+α,n−α
β G

)
(A), (3.8)

where

n =

⎧⎪⎪⎨⎪⎪⎩
[α]+1, α ∈ N,
α, α ∈ N, (3.9)

and

(
Kτ+α,n−α
β G

)
(A) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Γ(α)

∫ ∞

1

(u−1)α−1u
−(τ+α)

G(Au1/β)du,

G(A), α = 0,

(3.10)

is the Erdély-Kober fractional integral operator.
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In view of the definition of the Riemann-Liouville fractional derivative (2.2), we obtain

Dα
t u=

∂αu
∂tα
=

1

Γ(n−α)

∂n

∂tn

[∫ t

0

(t− s)n−α−1s
α(1−n)

nm h(xs−
α
2 )ds

]
, n−1<α< n, n= 1,2,3,4, . . . . (3.11)

If taking ρ = t
s , we get ds = −t/ρ2dρ. Then, Eq.(3.11) can be rewritten as

Dα
t u =

∂αu
∂tα
=

1

Γ(n−α)

∂n

∂tn

[
tn+ α(1−n)

nm −α
∫ t

0

(ρ−1)n−α−1ρ−n−1− α(1−n)
nm +αh(Aρ

α
n )ds

]
. (3.12)

By comparing (3.10) with (3.7), we have

Dα
t u =

∂αu
∂tα
=
∂n

∂tn

[
tn− α

2m−α
(
K

1+
α(1−n)

nm −α,n−α
n
α

G
)
(A)

]
=
∂n−1

∂tn−1

[
∂

∂t
(tn+ α(1−n)

nm −α
(
K

1+
α(1−n)

nm ,n−α
n
α

G
)]

= . . . =
(
P

1+
α(1−n)

nm −α,α
n
α

)
(A). (3.13)

Based on the detailed analysis, the following assertion is easily constructed.

Theorem 3.2 Based on the transformation (3.7), Eq.(1.1) can be reduced to a nonlinear FODE

(
P

1+
α(1−n)

nm −α,α
n
α

)
(A)+aGnA+bGmGA = 0, (3.14)

where n is a positive integer and a,b,m > 0 are arbitrary constants.
Based on Theorem 3.2, Eq.(1.3), Eq.(1.4) and Eq.(1.5) can be reduced to the following FODEs

(
P

1− 7α
3 ,α

3
α

)
(A)+aG3A+bGGA = 0,(

P
1− α

2m−α,α
2
α

)
(A)+G2A+bGmGA = 0,

(
P

1− 4α
m ,α

5
α

)
(A)+G5A+bGmGA = 0, (3.15)

respectively.

In particular, if α = 1
2
,n = 5,m = 1, Eq.(1.1) can be transformed to the following FODE

(
P

1
10 ,

1
3

10

)
(A)+aG5A+bGGA = 0. (3.16)

In a similar way, based on Theorem 3.1 and Theorem 3.2, the symmetries and FODEs of Eq.(1.1)

can be obtained successively in terms of the specific parameters α,m,n.

4. Analytical solutions

In this section, two important methods and the algebraic and differential manipulation [2,4,7,12,29–

38,43–48] are employ to derive the travelling wave solutions and power series solutions of Eq.(1.1).
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4.1. The power series method

First of all, let us introduce a important transformation

u(x, t) = u(ε), ε = kx− ωtα

Γ(1+α)
, (4.1)

where k,ω are two arbitrary constants. Substitution of (4.1) into (1.1) leads to the following nonlin-

ear ODE

−ωu′+aknunε +bkumu′ = 0. (4.2)

Then integrating Eq.(4.2) with respect to ε once again, we obtain

−ωu+aknu(n−1)ε +
bk

m+1
um+1+B = 0, (4.3)

where B is an integration constant. let us assume that the solution of Eq.(4.3) has the following form

u =
∞∑

s=0

psε
s, (4.4)

where ps are constants to be known later. Substitution of (4.4) into Eq.(4.3) arrives at the following

expression

−ω
∞∑

s=0

psε
s+akn

∞∑
s=0

(s+1)(s+2) . . . (s+n−1)ps+n−1ε
s+

bk
m+1

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑

s=0

psε
s

⎞⎟⎟⎟⎟⎟⎟⎠
m+1

+B = 0. (4.5)

By comparing coefficients of ε s(s ≥ 0), we obtain

pn−1 =
1

akn(n−1)!

(
ωp− bk

m+1
pm+1

0 −B
)
,

ps+n−1 =
1

akn(s+1)(s+2) . . . (s+n−1)

⎡⎢⎢⎢⎢⎢⎢⎣ωps− bk
m+1

∑
i1+i2+...+im+1=s

pi1 pi2 . . . pin−1

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.6)

Thus, any coefficient ps(s≥ 2) of the solution (4.4) are determined by a,b, p0, . . . , pn−1,ω,k. It shows

that there is a power series solution for Eq.(4.2). Additionally, it is not hard to prove the convergence

of the power series solution (4.4) with the coefficients depend on (4.6). Obviously, the power series

solution (4.4) is an analytical power series solution of Eq.(4.2). Once the power series solution of

Eq.(4.2) in hand, the solution of Eq.(1.1) can be easily obtain

u(x, t) = p0+ p1

(
kx− ωtα

Γ(α+1)

)
+ . . .+

1

akn(n−1)!

(
ωp− bk

m+1
pm+1

0 −B
)(

kx− ωtα

Γ(α+1)

)n−1

+
1

akn(s+1)(s+2) . . . (s+n−1)

⎡⎢⎢⎢⎢⎢⎢⎣ωps− bk
m+1

∑
i1+i2+...+im+1=s

pi1 pi2 . . . pin−1

⎤⎥⎥⎥⎥⎥⎥⎦
(
kx− ωtα

Γ(α+1)

)n+s−1

.

(4.7)

Via the above analysis, the following assertion is easily established.

Theorem 4.1 Eq.(1.1) admits the following power series solution

u =
∞∑

s=0

ps

(
kx− ωtα

Γ(α+1)

)s

, (4.8)
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in which a,b, p0, . . . , pn−2,ω,k are some arbitrary constants, the other coefficients ps(s ≥ n−1) rely
on (4.6).
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001020

t

–2
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–1
0

0
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20

x

(a) (b) (c)

Figure 1. (Color online) The power series solution (4.8) of Eq.(1.1) by choosing suitable parameters: k =
1,ω = 1,a = 1,b = 1,n = 3,m = 4, s = 4,α = 1, (a) Perspective view of the real part of the wave. (b) The

overhead view of the wave. (c) The wave propagation pattern of the wave along the t axis.
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Figure 2. (Color online) The power series solution (4.8) of Eq.(1.1) by choosing suitable parameters:

k = 1,ω = 1,a = 1,b = 1,n = 3,m = 4, s = 5,α = 1, (a) Perspective view of the real part of the wave. (b)
The overhead view of the wave. (c) The wave propagation pattern of the wave along the t axis.
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20
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Figure 3. (Color online) The power series solution (4.8) of Eq.(1.1) by choosing suitable parameters:

k = 1,ω = 1,a = 1,b = 1,n = 3,m = 4, s = 6,α = 1, (a) Perspective view of the real part of the wave. (b)
The overhead view of the wave. (c) The wave propagation pattern of the wave along the t axis.

In what follows in order to help us analyse the properties of the analytical solutions well, Figs.

1-3 of the power series solutions (4.8) are plotted by choosing the appropriate parameters.
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4.2. Fractional sub-equation method

According to the the fractional sub-equation approach, to begin with, let me introduce the following

transformation

u(x, t) = u(Ω), Ω = x+ ct, (4.9)

where c is a constant. Substitution of (4.9) into (1.1) leads to the following nonlinear ODE

cαDα
Ωu+aunΩ +bumuΩ = 0. (4.10)

Next, by equating the highest order derivative terms and nonlinear terms in (4.10), one has

A+n = Am+A+1⇔ mA = n−1. (4.11)

For simplicity, we only consider the following cases (n ≤ 3).

Case 1: If n = 2,m = 1, we have A = 1, based on the fractional sub-equation approach, Eq. (4.2)

has the following formal solution

u = c0+ c1φ, c1 � 0. (4.12)

Inserting Eq.(4.12) along with the Riccati equation Dα
Ω
φ = σ+φ2 into (4.10), and taking the coeffi-

cients of φi(i = 0,1,2,3) to be zero, we obtain some algebraic equations, then solving the obtained

algebraic equations, we get

a = a, b = b,α = α, c = (−bc0)
1
α c0 = c0, σ = σ, c1 = −2a

b
. (4.13)

According to Step 2 in Ref. [48], we obtain the travelling wave solutions of Eq.(1.1) as follow

u1(x, t) = c0+
2a
b
√−σ tanhα

(√−σΩ)
, σ < 0,

u2(x, t) = c0+
2a
b
√−σcothα

(√−σΩ)
, σ < 0,

u3(x, t) = c0− 2a
b
√
σ tanα

(√
σΩ

)
, σ > 0,

u4(x, t) = c0+
2a
b
√
σcotα

(√
σΩ

)
, σ > 0,

u5(x, t) = c0+
2a
b
Γ(1+α)

Ωα+ω
, ω is a const, σ = 0. (4.14)

where Ω = x+ ct,a,b,c0,σ are all arbitrary constants, and the generalized hyperbolic and trigono-

metric functions are given by

tanhα(x) =
sinhα(x)

coshα(x)
, cothα(x) =

coshα(x)

sinhα(x)
, sinhα(x) =

Eα(xα)−Eα(−xα)

2
,

coshα(x) =
Eα(xα)+Eα(−xα)

2
, tanα(x) =

sinβ(x)

cosβ(x)
, cotα(x) =

cosβ(x)

sinβ(x)
,

sinα(x) =
Eα(ixα)−Eα(−ixα)

2i
, cosα(x) =

Eα(ixα)+Eα(−ixα)

2
, (4.15)
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and the Mittag-Leffler function is defined by

Eα(α) =

∞∑
k=0

zk

Γ(1+ kα)
. (4.16)

Case 2: If n = 3,m = 2, we have A = 1, thus Eq. (4.2) has the following formal solution

u = c0+ c1φ, c1 � 0. (4.17)

Inserting Eq.(4.17) along with the equation Dα
Ω
φ =σ+φ2 into (4.17), and collecting the coefficients

of (φ)i(i = 0,1,2,3,4) to be zero, Then tackling the obtained algebraic equations, we get

a = a, b = b c0 = 0, c2
1 = −

6a
b
, c = (−2aσ)

1
α , σ = σ. (4.18)

In a similar way, the travelling wave solutions of Eq.(1.1) is of the following form

u1(x, t) = −
√
−6a

b
√−σ tanhα

(√−σΩ)
, σ < 0,

u2(x, t) = −
√
−6a

b
√−σcothα

(√−σΩ)
, σ < 0,

u3(x, t) =

√
−6a

b
√
σ tanα

(√
σΩ

)
, σ > 0,

u4(x, t) = −
√
−6a

b
√
σcotα

(√
σΩ

)
, σ > 0,

u5(x, t) =

√
−6a

b
Γ(1+α)

Ωα+ω
, ω is a const, σ = 0, (4.19)

where Ω = x+ ct,a,b,c0,σ are all arbitrary constants, and the generalized hyperbolic and trigono-

metric functions are defined in Eq.(4.15).

Case 3: If n = 3,m = 1, we have A = 2, the exact solution of this case has been presented in [39].

In the following, in order to help us analyse the properties of the travelling wave solutions well,

Figs.4-5 of the travelling wave solutions ((4.14) and (4.19)) are plotted by choosing the appropriate

parameters.

–4–2024

t

–4
–2

0
2

4

x

(a) (b) (c)

Figure 4. (Color online) The solution u1 (4.14) of Eq.(1.1) by choosing suitable parameters: c0 = 1,a= 1,b=
1,α = 1,σ = −1, (a) Perspective view of the real part of the wave. (b) The overhead view of the wave. (c) The
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wave propagation pattern of the wave along the t axis.

–4–2024

t

–4
–2

0
2

4

x

(a) (b) (c)

Figure 5. (Color online) The solution u1 (4.19) of Eq.(1.1) by choosing suitable parameters: c0 = 0,a =
−1,b = 6,σ = −1,α = 1, (a) Perspective view of the real part of the wave. (b) The overhead view of the wave.

(c) The wave propagation pattern of the wave along the t axis.

5. Conservation laws

In the present section, the conservation laws of Eq.(1.1) are derived on the basic of the Lie point

symmetry (3.4).

Based on the definition of conserved vector for inter-order PDEs, a conserved vector I= (It,Ix)

for Eq.(1.1) admits the following conservation equation

Dt(It)+Dx(Ix)|(1.1) = 0. (5.1)

It is not hard to find that Eq.(1.1) can be written in the form of conservation law with

It
0 = Dα−1

t u, Ix
0 = au(n−1)x+

b
m+1

um+1. (5.2)

In Ref. [16], a new conservation theorem is presented to derive conservation laws for differential

equations. According to the new conservation theorem [16], the form Lagrangian for Eq.(1.1) is

given by

H = ψ(x, t)
(
Dα

t u+aunx+bumux
)
, (5.3)

where ψ(x, t) is a new dependent variable. The adjoint equation of Eq.(1.1) are determined by

F = δH
δu
= 0, (5.4)

in which δ
δu is defined by

δ

δu
=
∂

∂u
+ (Dα

t )∗
∂

∂Dα
t u
−Dx

∂

∂ux
+D2

x
∂

∂uxx
+

∞∑
k=3

(−1)kDi1 · · ·Dik
∂

∂ui1,···,ik
, (5.5)
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and (Dα
t )∗ is the adjoint operator for the Dα

t . In view of the Riemann-Liouville fractional differential

operators, we have

(Dα
t )∗ = (−1)nPn−α

T (Dn
t ) = (Dα

T )It ,

Pn−α
T f (t, x) =

1

Γ(n−α)

∫ T

t

f (τ, x)

(τ− t)1+α−n dτ, n = [α]+1, (5.6)

in which (Dα
T )It is the right-sided Caputo operator.

Substitution of (5.3) into (5.4) leads to the adjoint equation of Eq.(1.1) admitting the following

expression

F = (
Dα

t
)∗ψ+ (−1)nψnx−bumψ = 0. (5.7)

Invoking Ref. [16], Eq.(1.1) arrives at the following conservation law

DtIt
i +DxIx

i = 0, (5.8)

where the conserved vector I = (It,Ix) has a new form

Ix
i =Wi

δH
δux
+Dx(Wi)

δH
δuxx
+ . . .+Dn−1

x (Wi)
δH
δunx

,

It
i =

n−1∑
k=0

(−1)kDα−1−k
t (Wi)Dk

t

[
∂H

∂(Dα
t u)

]
− (−1)nJ

[
Wi,Dn

t

(
∂H

∂(Dα
t u)

)]
, n = [α]+1, (5.9)

here Wi = ηi− ξiux−τiut and the integral J is given by

J = 1

Γ(n−α)

∫ t

0

∫ T

t

f (λ, x)g(μ, x)

(μ−λ)α+1−n dλdμ. (5.10)

Then according to the Lie point symmetries (3.4), we obtain the following conserved vectors for

Eqs.(1.1).

Case 1: To the generator X1 =
∂
∂x , we obtain the corresponding Lie characteristic function

W1 = −ux. (5.11)

Substitution of (5.11) into (5.9) yields the following conserved vector

Ix
1 =W1

[
∂H
∂ux
+ (−1)nDn−1

x
∂H
∂unx

]
+Dn−1

x (W1)
∂H
∂unx

,

It
1 = −P1−α

t (−W1)φ−J(−W1,φt). (5.12)

Case 2: To the generator X2 = x ∂
∂x +

n
α t ∂∂t +

(1−n)
p u ∂

∂u , we have the corresponding Lie characteristic

function

W2 = −xux− nt
α

ut +
(1−n)

p
u. (5.13)

Substitution of (5.11) into (5.9) yields the following conserved vector

Ix
1 =W2

[
∂H
∂ux
+ (−1)nDn−1

x
∂H
∂unx

]
+Dn−1

x (W2)
∂H
∂unx

,

It
2 = P1−α

t (−W2)φ+J (−W2,φt) . (5.14)
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Summing up the above detailed analysis, the following theorem is easily established.

Theorem 5.1 The time-fractional generalized KdV-type equation (1.1) has the following conserva-
tion laws

Dt
(
It

i

)
+Dx

(
Ix

i

)
= 0, i = 1,2, (5.15)

where It
i are shown in (5.2),(5.12) and (5.14).

6. Conclusions and discussions

In this work, the time-fractional generalized KdV-type equation (1.1) is systematically investigated,

which can be reduced to the ones of several important equations such as KdV (1.2), FS-KdV (1.3),

F-Burgers (1.4), FF-KdV (1.5) and so on. Then, all the results obtained here can also be reduced

to ones of such important equations. The symmetry properties, similarity reduction forms of (1.1)

are constructed by using Lie symmetry method. Besides, based on the sub-equation method, we

present the travelling wave solutions for the special forms of Eq.(1.1). Then power series solution

of Eq. (1.1) is also constructed by using the power series method. Finally, based on a new con-

servation theorem [16], conservation laws of Eq.(1.1) are derived with the use of its vector fields

(3.4) . The paper shows that Lie symmetry analysis method, the sub-equation method and the power

series method provide the direct and powerful mathematical tools to further study other fractional

differential equations in mathematical physics.
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