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1. INTRODUCTION
The Nonlinear Schrodinger (NLS) equation

iu, +u, —2v|gl*q=0 (1.1)

with v = £1 is a significant mathematical and physical model for the optical fibers, deep water waves and plasma physics [3]. The NLS equa-
tion is a completely integrable system which admits Lax pair and bi-Hamiltonian formulation [21,22].

In the late 70s, standard bi-Hamiltonian formulation was used to obtain an integrable generalization of a given equation [7]. For instance,
the Camassa-Holm equation is derived from the KdV equation via the bi-Hamiltonian structure [6], and the same mathematical trick can
be applied to the NLS equation yields Fokas-Lenells (FL) equation [8]

i, —vu, +yu, +o|ul (u+ivu)=0,0==1. (1.2)

Iflet = y/v>0and ﬂ:l and
v

u— plae’u, o — -0,

then equation (1.2) can be converted into

U, +ofu=2iofu —ou, +oiof |ul u =0, (1.3)

where ¢, > 0. In this paper, we consider the focusing case with o= —1.
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In recent years, much work has been done on the FL equation (1.3). For example, Lax pair for FL equation was obtained via the bi-
Hamiltonian structure by Fokas and Lenells [8]. They further considered the initial-boundary problem for the FL equation (1.3) on the half-
line by using the Fokas unified method [9]. The dressing method is applied to obtain an explicit formula for bright-soliton and dark soliton
solutions for Eq. (1.3) [11,15]. The bilinear method was used to obtain bright and dark soliton solution are obtained [12,13]. The Darboux
transformation is used to obtain rogue waves of the FL equation [10,19]. The Deift-Zhou nonlinear steepest decedent method was used to
analyze long-time asymptotic behavior for FL equation with decaying initial value [18]. Riemann-Hilbert (RH) approach was adopted to
construct explicit soliton solutions under zero boundary conditions [1]. As far as we know, the soliton solutions for the FL equation (1.3)
with Nonzero Boundary Conditions (NZBCs) have not been reported. In this paper, we apply RH approach to study the inverse transfor-
mation of the FL equation (1.3) with the following NZBCs

—ifix+2ia Bt

u(x, t) ~q,e , X —> too, (1.4)

2
where 4. |= \/% and assume that u(x, t) — g, € L'(R%); with respect to x for all t > 0. In next section, we will see that this kind of NZBCs

(1.4) avoids the discussion on a multi-valued function as the case of the NLS equation [3].

The inverse scattering transform is an important method to study important nonlinear wave equations with Lax pair such as the NLS equa-
tion, the modified KdV equation, Sine-Gordan equation [5,14]. As an improved version of inverse scattering transform, the RH method has
been widely adopted to solve nonlinear integrable systems [2,4,16,17,20,23].

The paper is organized as follows. In Section 2, by introducing appropriate transformations, we change the asymptotic boundary conditions
(1.4) into constant boundary conditions. Furthermore, we analyze the analyticity, symmetry and asymptotic behavior of eigenfunctions
and scattering matrix associated with the Lax pair. In Section 3, a generalized RH problem for the FL equation is constructed, and the
distribution of discrete spectrum and residue conditions associated with RH problem are discussed. Based on these results, we reconstruct
the potential function from the solution of the RH problem. In Section 4, we give the N-soliton solutions via solving RH problem under
reflectionless case.

2. THE DIRECT SCATTERING WITH NZBCs

2.1. Jost Solutions

It is well-known that the FL equation (1.3) admits a Lax pair
v, +ikoy =kUy,

.o
Y, +in‘oy = |:aka + 105,23 0'3(% U —UZH v,

U:[g ZJ, O'3=((1) _OJ, ﬂ:\/g(k—gj, v=—u.

In order to invert the nonzero boundary conditions into the constant boundary conditions, we introduce a transformation for eigenfunc-
tions and potentials.

(2.1)

where

Theorem 2.1. By transformation

U = ge Preb,
v e[—%iﬂmaﬂt)%q), (2.2)
the FL equation (1.3) becomes
q. —if, +2iofy, - 0q,, + Qo —af’|qf) q —ief* [qf 9, =0 (2.3)
with corresponding boundary conditions
q—>q,, x—>=xoo (2.4)

And Eq. (2.3) is the compatibility condition of the Lax pair

0. =X, ¢,=To, (2.5)
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where

X=-ik’o, + % ifio, —ifko,Q + kQ,,

T=-in'c, - % iof’c,Q’ - % ioff’q.o, —iafko,Q + akQ, +

0
Wlth Q:( . q .

Proof. Suppose the transformation is

Substituting it into (1.3) yields

q,, + Aiq, +i(B - 208 - 20A)q, + 20ffA + off* + oA’ — AB)q— oy, + Ao’ |qf q —ioff* |qf g, =0.

And the Lax pair becomes

(ot_e

iofp’
2k

O-3Q>

Aix + Bit (iCx +iDt)o.
=e 2.

(2.6)
-ik’ —iC  k(Aig+q,)
k(Aig —q) ik*+iC |
io3* 2.
[{4-c)e(2-0)os —in + < iof* |qf ~iD ak(Aiq+qx)+la’5 q 27
AT I AT 2 2k 0.

iofp’
2k

—ok(-Aiq +q.) + q - % iof3* | q [ +iD

Take A = 2C and B = 2D in the above equation and consider the limit as x — *oo, one gets

H+

H‘-’ﬂ

These two matrices are proportional if

Moreover, T, and X, are proportional

A
—ik* -2 kAi

5 4.

kAig, ik’ + 4,
* 2
.22
i’ +ioff —iD  akiAq, + ’Uz’f q.
. 2 *

akiAq, + w;’i q. in* —iof +iD

A=-8,B=2ap.

T, = —‘/f” X,.

which implies that their eigenvalues are proportional and they share the same eigenvector matrices.

To diagonalize the matrices X, and T and further obtain the Jost solutions, we need to get the eigenvalues and eigenvector matrices of them.

. . . . ik . . .
Direct calculation shows that the eigenvalues of the matrices X, are + — A; and the eigenvalues of the matrices T, are +i774, where

and the corresponding eigenvector matrices are

Y.(k)=1-

o

ﬂ:\/E(k-f-ﬁ),

v
2k

1+ B
Q,,detY,(k)=1+ e 7(k),
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0 g,
Wlth (2+ = . q7 .
B 4. 0

With the above results, the matrices can be diagonalized as:

X =Y [_ zklog) Y,
+ + \/; +
T, =Y, (-indo,)Y, .
Thus, the asymptotic Lax pair
q)x:Xiw’ ¢t:Ti¢

can be written as

az kAo, .~ o . o
(Yr l¢)x =T l\/gs (Yif 1¢)’ (Yr 1¢)t == 1770-3(Yt 1¢)’

which has a solution

@ =Y, (ke "%,
Therefore, the asymptotic of the eigenfunctions ¢, are

@, ~ Y, (ke "%, x o oo,
where

O(x,t, k)= % + Ant.

NP

Define the Jost solutions as
J. (6, t, k) = @, (x, t, k)™,
then the Lax pair (2.5) is changed to
ikA
J,,.——/—J.0,=X],
wx T 03 +
]t,t - i/lﬂ]i0'3 = T]i’

and

J. ~ Y. (k), X — + oo,

2.2. Scattering Matrix

41

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

The functions ¢, are both fundamental matrix solutions of the Lax pair (2.5), thus there exists a matrix S(k) that only depends on k, such that

o (x,t,k) =@ (x,t, k) S(k),
where S(k) is called scattering matrix. Columnwise, Eq. (2.15) reads
Poa=SuP oyt S$uP o Pon =P T 500,
Since tr(X) = tr(T) = 0, according to the Abel’s formula, we have

(det @), =(det @,), =0,
which implies

det @, = lim det @, = y(k),

x—teo

(2.15)

(2.16)
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then the scattering coefficients can be expressed as Wronskians of columns ¢, in the following way

Wrp. Wrio .
s, (k) = M s, (k) = M
- 7o (2.17)
Wi R
s, (k) = M 5,,(k) = M
7K 7 (k)

2.3. Asymptotic Analysis

To properly construct the Riemann-Hilbert problem, we need to consider the asymptotic behavior of eigenfunctions and scattering matrix
ask — ccand k = 0.

2.3.1. Asymptotic as k — «

Consider a solution of (2.13) of the form

1) (2)
N

— O L
Jo=T, kK k

o

then substituting the above expansion into (2.13) and comparing the coefficients of the same order of k, we get the comparison results:

x-part:
O"): 1Y, +ilo,, JP1=ifo ) ~ifo. Y + Q] (2.18)
ok*): 10, =0,J2. (2.19)

t-part:
o(k):[o,, J\"1 =~ po,J? —iQJ, (2.20)
O(k’): ] +iclo,, IP] = iafo,] — % i’ Qo] - %iaﬂzqgc@]g’) —iofo, Q1" + aQ J . (2.21)

Based on these results, we derive that ] is diagonal and satisfies

1O =i, (2.22)
18 =iv,o ), (2.23)
where
v, (x l‘)—,3+1ﬂ2 r 11',qu +1iﬁqr+1
X 5 q 5 « T qu D

1 1 1
v(x, t)=off - 3 of’q + 3 iofi(q.r —qr,) + 3 oq.r,.

Note that the FL equation (2.3) admits the conservation law

(q.1, = iBar, + ifa.r + Bar), =(aqr, +iof(q.r —qr)

>
x

thus Egs. (2.22) and (2.23) are consistent and are both satisfied if we define
ivo, x 1 1 . 1 . 1
JO =", v = L}[ﬂ + Eﬂzqr ~ 5 i +ifr + qxrxj dx'. (2.24)

Therefore, we obtain the limit of the Jost solutions as k — oo:

J. ~J9 k— oo (2.25)
Define

J,=T10u,, (2.26)
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then we have
H, >, ko (2.27)

In addition, the asymptotic property of ¢, follows:

i(v-0)o.
e 3

O, ~ , k— oo,

Consider the wronskians expression of the scattering coefficients (2.17), we find that

su(k) > 1,5,(k) >1, k>, (2.28)

2.3.2. Asymptoticas k — 0

We first assume that J, admit a Lorrent expansion

J.= ik"D‘;’.

n=—co

Substituting into (2.13) and comparing the coefficients of the same order of k gives that D" =0, n = -2, -3, ---. Thus we expend solution
of (2.13) of the form

D(*l)
J. = ? +DY + DUk + -+,

then we obtain the comparison results:

Xx-part:
1 1
. _Laanen o 1 -1
O(k™): D, 5 ifD; Vo, 2z,BogDi , (2.29)
t-part:
O(k™):D.'o, =—0,D;". (2.30)
It is easy to check that
DL} =0, (2.31)
which implies D{™ is a constant independent on x. This implies that the following limit
. _ D
fimkJ, = D. (2.32)
is uniformly convergent for x € R. While the following limit
, g P
Jim b, =k =5 Q, (2.33)
exists for every fixed k € C. Thus the following limit is commutative, and using (2.32) and (2.33) yields
D' = lim limkJ, = lim limkJ, = — s Q,,
x—>400 k—>0 k—0x—+0 2
which leads to
Q,
]i:—'sz’ +0(1), k—0. (2.34)

The asymptotics of functions ¢, and #, can be obtained by transformations (2.12) and (2.26). Consider the wronskian expressions of scat-
tering coefficients and note the boundary conditions, we find that

5. =Wr(J, e ] ") =9=+00), k>0,

+

sy =Wr(J_ e, ], ¢ =1+ 001), k0.

+
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¢ N sRek

Figure 1 The jump contour in the complex k-plane.

2.4. Analyticity

Noticing that

Im[ﬁ] = 4RekImk,

Ja

we define two domains and their boundary

D" = {k|RekImk > 0} = {k |arg k € (O, %) U (ﬂ', % ﬂ')},

D = {k|RekImk < 0} = {k |arg k € (%n) U (— , z;z)},
¥ = {k|RekImk = 0} = RUIR.
which are shown in Figure 1.

Under the transformation (2.26), we write the Lax pair as

ikA =
M _lf[ﬂi’ 0-3] = XU,
o . (2.35)
M., —iAnlu,, o,]=Tu,,

where

<)

e ikio, .
=e "% (X + 2 — zvlog),

Vo

T=e(T + iAno, —iv,o,).
We rewrite the Eq. (2.35) into a full differential form
(e 1,) = €°% (Xdx + Tdt) 11, (2.36)
which implies z, can be formally integrated to obtain the integral equations for the eigenfunctions:

y) ~
X—y)03 ~

L
W=+ Le Vo Xy, t, K)u_(y,t, k) dy, (2.37)

L
\/; y

foo 03 ~
u, =i - j e X(y, t, k) g, (y, £, k) dy, (2.38)

where

Foo
71'J. vl(x’)dx’o'3

W=y, pl=e Y,.
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By using a similar way to Appendix A in Biondini and Kovaci¢ [1], under mild integrability conditions on the potential, the eigenfunctions
(2.37) and (2.38) can be analytically extended in the complex k-plane into the following regions:

Moy M, DY, D7 (2.39)

where y, = (4, , /4, ,), the subscript 1, 2 denote the first and second column of ..

Apparently, the functions ¢, and g, share the same analyticity, hence from the wronskians expression of the scattering coefficients, we know
that s, is analytic in D, and s,, is analytic in D".

2.5. Symmetry

To investigate the discrete spectrum and residue conditions in the Riemann-Hilbert problem, one needs to analyze the symmetric property
for the solutions ¢, and the scattering matrix S(k).

Theorem 2.2. The Jost eigenfunctions satisfy the following symmetric relations

op.(k)o =~ g@.(k), (2.40)
o.p.(-k)o, = ¢, (k), (2.41)
and the scattering matrix satisfies
—oS(k)o =S'(k'), (2.42)
0.8 (=k)o, = S(k). (2.43)

where

0 1 0 1
o= , o, = .
-1 0 1 0

Proof. We only prove (2.40) and (2.42), (2.41) and (2.43) can be shown in a similar way. The functions ¢, are the solutions of the spectral
problem

0. (k)= X(k)p, (k). (2.44)
Conjugating and multiplying left by o on both sides of the equation gives
(0p.(k)0) = oX (K )p.(k o

Note that X (k') = X(k) 6, hence 0@, (k)0 is also a solution of (2.44). By using relations oY, (k") =Y,(k)o and e = —e 3, we obtain

—ifo,

09, (k)o ~ =Y, (ke 7, x >+, (2.45)

which leads to (2.40).

For the scattering matrix, conjugating on the both sides of Eq. (2.15) leads to

p. (k)= (k)S (k)
substituting (2.40) into the above formula yields

9. (k) =—p_(k)oS (k))o,
comparing with (2.15) gives

S'(k')=-0S(k)o.
Elementwise, Eqs. (2.40)-(2.43) read as

S;l(k”) = 522 (k)) S;I(k*) = _Slz(k)>

L e (2.46)
s, (=k ) =s,,(k), s,(=k)=s,(k).
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Imk
_kn k;
Rek
_I * L ]
k;, k,
Figure 2 Discrete spectrum.
¢i,1(k) = O-w;,z(k*)) ¢i,z(k) = O-([’;](k”))
0., 0=00,(K) 9,k =0 (k) (247)
which implies
¢1,2(k) == O-3¢i,2(_k)’ ¢i1(k) = O-3¢1,1(_k)’ (2.48)
note the relation (2.12) and (2.26), there exists
_ z‘va3 —i90'3
@, =e"ue ™, (2.49)
thus for the eigenfunctions z,, we derive
:ui,z(k) == 0-3:[11,2(_]{)’ lut,l(k) = O-/ut,l(_k)' (2.50)
3. THE INVERSE SCATTERING WITH NZBCs
3.1. Generalized Riemann-Hilbert Problem
We define the two matrices
M= [gl, ﬂ”], ke D",
S22
M =[ﬂ* - ﬂ)z} keD,
Sll
which are analytical in D*, D™ respectively, and admit asymptotic
M*=1+0(1/k), k — oo,
M =1 vo), ko, (3.1
o L
where Q_ = 1
— 0
q_
By using (2.49) and (3.1), we rewrite (2.16) and get a generalized Riemann-Hilbert problem
* M(x, t, k) is meromorphicin C\ Z, (3.2)
* M*(x,t, k) = M (x, t, k)(I - G(x, t, k)), keZ, (3.3)

* M(x,t,k) satisfies residue conditions at zeros {k : s, (k) = s,,(k) =0}, (3.4)
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*M* =1+0(1/k), k — oo, (3.5)
* M* = % ¢ "Q, +0(1), k—0, (3.6)

where the jump matrix

S
e pk)  pk)p(k) Su s

22

0 _2i0 k ~
G=[ o )}p(m:i,p(k):ﬁ.

and ¥ = R U iR denotes the jump contour in Figure 1.

3.2. Discrete Spectrum and Residue Conditions
Suppose that s, (k) has N simple zeroes in D* N{Im k < 0} denoted by k , n = 1, 2, ..., N. Owing to the symmetries in (2.46), there exists
s,(k)=0c5s,,(—k)=0<s,(k)=0<s,(—k,) =0,
thus the discrete spectrum is the set
{tk,, tk }, (3.7)

which distribute in the k-plane as shown in Figure 2.

Next we derive the residue conditions will be needed for the RH problem. If s (k) = 0 at k = k_ the eigenfunctions ¢_ and ¢ , at k =k must
be proportional

¢+,1(kn) = bn¢—,2(kn)’ (3.8)

where b, is an arbitrary constant independent on x, t. Under the transformation (2.49), there exists linear relation for 4,

(k) =be"" u (k). (3.9)

Thus we get

11

k .
Resk=k ﬁ _ /U+,1( n) _ Cnezﬁ(kn)lu_ Z(kn)’
Lsa | sk ’ (3.10)

where C, = — b, . As for k = —k , substituting (2.48) into (3.8) leads to

Sll n
0, (=k,)=-bp_,(-k,), (3.11)
then applying the relation (2.49) yields
/u+,1(_kn) == bnezw(kn)/uf,z(_kn)’ (312)
thus we obtain
Moy | M, (k) 2i8(k )
Res, , | —|=————=-Ce "o,u,(k,).
' k,,|: S :| 511(_kn) e (3.13)
Similarly, the residue conditions at k = + k, are
Ky - .
Res ) ;u+,2 _ /u+,2( *n) _ C”efzfa(k,,)lu_ l(k”), (3.14)
K=k Sn 5;2 (kn) o
+ + (_k;) o ok *
Res |12 |oHef)_ Coe ™ ®o 1 (k) (3.15)
=k Sn 5;2 (_kn) ,

where C, =—C.

n
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Recall the definition of M*, there follows

Res .M =(0,Ce™® g (K)), Res .M =(0,Coe ™ %o (k).

. —, (3.16)
Res,, M =(Ce™* i ,(k),0),  Res,_, M~ =(-Ce™"“ou_,(k,),0).

3.3. Reconstruction Formula for the Potential

To solve the Riemann-Hilbert problem (3.3), one needs to regularize it by subtracting out the asymptotic behaviour and the pole contribu-
tion. Hence, we rewrite Eq. (3.3) as

Res .M" Res, , M~ X Resk:_k,M+ N Res, , M~
k—k, > k+k & k+k, (3.17)

k
1 n=1
N v Res .M*™ Res,, M~ Res My Res,__, M~
=M —-I--¢ Q.- - - L
P D YD)

n n=1

1 -wo k=k "
w MG,
~ 3 = k-k, Z{ k+k, 2,‘ k+k, ¢
o L
where Q_ = - | Then the Plemelj’s formula shows
— 0
q_
Res M* - Res M" - -
1 o, < S k=K, X, Res M~ K=k’ N Res, . M 1 ¢ M Gx,t, &)
M(x,t,k)=1+—-e >Q_+ i+ " + i . +—| ————==d&, (3.18)
( ) k Q ,12:‘1 k—k, ,12:‘1 k—k, g; k+k, = k+k, 27 U E—k ¢
and the (1, 2)-element of M is
1 —ivo, X Y 1 MﬁG(-xy t; 5)
— 3 + Y _ e 2
My, =4 {e Q. +;(Resk:k;M +Re$k;k;M ) oy L F ok dé ) +O(1/ k). (3.19)
Comparing the (1, 2)-element on the both sides of Eq. (2.20) yields
q, —ifq =2ie"],. (3.20)
Recall the transformation (2.2), we know
uxei‘r(x’t) = qx - lIBq’
where 7(x, t) = fix + offf*q;t. Thus we can write (3.20) as
A iveiTo, A 2iveiT A 2iv-ir -
u, = 2ie g{}(k]t)n = 2ie gg(k,ui )12 =2ie (M1 )12, (321)
where
M
M =M, +—++---.
k
Substituting (3.19) and (3.16) into (3.21), we obtain the reconstruction formula for potential
e ) € RN o1
u, =2ie”" I 42 Che K)y-—| MG dét. (3.22)
' { Y M) = [ (M6,

4. REFLECTIONLESS POTENTIALS

Now we consider the potential u(x, t) for which the reflection coefficient p(k) vanishes identically, that is, G = 0. In this case, Eq. (3.22)
reads as

u, =2ie" (ZZe”(aneZie(k"),ll,l,l(k,:) - Z—J (4.1)
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To obtain the expression of the term g | (k,), we consider the first and second column of (3.18) respectively under reflectionless case:

—iv

e
/uf,z (kn) -
1
1
w (k)=| "
kd.
which can be further written as
u_y(k,) =
u (k)=
where
Define
whose conjugate gives
Then (4.3) reduces to
substituting (4.5) into (4.4) yields
. ﬂv N
ﬂ—,l,l(er) = 1_ Z

Introducing notations
X=(X,
with components being

X, = Mo, (k:l)’

then the system (4.6) can be written as matrix form

where

N —216‘(k) = 2i0(k;)

. C .
k) + k),
Z ﬂ();k s o, (k)
N ZxH(k) N 21H(k)
Z /u—,z(k;') Z 3ﬂiz(k)‘):
n ] =1 n
_e” NGO
= | .
klnq— + zzkz——(k;)z Kl/'l—,l(kj ),
1 216‘(k)
) Ce
L Z(k) e Kattally)
kg
© k, 0 X k. 0
Plo k) ok
C 2i0(x,t,k ;)
¢ (x, t, k)——2 i,
k) -k
* 6,- 2i0(k)
BT

N
#7,1,1 (k::) = 1 + 2 ijcj(kn) /‘L,l,z(kj)’
j=1

—iv N
Haall) = = e =200k () o (k)
j m=1

i1

(k,) - 4ZZkfc/(k ), (k) (k) n=1,2,..,N.

j=lm=1

X, ...Xy), A=(A,,). B=(B,B,...B,)
< . 2e"

= Y 4kic,(k)c,(k), B, =1-—— ¢k,
j=1 q_ j=1

HX = B,

H=I+A=(H,H,,.. Hy).

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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By standard Crammer rule, the system (4.7) is the solution of

k)= X det H™ (48)
,u—,l,l n/ = “n T det H > ’
where

H™=(H,,...,H, ,B,...,Hy).
Note that

uyv, =qr +ifiqr—ifqr, + Bqr,
then Eq. (2.24) reduces to

v=[" (ﬂ+—uv)(x t) dx’, (4.9)
Therefore, we obtain a compact solution:
aug
u = 2ie—ir(x,t)+iv det H eiv _ i* , 410
* det H q (4.10)

where the augmented (N + 1) x (N + 1) matrix H*¢ is

~2i0(k") .
= _oCe

n

and Y = 26,.6 -2i0(K,) )
5. TRACE FORMULA AND THETA CONDITION

Define

k N -k
T=s, (k)H 2 (kz) , Sy (k)H kz i (5.1)

n=1

we see that they are analytic and no-zeros in D™ and D, respectively. Moreover, 8+ B~ = s, (k)s,,(k). Note that det S(k) = 5,5, = 5,5, = 1,
this implies

=1- p(k) p(k) =1+ p(k) p' (k)

51 1S22

thus
1

:—H)k )
:B;B S1152 1+p(k)p(k) €

Taking logarithms leads to
log 8" — (~log 7) = —log[1+ p(k) p(k")], ke Z,

then Applying Plemelj formula, we have

log f* = - 1 J'IOg[1+p(S),0(s )]

ds, ke D*. 5.2
27Ti s—k (5-2)

Substituting into (5.1), we obtain the trace formula

~ 1 logll+p(s) p'(s)] |, | K-k _
su(k)_exp{Zﬂ'i IZ s—k ds}:!:!: kz (k )2’ keb ' (53)
1 ¢ log[l (s Nk = (k
522 (k) = eXp|:— —2”1 J.2 —Og[ +5p—(slzp (S )] 5:| H kz (kz) > k c D+,
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Under reflectionless condition, they reduce to

2 ~ k2 _ (k )2 .
s, (k) = H k2 - (k )2 ,keD;  s,(k)= H k2 ,keD". (5.4)
Taking limit as k — 0 for (5.4) leads to
N
L _ o p|: J~ log[1+ p(s) p'(s)] }expl}iZarg(kn):l, keD, (5.5)
ﬂq 27w eE s n=1
note that /3 is a positive constant, then we obtain the theta condition
q 1 ¢ log[1+p(s)p (s)] S
—l=——| =L " ds+4 k). 5.6
arg(%j - L ; s ;arg( ) (5.6)
under reflectionless condition, we have
arg 4 » arg(k,).
(£)-43 o

6. ONE-SOLITON SOLUTION

As an application of the formula (4.10) of N-soliton solution, we construct one-soliton solution for the FL equation, which corresponds to
N =1. Then Eq. (4.10) becomes

o o =2i0(k ) iy . —2!9(1{)
uxzzie—l‘rﬂv{_ 2Cle ! e +(4+4ﬂ)C (kl)_ 1 J’

: (6.1)
1+4k [c,(k)[ q (1+4k} |, (k)]) 4
where k| is an eigenvalue, C, is an arbitrary constant and
o(k,) = AHM /11=\/E(k +ﬁ}
1 \/— it 1 2k1 62)

771:&[1—&} (k)= — )

2k, (kY -k
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