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ABSTRACT
Condition monitoring is central to the efficient operation of wind farms due to the challenging operating conditions, rapid tech-
nology development, and a large number of aging wind turbines. In particular, predictive maintenance planning requires the
early detection of faults with few false positives. Achieving this type of detection is a challenging problem due to the complex
and weak signatures of some faults, particularly the faults that occur on the gearbox bearings of a turbine drivetrain. The results
of former studies addressing condition-monitoring tasks using dictionary learning indicate that unsupervised feature learning is
useful for diagnosis and anomaly detection purposes. However, these studies are based on small sets of labeled data from test rigs
operating under controlled conditions that focus on classification tasks, which are useful for quantitative method comparisons
but gives little insight into how useful these approaches are in practice or how can be used by existing condition-monitoring sys-
tems. Here, we investigate an unsupervised dictionary learning method for condition monitoring using vibration data recorded
over 46 months under typical industrial operations. Thus, we contribute real-world industrial vibration data that are made pub-
licly available and novel test results. In this study, dictionaries are learned from gearbox vibrations in six different turbines, and
the dictionaries are subsequently propagated over a few years of monitoring data when faults are known to occur. We perform
the experiment using two different sparse coding algorithms to investigate if the algorithm selected affects the features of abnor-
mal conditions. We propose a dictionary distance metric derived from the dictionary learning process as a condition indicator
and find the time periods of abnormal dictionary adaptation starting six months before a drivetrain bearing replacement and
one year before the resulting gearbox replacement. In addition, we investigate the distance between dictionaries learned from
geographically close turbines of the same type under healthy conditions. We find that the features learned are similar and that a
dictionary learned from one turbine can be useful for monitoring a similar turbine.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Wind power is a renewable energy source that is growing rapidly
and providesmore than 11%of the electrical power in the European
Union [1]. Wind power is harvested by wind farms, which typically
includemany similarwind turbines.Wind turbines are based on rel-
atively new technology that has been scaled up from approximately
2MW to 10MW per turbine in one decade. The rapid development
in combination with the challenging operating conditions of wind
turbines over the typical 20-year service life implies that condition
monitoring and predictive maintenance are central issues. When
maintenance is needed, the cost of crane mobilization and energy
production losses are high, and there are challenges acquiring spare
parts in this rapidly expanding industry. The gearbox is a major
component of a wind turbine, and the rolling element bearings that
support the rotating components in the drivetrain are essential for
reliable operation. Monitoring these bearings is an important and
challenging issue given the predominance of bearing faults in wind
turbines [2] and the complex and weak signatures of some faults
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[3]. Because nearby turbines face similar environmental and opera-
tional conditions, methods can be adapted and validated with data
from multiple machines.

Condition-based maintenance requires continuous monitoring of
the machine to detect incipient failures so that the maintenance
actions can be scheduled efficiently [4]. This procedure involves
three stages: data acquisition, feature extraction, and diagnostics
identification. The principle behind identification is that a “sig-
nificant change [of a feature] is indicative of a developing failure”
[5]. Feature selection and extraction is a key problem that typ-
ically determines the performance of decision support functions
and thereby the efficiency of the condition-monitoring system.
A feature is an individual measurable signal property or pattern
that is characteristic of some particular type of source. The con-
dition monitoring of wind turbines typically uses methods based
on feature extraction with signals originating from vibration sen-
sors mounted on the drivetrain. Hossain [4] describes common
faults in wind turbines and the typical features used in their
identification.
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The features used in the diagnostics of a wind turbine can be
classified into three categories: time-domain, frequency-domain,
and joint time-frequency domain. Time-domain features include
traditional statistical parameters such as the root mean square
(RMS), crest factor, and kurtosis. The trends of these parame-
ters are used as indicators of the deterioration of the machine
[6]. Frequency-domain features are typically derived by the con-
version of the time-domain signal to the frequency domain using
the fast Fourier transform (FFT). Kinematic data such as bearing
defect frequencies are used to extract information in selected fre-
quency bands [7], and thereby form a smaller set of features that
can be trended and monitored. Analysis methods based on joint
time-frequency domain features are also used, but these are more
recent developments compared to the time-domain and frequency-
domain methods. The wavelet transform is one example, which is
useful for the analysis of nonstationary signals [5]. However, to
date, such methods have not been widely used in industry because
the analysis is more complex and requires trained experts to inter-
pret the results [8]. Further information about these analysis meth-
ods can be found in, for example [9,10].

Features are typically manually selected by experts, which implies
that the features are selected without explicit knowledge of the state
of each machine. Furthermore, the dependence on experts is a bot-
tleneck that limits the scalability of condition monitoring systems.
In general, the detection, prediction, and diagnosis of faults in a
rolling element bearing are challenging tasks due to the high num-
ber of variables that affect the operation. Thus, a machine learn-
ing approach can be useful in the development of more automated
diagnosis and prognosis systems. Supervised machine learning is
one approach, but it requires labeled data for training, which are
difficult and expensive to generate [11]. An alternate approach is
unsupervised learning methods, which, for example, can be used
for feature learning and anomaly detection purposes. An unsuper-
vised learning approach can assist in the analysis of the dark data,
which is data acquired by sensors but it is not used for inference or
decision-making process.

Here, we investigate an online feature learning approach based
on dictionary learning that enables the optimization of the mon-
itored feature set for each machine. In particular, we use dictio-
nary learning to study signals recorded from vibration sensors
installed on gearboxes in 2.5 MW turbines at a wind farm in north-
ern Sweden. The learned features define a set of overcomplete and
shift-invariant waveforms that are used to determine a sparse
approximation of the corresponding vibration signal. We are inter-
ested in measures derived from the learning process that can be
used to track the changes of such waveforms over time, and as a
result, they can be used as key performance indicators in a condi-
tion monitoring process for the detection of abnormal changes.

Dictionary learning [12] and convolutional sparse coding [13]
has attracted broad interest. Variations of the dictionary learning
method have successfully been used in tasks such as signal compres-
sion, detection, separation, and denoising [14–16]. The methods
developed here are based on thework by Smith and Lewicki [17,18],
which is inspired by the earlier work of Olshausen and Field [19,20]
in the area of sparse visual coding. The methodology includes a
sparse regularizationmechanism that reduces the influence of noise
and some of the redundancy that is typically present in raw sensor
signals. Here, the hypothesis is that the same general approach can

be used to characterize and analyze the signals generated by a rotat-
ing machine [21].

Liu et al. [22] were the first to apply dictionary learning to a dataset
with bearing vibration signals. These authors trained dictionaries
of waveforms of fixed length for different bearing conditions. The
learned dictionaries were subsequently merged and used to classify
the type of fault with a linear classifier. Furthermore, Martin-del-
Campo et al. [23] showed that it is possible to distinguish differ-
ent operational conditions through the learning of shift-invariant
waveforms where the lengths of the waveforms are also optimized.
Chen et al. [24] use a dictionary learning approach to detect a fault
in a gearbox by the identification of impulse-like components in a
vibration signal. Tang et al. [25] used shift-invariant sparse coding
to generate a set of latent components that act as fault filters in a
bearing or a gearbox. Moreover, studies by Ahmed et al. [26] and
He et al. [27] proposed classification strategies that use the learned
sparse representations on stacked autoencoders and large memory
storage and retrieval neural networks, respectively. Further exten-
sions of the work by Liu et al. [22] had been developed by Wang et
al. [28] and Zhou et al. [29], who used the same dictionary learning
method with different classification strategies.

Studies of dictionary learning for fault detection with bearing sig-
nals are based on simulated data and/or data from controlled exper-
iments, where the faults are artificially introduced. Furthermore,
most of these studies investigate either how the learned atoms can
be used to classify faults or how to improve the accuracy of such
a classifier. Thus, these results are not compatible with current
approaches to health monitoring of wind turbines. Here, we extend
the former studies with an investigation based on real-world vibra-
tion data collected from the vibration sensors on gearboxes in mul-
tiple wind turbines over an extended period of nearly four years.
The data have been released publicly; see appendix for further infor-
mation. The output shaft bearing and, subsequently, the gearbox
were replaced in one of the turbines considered in this study. In
addition to considering the fault detection problem, we investigate
whether the dictionary of waveforms learned for one turbine is use-
ful for the analysis of the corresponding signal in a nearby turbine
of the same type. Furthermore, we study the possibility of using dic-
tionary propagation and dictionary-based indicators to identify bad
actors in a population of wind turbines, in a similar way that trend
analysis is currently used tomonitor the conditions of turbines. The
experiments presented below also include a comparison of two dif-
ferent sparse coding algorithms.

The dictionary learningmethod and the proposed dictionary-based
indicators are described in Section 2. The data used and the exper-
iment procedure are described in Section 3.1. The results are pre-
sented in Section 4, followed by a discussion of the results in
Section 5, and the conclusion in Section 6.

2. UNSUPERVISED FEATURE LEARNING
METHOD

The unsupervised feature learning method used in this work is
known as dictionary learning. Using this method, a vibration signal
is decomposed into a sparse representation using a set of learned
features known as atoms. The algorithm used to create the sparse
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representation is known as a sparse coding algorithm, while the set
of atoms is learned with the dictionary learning algorithm.

This section first introduces the sparse signal model used to rep-
resent the vibration signals. Then, the algorithms used to encode a
sparse represented are presented, which is followed by a description
of the dictionary learning algorithm used in the optimization pro-
cess to learn a dictionary of shift-invariant atoms. This section con-
cludes with the introduction of our proposed dictionary distance
metric.

2.1. Sparse Signal Model

The signal S(t) is modeled as a linear superposition of Gaussian
noise and waveforms with compact support

S(t) =
N

∑
i=1

ai𝜙m(i)(t − 𝜏i) + 𝜖(t). (1)

The functions 𝜙m(t) are atoms that are learned from the signal,
which we also refer to as features. An atom is an elementary wave-
form that describes a recurring feature of the signal. A set of atoms
𝜙m(t) defines a dictionary Φ that consists of M atoms

Φ = {𝜙1,⋯ , 𝜙M} . (2)

The triplem(i), 𝜏i, ai defines one atom instance.We refer to the ratio
between the total number of atom instancesN and the total number
of signal (segment) samples as the sparsity level. The temporal posi-
tion and amplitude of the i-th instance of atom𝜙m(t) are denoted by
𝜏i and ai, respectively. The term 𝜖(t) represents the model residual,
which includes Gaussian noise.

The inverse problem defined by Eq. (1) is solved with an iterative
two-step optimization process for each consecutive signal segment:

1. Sparse coding—While maintaining a fixed dictionary, deter-
mine the parameters m(i), 𝜏i and ai of the N atom instances in
Eq. (1) using the Matching Pursuit (MP) [30] or Orthogonal
Matching Pursuit (OMP) algorithms [31].

2. Dictionary update—Given the set of atom instances and the
residual 𝜖(t), update the atoms in the dictionaryΦ using a prob-
abilistic gradient method (described below).

Step 1 is a convolutional sparse coding [32] process repeated until
a stopping condition is reached. Typically, the stopping condition
is defined in terms of the total number of terms N of the approxi-
mation, as in this case; alternatively, this condition can be defined
in terms of the approximation error or signal-to-residual ratio. By
defining the stopping condition in terms of the number of atom
instances, the sparsity of the model in Eq. (1) is directly related to
the number of iterations of the optimization process; hence, the
computational requirements for online operation are well defined.
This step tends to be computationally demanding but the computa-
tional cost will remain the same for each consecutive segment while
the optimization parameters are not modified. Furthermore, real-
time processing of signals might be possible with a new generation
of processors, such as the Arm Ethos-N57 [33]. The Arm Ethos-
N57 possess a performance of up to 1 TOP/s, which is at least one
ordermagnitude above the number of operations carried out on the

scheme proposed here. Step 2, the dictionary update, is performed
iteratively after the sparse coding of each signal segment. The pro-
cess continues until there are no more signal segments. In this way,
the online learning of atoms by processing consecutive signal seg-
ments is possible [21].

2.2. Signal Encoding Algorithm

Themodel described by Eq. (1) describes a continuous signal S(t) as
a linear combination of atoms. However, the problem of finding the
optimal linear combination of an overcomplete set of atoms is an
intractable (NP hard) problem. Therefore, several algorithms have
been proposed to find approximate solutions to this problem. One
set of algorithms are greedy algorithms, which rely on an iterative
process to create the sparse representation, for example, MP [30],
OMP [34], and Gradient Pursuit [35].

Here, we use the MP algorithm and the OMP algorithm to obtain
a sparse approximation of each signal segment. Both algorithms
are used to decompose the signal, given a dictionary of atoms. The
algorithms operate on the residual of the signal, which initially is
the signal segment to be decomposed: R0(t) = sk(t). The cross-
correlation between the residual and all of the elements of Φ is cal-
culated in each iteration. An atom instance is defined by the atom
with themaximum cross-correlation (inner product) across all pos-
sible timeshifts, and the amplitude ai is defined by

ai = ⟨sk(t)|𝜙m(i)(t − 𝜏i)⟩, (3)

where the temporal position 𝜏i is

𝜏i = argmax
i
⟨sk(t)|𝜙m(i)(t − 𝜏i)⟩. (4)

This process is repeated by determining a new atom instance for
each iteration until the stopping condition is fulfilled. In each itera-
tion, the atom instance ai𝜙m(i)(t−𝜏i) is subtracted from the residual
to form a new residual to be used in the next iteration.

The MP and OMP methods have different residual update rules. In
MP, the updated residual of the signal Ri(t) after the i-th iteration is
given by

Ri(t) = Ri−1(t) − ai𝜙m(i)(t − 𝜏i). (5)

The OMP algorithm updates all coefficients ai with an orthogo-
nal projection of the signal segment onto the set of all previously
selected atoms. Thus, the updated residual of the signal, Ri(t), after
the i-th iteration is

Ri(t) = Ri−1(t) − Φi(ΦT
i Φi)−1ΦT

i Ri−1(t), (6)

where Φi is the updated dictionary in the i-th iteration.

The iterative process continues until the stop condition is reached.
This stop condition is defined based on the number of termsN rela-
tive to the number of samples of each signal segment S(t).Moreover,
the number of terms also determines the sparsity of the approxima-
tion. For further details about the MP method used here, see Ref.
[23]; for the OMP method, see Ref. [34].
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2.3. Learning of Shift-Invariant Dictionary

The next step in the iterative optimization process is to update
the atoms in the dictionaryΦ using the sparse approximation of the
signal. The goal is to optimize the set of atomic waveforms 𝜙m in
the dictionaryΦ to minimize the residual of the sparse approxima-
tion. One solution to this problem can be obtained by rewriting Eq.
(1) in probabilistic form:

p(sk|Φ) = ∫ p(sk|a, Φ)p(a)da ≈ p(sk|â, Φ)p(â), (7)

where â is the maximum a posteriori (MAP) estimate of a [17],

â = argmax
a

p(a|sk, Φ) = argmax
a

p(sk|a, Φ)p(a), (8)

that is generated by theMP or orthogonal MP algorithms [18]. Fur-
thermore, we assume that the noise term 𝜖 in Eq. (1) is Gaussian.
Therefore, the data likelihood p(sk|a, Φ) is also Gaussian and takes
the form

p(sk|a, Φ) ≈ exp
(
−∥ sk − aΦ ∥2

2𝜎2𝜖

)
, (9)

where

∥ sk − aΦ ∥2=∥ sk −
N

∑
i=1

ai𝜙m(i)(t − 𝜏i) ∥2, (10)

and𝜎2𝜖 is the variance of the noise. Note that sk, a andΦ arematrices
in these probabilistic expressions and that the dictionaryΦ includes
all of the possible shifts of each atom 𝜙m.

Under these assumptions, the atoms in the dictionary can be opti-
mized by performing gradient ascent on the approximate log data
probability, thus, resulting in a gradient of Eq. (7) of the form

𝜕
𝜕𝜙m

log(p(sk|Φ)) =
1
𝜎2𝜖
∑
i
ai [sk − ̂sk]𝜏i . (11)

The term [sk − ̂sk]𝜏i represents the final residual of the sparse
approximation (when the stop condition is met) that coincides with
each atom at its respective temporal position 𝜏i identified by MP or
OMP. Consequently, the gradient of each atom in the dictionary is
proportional to the sum of the residuals within the support of each
atom instance.

The use of the gradient for dictionary learning requires a step length
parameter 𝜂 that determines how much the atoms are updated. The
resulting update rule for an atom is

𝜙m → 𝜙m +
𝜂
𝜎2𝜖
∑
i
ai [sk − ̂sk]𝜏i . (12)

Therefore, the learning rate depends on how often atoms are
selected during the sparse coding step, which implies that the learn-
ing rate of atoms can be different and that some atomsmay not learn
at all (see [36] for an alternative dictionary learning method where
this is not the case). Furthermore, we zero-pad all atoms with ten
elements at each tail and allow an atom to grow in length if the RMS
of the tail exceeds 0.1 of the atom RMS, as described in [18].

Figure 1 presents an online monitoring scheme based on dictio-
nary learning. The signal is divided into segments of equal length.
The interval between the processed segments can be adapted to
match either the processing capacity of the condition monitoring

system or the availability of the data communicated from the
turbine (which is the case considered here). In the latter case, the
interval between the segments can be up to hours or days due to the
limitations of the communication network between the wind farm
and the condition monitoring center. In an online processing sce-
nario, the edge effects due to signal segmentation can be reduced
by transferring the tail of the residual to the next segment to be pro-
cessed. Martin-del-Campo et al. [37] describe this method for pro-
cessing continuous signals.

The initial dictionary is either pseudorandomly generated (training
stage) or copied from a repository that includes dictionaries learned
from similar machines (monitoring stage) according to an experi-
mental protocol such as the one defined in Section 3.2. Initially, the
first segment is processed with the sparse coding algorithm (MP or
OMP), and the resulting sparse representation is used to update the
dictionary. Subsequently, the updated dictionary is used to process
the next signal segment, which is a process known as dictionary
propagation. The output of this process is the updated dictionary,
the residual, and the coefficients and offsets of the selected atoms
that define the sparse approximation of the signal. These param-
eters are used as features for monitoring the corresponding wind
turbine.

Note that dictionary learning can be deactivated by setting the
learning rate parameter 𝜂 to zero. In that case, the dictionary is con-
stant over time. However, the sparse representation of the signal can
still be generated and analyzed for condition monitoring purposes.

2.4. Dictionary Distance

The dictionary is updated when each signal segment is processed
(provided that the learning rate is nonzero). Therefore, it is interest-
ing to quantify andmonitor the difference between two dictionaries
learned at different points in time, for example, by comparing the
present dictionary to a baseline dictionary learned during a period
when the machine was known to be in a healthy condition. Skret-
ting and Engan [38] define the distance between two dictionaries
Φ′ and Φ as

𝛽(Φ,Φ′) = 1
2M (

M

∑
i=1

𝛽(Φ′, 𝜙j) +
M

∑
j=1
𝛽(Φ, 𝜙′j ) ) , (13)

where the two dictionaries have the same number of atoms,M, with
memberships 𝜙 ∈ Φ and 𝜙′ ∈ Φ′. The function 𝛽 is the maximum
similarity of an atom 𝜙 to the atoms in dictionary Φ,

𝛽(Φ, 𝜙) = arccos𝜇(Φ, 𝜙), (14)

where 𝜇 is the mutual coherence, which is defined as follows [14]
(here, the function𝜇 should be a function of bothΦ and𝜙 according
to how it is used in [14]):

𝜇(Φ, 𝜙i) = max
∀𝜙j ∈ Φ
j ≠ i

||𝝓Ti 𝝓j||
∥ 𝝓i ∥2 ⋅ ∥ 𝝓j ∥2

. (15)

The dictionary distance is measured in degrees and conceptually is
a generalization of the conventional “cosine of angle” measure of
similarity. For example, when 𝛽(Φ,Φ′) = 0 the two dictionaries are
equal.
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Figure 1 Dictionary learning scheme for online condition monitoring.

The dictionary distance measure can be used to quantify the dis-
tance between one learned dictionary at two different points in
time. We refer to this measure as the adaptation rate (of the dictio-
nary) and define it as 𝛽(Φt, Φt−𝛿), where t is the current time and
𝛿 refers to the same dictionary at some point in the past. The idea
is that the adaptation rate can be used to quantify sudden abnor-
mal changes in the signal, for example, due to a fault in the system.
See also [21] where the rate of change of individual atoms after the
introduction of a fault is investigated. In principle, the dictionary
distance 𝛽(Φt, Φt−𝛿) could be normalized with the time step 𝛿 to
obtain a finite difference approximation of the “dictionary deriva-
tive” with respect to time.

3. METHODOLOGY

Firstly, we introduce the real-world bearing vibration data used
on this work and which we are making publicly available. After-
ward, we provide a description of the procedure followed during
our numerical experiments.

3.1. Data Source

We aim to study the viability of a dictionary learning approach to
condition monitoring using real-world data. As a result, we have no
control over the operational and environmental conditions, which
is in contrast to former studies based on data from controlled exper-
iments. The data originate from a wind farm located in northern

Sweden. The wind turbines are the same model and have inte-
grated condition monitoring systems that transmit data to a con-
dition monitoring database; from this database, we can access the
vibration data used in this study. Each wind turbine possesses a
three-stage gearbox, including two sequential planetary gear stages
followed by a helical gear stage. Each gearbox has four accelerom-
eters located near the different gear stages. Figure 2 includes a
schematic view of the gearbox and the locations of the accelerome-
ters.

Raw time-domain vibration signals from six turbines within the
same wind farm are considered in this study. All of the measure-
ment data corresponds to the axial direction of the accelerometer,
which is mounted on the housing of the output shaft bearing of
each turbine. The sampling rate is 12.8 kHz, and each signal seg-
ment is 1.28 seconds long (16384 samples). The signal segments
were recorded with an interval of approximately 12 hours over a
period of 46 consecutive months in the last decade. In this period
of time, five turbines remained healthy, which will henceforth be
referred to as Turbine 1, Turbine 2, Turbine 3, Turbine 4, and Tur-
bine 6. The other turbine, which we refer to as Turbine 5, had two
bearing failures in this period. The locations of the defective bear-
ings are highlighted in Figure 2. The descriptions of the failures are
as follows:

i. Inner raceway failure on a four-point ball bearing on the output
shaft. The output shaft bearing was replaced after 1.2 years in
operation.
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Figure 2 Schematic view of the gearbox in a wind turbine.
The components of each stage are shown, including the support
bearings. Data from one wind turbine with two bearing failures
are included in this study. The locations of the faulty bearings
are highlighted in the figure. The measurement axes of the
accelerometers are marked by arrows.

ii. Inner raceway failure on one of the four cylindrical roller bear-
ings supporting one of the planets in the first planetary gear.
The entire gearbox was replaced after 2 years in operation.
Figure 3 shows the result of this failure.

The dataset containing the raw time-domain vibration signals and
speed measurements from the six turbines is publicly available; see
Appendix for further information.

3.2. Outline of Numerical Experiments

In addition to investigating the bearing failures in Turbine 5
described above, we are interested in the similarities of the dictio-
naries learned fromdifferentwind turbines of the same type that are
located in the same geographical area. Can the dictionary learned
from one turbine be similar to the dictionary learned from a simi-
lar turbine that is subject to similar operational and environmental
conditions? Furthermore, is a dictionary learned from one healthy
turbine useful for monitoring of a similar turbine? To address these
questions, we analyze the vibration signals described in Section 3.1
using the dictionary learning method described in Section 2. We
process the data with our MATLAB/C++ implementations of MP
and local OMP [34] as well as Smith and Lewicki’s dictionary learn-
ing algorithm [18]. There are two main stages in the experimen-
tal protocol we used: (1) learning of a baseline dictionary for each
turbine with data from a period of nonfaulty operation (training
stage) and (2) updates of each turbine dictionary using the succes-
sive recorded signal segments (monitoring stage). For each turbine,
the baseline dictionary defines the first dictionary used in themon-
itoring stage.

3.2.1. Training stage

In the training stage, the aim is to learn a baseline dictionary
for each turbine that corresponds to the signal recorded under

healthy/nonfaulty operational conditions. We use the signal seg-
ments recorded in the time period comprising approximately the
period after the second year of operation of the turbines. Because
we selected the period of time after the replacement of the gear-
box in Turbine 5, this turbine also operated in a healthy condition
during that time period. We use the same training period for the
six turbines to ensure similar operational and environmental condi-
tions during training. Signal segments with a vibration RMS above
0.5 G are included in the training process, while segments with a
lower RMS are omitted from the analysis presented here. Figure 4
shows the RMS values of the signal segments versus the rotational
speed. Below anRMSof 0.5G, the turbines are sometimes unloaded
and the corresponding signal segments are noisier (possibly due
to the reduced load applied to the bearings). Thus, we introduce a
threshold on the RMS to exclude signal segments recorded when
the turbines/gearboxes are unloaded. Table 1 presents a summary of
the signal segments available and considered in the training stage.
Training is performedwith 5000 signal blocks (used column) with a
duration of one second (12800 samples). Each one-second block is
randomly selected from within the signal segments with a duration
of 1.28 seconds (16384 samples). The signal segments are randomly
selected from the time period comprising the third year of opera-
tions, where the total number of available segments is shown in the
column “available.” The considered column lists the number of seg-
ments after discarding segments with a vibration RMS below 0.5 G.
Each block is preprocessed to have zero mean and unit variance.
Both sparse coding algorithms are stopped at 90% sparsity, which
means that each block of 12800 samples is modeled with 1280 atom
instances. This means that the sparsity coefficient refers to the ratio
of nonzero instances to segment length. We use a learning step size
of 𝜂 = 10−6 for the dictionary update. A discussion on the effects
of hyperparameter selection, such as sparsity level and learning step
size is provided by Martin-del-Campo and Sandin [39].

Before the first signal block in the training stage is processed, the
dictionary is initialized with a pseudorandom dictionary of eight
atoms. Initially, the atoms are seventy elements long and are always
defined in the same way at the start of the learning process. Each
atom is generated from fifty elements sampled from a Gaussian dis-
tribution with zero mean that is zero-padded with ten samples at
each tail. The atoms can grow in length during the learning process,
and they are normalized after each update. Experiments with larger
dictionaries show that additional atoms are rarely selected and do
not adapt to the signal. The dictionary learned after the first 5000
iterations is henceforth referred to as a baseline dictionary, and it
is used as the initial dictionary in the monitoring stage. This proce-
dure is repeated for the six turbines at the beginning of their train-
ing stage using the same pseudorandom dictionary. Consequently,
a baseline dictionary is generated for each turbine.

3.2.2. Monitoring stage

The monitoring stage is similar for the six turbines and is represen-
tative of the online monitoring scheme described in Figure 1. The
learned dictionaries in the training stage, which are now known as
baseline dictionaries, are used as input into the sparse coding with
dictionary learning algorithm. In this second processing stage, we
consider all of the available signal segments during the 46 consec-
utive months of data. However, as in the first learning stage, we
use only segments with a vibration RMS value above 0.5 G. Table 2
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Figure 3 End result of the inner raceway failure of the bearing supporting the gearbox planets in Turbine 5 (left). Inner raceway of a healthy bearing
included for comparison (right).
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Figure 4 Scatter plot of vibration root mean square (RMS) of each recorded signal segment versus the speed in cycles-per-minute
(CPM) for the six turbines. The data shown correspond to the full recording period of 46 months.

Table 1 Number of “Available” and “Selected”
signal segments in the training stage. The processed
“Used” blocks are one second long and are sampled
at random offsets in the signal segments.

Case Available Considered Used

Turbine 1 1212 859 5000
Turbine 2 1203 810 5000
Turbine 3 1243 527 5000
Turbine 4 1248 768 5000
Turbine 5 1237 803 5000
Turbine 6 1220 642 5000

Table 2 Number of “Available” and “Selected”
signal segments in the monitoring stage.

Case Available Used

Turbine 1 2982 2078
Turbine 2 3005 2058
Turbine 3 2670 1135
Turbine 4 2667 1623
Turbine 5 2976 1907
Turbine 6 2953 1629

includes a summary of the number of used signal segments for
each turbine. The available column lists all of the available seg-
ments for each turbine, and the used column lists the number of
segments after discarding those with a vibration RMS below 0.5 G.
Each segment is preprocessed to have zero mean and unit variance.
As before, the MP and OMP algorithms are stopped at 90% spar-
sity, which means 1600 atom instances are used to model 16384
samples. The signal segments are analyzed in sequential order, as
would be the case in an online monitoring situation. Therefore, the
dictionary is said to be propagated over time, which means that it
is gradually adapting to the structure of the signal. A method for
edge effect reduction is not introduced in this stage because the
learned translation-invariant atoms are about two orders of mag-
nitude shorter than the processed signal window and the existing
12-hour gap between signal windows.

Two scenarios are considered in the monitoring stage. In the first
scenario, the dictionary is propagated with a step size of 𝜂 = 10−6.
In this scenario, we study the change in the propagated dictionary
over time with respect to the baseline dictionary. In the second sce-
nario, the dictionary remains constant by setting 𝜂 = 0. In this sce-
nario, we study the fidelity of the sparse representation model over
time using the fixed baseline dictionary. In the second scenario, we

are interested in studying the effect of bearing failures on the fidelity
of the sparse model.

The monitoring stage continues with the testing of two additional
cases. These cases focus on the importance of the baseline dictio-
nary by investigating the consequences of propagating a dictionary
that is not optimized to the signal of the machine. Signal segmen-
tation and preprocessing are performed in the same way as in the
previous two monitoring cases. In one case, we use a baseline dic-
tionary learned from each turbine to model and analyze the signals
from the remaining five turbines.We repeat this procedure with the
six turbines. In the other case, we use an arbitrary baseline dictio-
nary learned from vibration signals obtained from the ball bearing
data center at Case Western Reserve University (CWRU) [40]. In
the latter case, the signals are generated by a rotating machine con-
sisting of an electric motor, a torque transducer, a dynamometer,
and a ball bearing supporting the motor shaft. An accelerometer
located at the drive end of the motor is used to record the vibration
data with a sampling rate of 12 kHz. We alternate between several
recorded datasets from a healthy bearing to simulate a varying load
between 0 HP and 3 HP. Thus, the dictionary used in this case does
not encode information about the wind turbine signals and is not
expected to result in particularly accurate sparse codes of the vibra-
tion signals.

4. RESULTS

This section presents the results of the numerical experiments. First,
it provides an evaluation of the similarity of the learned dictionaries
for the different turbines. This evaluation is followed by a study of
the effects of selecting different baseline dictionaries. In this study,
we use vibration data from the bearing data center [40] at CWRU.
Next, we show how our proposed dictionary distancemetric is used
to identify anomalous assets and conclude by presenting the useful-
ness of this metric as a condition indicator.

4.1. Generalization Across Turbines

In the training stage, one baseline dictionary is learned for each
turbine under healthy conditions. Here, we aim to investigate how
similar the learned dictionaries are across different turbines. Thus,
we process the signal from the same accelerometer location in
the six turbines. Furthermore, we are interested in the differences
that result from the use of two different sparse coding algorithms,
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namely, MP and OMP. We use the same protocol and hyperparam-
eters during learning with MP and OMP. The resulting dictionar-
ies for three turbines using both algorithms are shown in Figure
5, and each dictionary includes eight updated atoms. The selected
dictionaries include the following known cases: a healthy condition
for Turbine 1, an electrical sensor failure for Turbine 2 and a gear-
box failure for Turbine 5. However, all of the baseline dictionaries
are trained during a period when the turbines are expected to be
healthy (meaning that no faults were detected during or after that
period of time). The dictionaries are obtained after learning from
5000 signal blocks, which correspond to approximately 83 minutes
of vibration data and 64 million samples. The updated atoms have
different length and (L2) normalized magnitudes, and all atoms
are illustrated in the same scale in the two panels. The atoms cor-
responding to Turbine 1 are ordered by the ascending center fre-
quency in both sparse coding algorithm cases. The center frequen-
cies are calculated as the mean value of the power spectral density
of each atom. The atoms of Turbine 2 and Turbine 3 are ordered
in the corresponding way by maximizing the cross-correlation with
each atom of Turbine 1. Table 3 summarizes the center frequencies
of the atoms.

Some of the atoms learned from the three turbines appear to be sim-
ilar, while a few are different, as shown in Figure 5. Furthermore,
there are similarities between the atoms learned with the MP and
OMP methods. For example, atoms one and two have sinusoidal
components of relatively low frequency in all three cases regard-
less of the sparse coding method used. Atoms three and four are
exchanged between the MP and OMP cases. Atom four with MP
and atom three with OMP have a visible sinusoidal component. In
contrast, atom three with MP has a smaller central frequency and
a more noise-like appearance compared to atom four with OMP.
Atoms five to eight are more noise-like and have higher center fre-
quencies in both cases. Atoms six and seven are the most different
across the three turbines when usingMP or OMP. However, though
they are different across the turbines, atoms six and seven are simi-
lar for MP and OMP, in particular, for Turbine 1 and Turbine 2 but
not for Turbine 5.

Note that though all of the dictionaries are trained using healthy
signal segments recorded under similar operational and environ-
mental conditions, the bearings are not identical. The bearings in

Figure 5 Atoms learned from vibration signals from the selected three turbines at the end of the training stage. Turbine 1 did not have any
reported failures. Turbine 2 had an electrical sensor fault at the beginning of its operation. Turbine 5 had the faults described in Section 3.1.
The atoms of Turbine 1 are ordered by the ascending center frequency. The atoms of Turbine 2 and Turbine 5 are ordered by maximizing the
cross-correlation with respect to the atoms of Turbine 1. All atoms are normalized.

Table 3 Center frequencies of atoms in the baseline dictionary for MP (OMP).

Center Frequency (kHz)
Case 1 2 3 4 5 6 7 8

Turbine 1 0.28 (0.26) 0.47 (0.47) 0.64 (0.64) 0.64 (0.70) 0.92 (0.90) 1.36 (1.02) 1.40 (1.36) 1.49 (1.49)
Turbine 2 0.50 (0.29) 0.61 (0.49) 0.86 (0.60) 0.88 (1.28) 0.99 (1.45) 1.36 (1.04) 1.52 (1.36) 1.97 (0.70)
Turbine 3 0.14 (0.36) 0.56 (0.56) 0.76 (0.64) 0.96 (0.76) 1.00 (1.01) 1.11 (1.11) 1.28 (1.23) 1.60 (1.60)
Turbine 4 0.28 (0.57) 0.80 (0.75) 0.92 (0.80) 0.99 (0.93) 1.01 (1.05) 1.28 (1.22) 1.28 (1.46) 1.45 (1.66)
Turbine 5 0.26 (0.32) 0.45 (0.45) 0.64 (0.61) 0.92 (1.80) 1.60 (0.96) 1.60 (1.86) 1.85 (1.69) 2.68 (1.56)
Turbine 6 0.57 (0.32) 0.96 (0.60) 0.96 (0.69) 1.02 (1.09) 1.23 (1.28) 1.32 (1.28) 1.60 (1.66) 2.40 (2.38)
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Turbine 5 are newer compared to the bearings in Turbine 1 and Tur-
bine 2 due to the preceding gearbox replacement. The bearings in
Turbine 1 and Turbine 2 have been in operation for more than two
years. Thus, these bearings have been degraded compared to the
new bearings in Turbine 5. Therefore, we cannot expect the updated
atoms to be identical for the three turbines illustrated here.

4.2. Effect of Baseline Dictionary Selection

Next, we investigate the effects of selecting different initial dictio-
naries and dictionary learning step lengths. In a field implemen-
tation of dictionary learning, the baseline dictionary needs to be
learned from the signal to be monitored to ensure that the model
will have high fidelity and effectively separate the signal from the
noise. The fidelity of the model in decibels is the ratio between the
sparse approximation and the signal residual:

dB = 20log10
( ̂sk
𝜖(t)

)
, (16)

where dB is the fidelity in decibels, ̂sk is the sparse approximation
of a signal segment and 𝜖(t) is the corresponding residual. Figure 6
shows the model fidelities for three different cases. In the first case,
which corresponds to 𝜂 = 10−6, the dictionary at t = 0 is the base-
line dictionary of each turbine; this dictionary is propagated over
time with a finite dictionary update step length. In the second case,
the dictionary update is set at 𝜂 = 0, and the baseline dictionary is
used as is without further modification. In the third case, which is

labeled averaged, the dictionary learned during the training stage of
each individual turbine is used to model the signals of the remain-
ing five turbines without further modification of the dictionary. In
this case, the average fidelity of the resulting five models is shown.
The fidelity is low-pass filtered with a first-order filter and a time
constant of 15 days (30 signal segments) to improve the clarity of
the plot. The 𝜂 = 10−6 and 𝜂 = 0 cases result in similar fidelities,
which indicates that the baseline dictionaries have converged and
are not updated significantly by further learning. When we use the
averaged baseline dictionary to model the signals from the other
five turbines, the fidelities are slightly lower than when we use the
correct baseline dictionaries. These results are observed indepen-
dently of the sparse coding algorithmweused.MPhas slightly lower
fidelity than OMP in the three cases considered. The large decrease
in the model fidelity for Turbine 5 at the beginning of year one cor-
responds to the period of time when the bearing was defective, and
the two minima correspond to the replacement of the output shaft
bearing and the gearbox. The lowmodel fidelity for Turbine 2 at the
beginning of year zero does not correspond to a previously known
fault; this result is likely due to an electrical issue after the installa-
tion of the sensor, cables, or monitoring unit.

Next, two additional cases are considered where the baseline dictio-
nary is learned from another machine. In these cases, the vibration
data were obtained from the ball-bearing data center [40] at CWRU.
The fidelity of these two cases using the MP and OMP algorithms
is shown in Figure 7. Each algorithm has two cases: 𝜂 = 10−6,
indicating when the baseline dictionary is propagated, and 𝜂 = 0,

Figure 6 Fidelity of the vibration signal model for the baseline dictionary is used as is, without further adaptation. The
averaged case corresponds to the fidelity we obtain when the baseline dictionary of each turbine is used without further
modification to model the vibration signals of the other five turbines.
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Figure 7 Fidelity of the signal models based on the initial dictionaries learned from the Case Western Reserve University (CWRU)
database for , the baseline dictionary learned from the CWRU database is used as is.

which occurs when the baseline dictionary is used as is and with-
out further adaptation. Under the two algorithms, the fidelity in the
𝜂 = 10−6 case increases with time and reaches a similar level as in
Figure 6 at the end of the time period, which is to be expected since
the atoms in the dictionary are adapted to the signal. The CWRU
baseline dictionaries cannot adequatelymodel thewind turbine sig-
nals, resulting in a lower fidelity in the case of 𝜂 = 0 compared to
the fidelities in Figure 6. However, note that the replacement of the
output shaft bearing and gearbox in Turbine 5 are still associated
with abnormally low values of the fidelity.

4.3. Distance to the Baseline Dictionary

The dictionary distance defined by Eq. (13) quantifies the differ-
ence between two dictionaries. This distance can be used to detect
a gradual change in a propagated dictionary by determining the
distance between the propagated dictionary and either the baseline
dictionary or a set of baseline dictionaries. Thus, faults that appear
after a long period of degradation could possibly be detected by
monitoring the distance between the propagated dictionary and the
baseline. In principle, the baseline dictionary is defined by atoms
learned in normal states of operation; see Section 3.2 for further
details.

Figure 8 shows the corresponding dictionary distances for the six
turbines using the two sparse coding algorithms. As described
above, the baseline dictionaries are trained with signal blocks
recorded when the turbines are operating in healthy conditions
(after the gearbox replacement in Turbine 5). The resulting curve
trends for both sparse coding algorithms describe similar behavior.
Turbine 1, Turbine 3, Turbine 4, and Turbine 6 show an increase
in the dictionary distance when the dictionary is propagated over
time. For Turbine 2, there is a relatively fast initial increase in the
distance, which after some time stabilizes and becomes similar to

the distance for Turbine 1. The rapid increase at the start is in agree-
ment with the results presented in Figure 6; this figure shows that
themodel fidelity is initially low, which ismost likely due to an elec-
trical fault in themeasurement systemconnected to the accelerome-
ter. In contrast, the dictionary distance for Turbine 5 increasesmore
quickly than the distances we determined for all of the other tur-
bines. The dictionary distance for Turbine 5 is approximately two
to three times higher than the distances for the other turbines at the
point in time when the output shaft bearing is replaced in the gear-
box. After the bearing replacement, the distance is approximately
stationary until it reaches another peak just before the gearbox is
replaced. After the replacement of the gearbox, the dictionary dis-
tance decreases and approaches the distance for Turbine 1, which
indicates the return to a normal condition. The dictionary distances
calculated with the OMP algorithm have a larger spread than the
distances calculated with the MP algorithm. While the dictionary
distance with the MP algorithm covers a 7-degree spread at the end
of the recording period, the dictionary distance with theOMP algo-
rithm covers a 10-degree spread.

The dictionary distance is an indicator that can be used for outlier
detection in a population of monitored wind turbines. However,
it can be challenging to interpret the dictionary distance value by
itself. An alternative is to estimate the median absolute deviation
(MAD) values for each turbine with respect to the entire turbine
population. MAD is a measure that enables to identify the vari-
ability of an individual sample with respect to the population. The
MAD values is estimated as follows:

MAD = median (|𝛽j − ̃𝛽|)⟩, (17)

where 𝛽 is the dictionary distance values of each turbine j as calcu-
lated for each time instance.
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Figure 8 Distance of a propagated dictionary with respect to the baseline dictionary versus time using the (a) matching pursuit (MP)
and (b) orhogonal matching pursuit (OMP) algorithms for the six turbines. Label A indicates the end of a time period with a possible
electrical fault in the data acquisition system of Turbine 2. In addition, label B indicates the time period when the output shaft bearing was
replaced in Turbine 5, and label C indicates the subsequent gearbox replacement.

Figure 9 Median absolute deviation (MAD) of the dictionary distance versus time based on the (a) matching pursuit (MP) and (b)
orthogonal matching pursuit (OMP) algorithms. Label A indicates the end of a time period with a possible electrical fault in the data
acquisition system of Turbine 2. In addition, label B indicates the time period when the output shaft bearing was replaced in Turbine
5, and label C indicates the subsequent gearbox replacement.

Figure 9 shows theMAD values of the dictionary distance shown in
Figure 8. The MAD highlights a significant deviation of Turbine 5
in a period that extends approximately eightmonths earlier than the
date when a fault report was filed for the turbine. The fault report
for Turbine 5 was filed 1.2 years after the start of the vibration data
recording. The trend of Turbine 3 deviates from the other turbines
at the end of the recorded time period for both sparse coding algo-
rithms. This deviation may be due to the geographical location of
Turbine 3, which is the farthest away from the other turbines. The
MAD values at times of interest when Turbine 2 had the electrical
fault (point A) and Turbine 5 had the HSS bearing replaced (point
B) and the gearbox replaced (point C) are shown in Table 4 for the
MP case and Table 5 for the OMP case. The largest values are high-
lighted in bold and correspond to the periods of interest.

Table 4 Median Absolute Deviation (MAD) values at times of interest
for Matching Pursuit (MP) algorithm. All values in degrees.

MPAlgorithm
Case A B C

Turbine 1 1.49 1.20 1.44
Turbine 2 3.62 0.70 0.46
Turbine 3 −1.70 −3.28 −3.67
Turbine 4 −1.69 −2.74 −2.53
Turbine 5 1.92 9.25 8.21
Turbine 6 −1.49 −0.70 −0.46

An adequate selection of the initial dictionary under an online
monitoring scheme is important to constrain the dictionary dis-
tance values and the rate of change. Using the baseline dictionaries
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Table 5 Median Absolute Deviation (MAD) values at times of interest
for orthogonal Matching Pursuit (OMP) algorithm. All values in degrees.

OMP Algorithm
Case A B C

Turbine 1 1.35 1.09 0.89
Turbine 2 4.50 0.80 1.16
Turbine 3 −1.45 −3.63 −4.68
Turbine 4 −1.36 −2.33 −2.26
Turbine 5 1.79 7.21 5.63
Turbine 6 −1.35 −0.80 −0.89

trained on signals from the turbines, the dictionary distance for
Turbine 5 is roughly twice as large as the corresponding distance of
the healthy turbines before the replacement of the faulty bearing.
The two sparse coding algorithms we investigated result in simi-
lar dictionary distance trends. Note that in these numerical exper-
iments, we use a sparse dataset with approximately 2.56 seconds of
recorded signal per day. In an online monitoring implementation
of thismethod, there would be significantlymore data per time unit
and a faster effective learning rate. Thus, to achieve online process-
ing of the step length parameter 𝜂, Eq. (12) should be lowered to
avoid short-term overfitting of the propagated dictionary to differ-
ent healthy operational states.

4.4. ROC Analysis

We perform a basic receiver operating characteristic (ROC) anal-
ysis to study the usefulness of the dictionary distance measure as
a condition indicator. ROC curves are commonly used to assess
the efficiency of condition indicators for diagnostics purposes [41],
and they are used more generally as a method for classifier evalua-
tion and selection. AROC curve illustrates the relationship between
the true positive rate (TPR) and the false-positive rate (FPR). Each
point on the curve corresponds to different parameters of the classi-
fier model, for example, a threshold value of a condition indicator.
This threshold value can be set up by an expert or an autonomous
agent based on the performance of a population of turbines. Thus,
the ROC curve describes the expected TPR and FPR for varying
threshold values.

Figure 10 shows the ROC curves for two indicators based on the
dictionary distance of the two sparse coding algorithms presented
in Figure 8. One of the ROC curves is based on the slope of the
dictionary distance versus time, and the other ROC curve is based
on the minimum difference between the distance for one turbine
compared to the distances for the other five turbines. The slope-
based indicator gives a balanced ratio of the number of true posi-
tives to false positives. Theminimumdifference indicator is slightly
skewed, which means that the indicator makes positive classifica-
tions with weak confidence since it classifies all positives correctly
for false-positive rates above approximately one half. The indica-
tors based on the MP algorithm cover a larger area than the results
obtained with the OMP algorithm. This behavior corresponds to
higher classification accuracy at a lower computational cost. Label B
in Figure 8 marks the time of the bearing replacement in Turbine 5,
while label A indicates the resolution of a suspected electrical issue
that was introduced during the installation of the sensor system in
Turbine 2. In the ROC analysis, we consider the data from Turbine

1, Turbine 3, Turbine 4, Turbine 6, and the data fromTurbine 2 after
time A as data that correspond to healthy states of operation. Fur-
thermore, the data from Turbine 5 after the gearbox replacement
at C are also considered as data that correspond to healthy states
of operation. The data from Turbine 5 before C and the data from
Turbine 2 before A are considered as data that correspond to faulty
states of operation. The classification results used in the calculation
of the TPR and FPR are defined by varying the threshold values of
the slope-based and minimum difference indicators.

5. DISCUSSION

In this section, we provide a discussion of the results described in
Section 4.We explain how adictionary learned under certain condi-
tions can be used by assets that experience similar conditions, which
we follow by describing the effects of baseline dictionary selection.
Afterward, we evaluate our proposal of using dictionary distance
as a condition indicator. Finally, we provide considerations on the
selection of the sparse coding algorithm.

5.1. Generalization of a Learned Dictionary

A working hypothesis that motivated this study is that condition
monitoring signals from healthy turbines of the same type that
operate in similar environments with nearby locations should be
similar to some degree. Thus, a baseline signal model learned from
one healthy turbine or a set of turbines could be useful for moni-
toring other turbines. We investigate this idea with vibration data
recorded from accelerometers located at the same position in six
wind turbines.We find that the dictionaries learned for the different
turbines have remarkable similarities, see Figure 5. Furthermore, a
dictionary learned from one turbine is successfully applied to the
other two turbines, see Figure 6. This application cannot be made
when one is using an arbitrary dictionary learned from another
bearing vibration dataset; see Figure 7. Thus, we conclude that a
dictionary-based sparse signal model learned from a sensor in one
turbine can be generalized to the corresponding signal in another
turbine, which permits further studies in this direction.

For example, using data from a larger population of turbines, it is
possible to investigate whether there are some signal components
or atoms that are common for all healthy turbines in a wind farm.
By learning dictionaries for a larger population of wind turbines,
one could also create a repository of dictionaries and dictionary
elements, which would enable comparisons of dictionaries learned
from similar turbines in different wind farms. In this way, the ini-
tial dictionary implemented in the condition monitoring systems
for new wind turbines could be selected based on the typical fea-
tures of healthy turbines. Similarly, dictionaries and atoms learned
from confirmed faulty turbines can be stored and potentially used
for the diagnosis of similar faults in other turbines of the same type.

5.2. Selection of a Baseline Dictionary

The baseline dictionary for each turbine considered here is learned
from vibration data recorded during a period when there is no
known fault. However, when taking a new turbine into service, it is
not certain that the turbinewill operate without problems or that no
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Figure 10 Receiver operating characteristic (ROC) curves based on the dictionary distances between the
baseline dictionaries and propagated dictionaries for the six turbines using the (a) matching pursuit (MP) and
(b) orthogonal matching pursuit (OMP) sparse coding algorithms. The curves result from a threshold on the
rate of change of the distance over time (blue) and the minimum difference of the dictionary distances in the
population (red).

faults were introduced during the installation of the wind turbine
components and condition monitoring system. Thus, if the base-
line dictionary is trained by starting from a randomized dictionary,
it may not be possible to identify a fault that is already present in
the turbine from its initial operation.

The results presented in Figure 6 show that the difference in fidelity
when using a baseline dictionary learned from the turbine itself, or
a baseline dictionary learned from a similar turbine is small. Thus,
an alternative to using a randomized initial dictionary is to fur-
ther investigate the possibility of using a baseline dictionary learned
from similar turbines that are known to operate in healthy condi-
tions. Using such a baseline dictionary, it could be possible to iden-
tify abnormal conditions that appear when a turbine is taken into
service.

5.3. Selection of the Condition Indicator

In general, a condition indicator is a quantitative measure of the
performance or operational condition of a machine, and a feature
is a measurable characteristic used when modeling a signal or set
of data. Conventional condition indicators, such as the RMS and
the energy within certain (kinematically determined) frequency
bands, are successfully used as features both in conventional and
machine learning approaches to condition monitoring. However,
this approach typically requires human expertise to select and cus-
tomize indicators for each particular application and machine type,
which is costly. Furthermore, faults with unexpected characteris-
tics can be difficult to detect with indicators engineered for partic-
ular purposes. These facts motivate investigations of unsupervised
learning approaches as in the present study, which can complement
and potentially replace manually defined condition indicators in
some applications.

For example, the absolute value or the rate of change of the dictio-
nary distance could be used as a condition indicator with a thresh-
old level defining the allowed drift away from a baseline dictionary.
However, these methods require further testing with data from a
larger population of wind turbines to determine the appropriate

threshold value(s) and the expected true- and false-positive rates.
Alternatively, dictionary distances can be used as scores in an unsu-
pervised anomaly detection or ranking algorithm. Thus, unsuper-
vised feature learning methods such as dictionary learning could
pave the way for the development of unsupervised anomaly detec-
tion systems.

5.4. Selection of Sparse Coding Algorithm

In this work, the sparse representations are generated with MP and
OMP, which are both greedy sparse coding algorithms. In both
cases, the same probabilistic gradient ascent algorithm is used for
dictionary learning. The OMP algorithm enforces the orthogonal-
ity of the terms in Eq. (1) by updating the weights of the previously
selected terms for each consecutive term added to the sparse signal
representation. This procedure results in higher computational cost
and fidelity (given one particular dictionary) compared to the MP
algorithm. However, when they are used in combination with dic-
tionary learning, the fidelities achieved with the two methods can
be comparable.

Figure 6 shows that the difference in fidelity obtained with the
two algorithms is negligible. A decrease in the fidelity of the sig-
nal model for Turbine 5 when the HSS bearing is replaced at the
beginning of the first year of operation is observed in both cases.
The update of the propagated dictionary depends on the selected
sparse coding algorithm, which consequently affects the calculated
dictionary distance. Figure 8 shows that the dictionary distance dis-
tribution is wider under normal operating conditions in the case of
the OMP algorithm compared to the MP algorithm. Considering
the higher computational cost of the OMP algorithm, these results
indicate that there is no evident benefit to using OMP for the cal-
culation of dictionary-learning-based condition indicators and that
MP-based indicators (for unknown reasons) may be beneficial for
anomaly detection.

The computational cost of the sparse coding algorithm is signifi-
cant, even if the implementations of the MP and OMP algorithms
used here have been optimized for efficiency. Thus, an interesting
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direction for future work is to investigate alternative methods for
unsupervised feature learning, such as learning of co-sparse anal-
ysis operators [42], where the inverse problem addressed here is
avoided.

6. CONCLUSION

This work focuses on the monitoring of rolling element bearings in
wind turbines using an unsupervised dictionary learning approach
and real-world wind turbine vibration data that have been made
publicly available. The results presented above demonstrate that
a condition indicator based on the dictionary distance metric is
useful for the monitoring of drivetrain gearbox bearings of wind
turbines and serves as a complement to currently used methods.
In the case of Turbine 5 considered above, it is not known when
the issue(s) leading to the bearing and gearbox replacements first
appeared. The motivation for the bearing replacement was a sud-
den increase in the enveloped signal from the HSS axial sensor
after approximately one year of operation. This replacement was
followed by a gearbox replacement approximately one year later.
The results shown in Figure 8 suggests that the abnormal behavior
of Turbine 5 could have been detected several months earlier using
dictionary learning. Earlier detection of a fault in the turbines repre-
sents an improvement in terms ofmaintenance planning and reduc-
ing the risk of costly failures. However, further tests are required
to understand the strengths and weaknesses of a dictionary learn-
ing approach in realistic large-scale monitoring environments. For
example, it is not understood whether the long-term drifts away
from the baseline dictionaries observed in Figure 8 are related to
mechanical wear of the turbines or the greedy approximation of
the NP-hard dictionary learning problem. Further testing requires
the acquisition and processing of condition monitoring data from
a larger population of turbines, including documented faults and
maintenance activities, which is the next step but is beyond the
scope of the project reported here.
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APPENDIX

The raw time-domain vibration signals and speed data from the six
wind turbines that are analyzed for the first time in this article are
hosted by the library of LTU and publicly available at the perma-
nent link http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-70730.
The sampling rate is 12.8 kHz, and the signal segments are 1.28
seconds long (16384 samples per segment). Signal segments are
recorded with an interval of approximately 12 hours over a period
of 46 consecutive months for each turbine. Over this time period,
bearing and gearbox faults appeared in one of the six turbines, as
described in Sections 3 and 4.
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