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ABSTRACT 

Known to that MPC (Model Predictive Control ) for  MPL ( Max Plus Linear System ) is a practical approach 

to design optimal input sequences for a specific class of discrete event systems. Discrete event systems (DES) 

are dynamical which evolve in time by the occurrence of events at possibly irregular time intervals. The 

development of control acquired control problem for supply chain management by developing a mathematical 

model for a multi-echelon system. A combination of model predictive control and economic model predictive 

control called Bi-objective Model Predictive Control. Adaptive Weighted Sum or called AWS method is used 

to design a bi-objective optimization problem by combining these two control and the method can effectively 

solve the bi-objective optimization problem. The AWS method could stabilize a system with more cost-

effective inputs when it is compared with model predictive control and show that the control can stabilize a 

wider range of initial state when it is compared to economic model predictive control. In this paper, we do 

development Bi-objective Model Predictive Control for Max Plus Linear system. Based MPC for MPL systems, 

we model Bi-objective model predictive control by introducing maximal additive algebraic theory to developing 

bi-objective predictive control an optimal strategy. Therefore the model predictive control based on the max-

plus theory has important theoretical and practical significance for systems with guaranteed stability, 

thoroughness, and robustness. 
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1. INTRODUCTION  

The idea of posing control problem as problem of 

constrained optimization is not new [1]. In fact, all the 

“classical theory of Optimal Control, as developed between, 

say, 1955 and 1970, was driven by problems of constrained 

optimization arising out of the needs of the aerospace 

industry, particularly by military needs in flight, and by the 

problems of launching, guiding and landing space vehicles. 

In some ways, this theory solved an extremely wide range 

of problems. Suppose that the “plant” being controlled has 

an input vector 𝑢 and a state vector 𝑥, and has nonlinear 

behavior governed by the vector differential equation  

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢), 

Also suppose that the control objective is to minimize a 

“cost function” (or “value function” ) which has the form  

𝑉(𝑥, 𝑢, 𝑡) = ∫ ℓ(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡 + 𝐹(𝑥(𝑇))
𝑇

0

 

Where ℓ(𝑥(𝑡), 𝑢(𝑡), 𝑡) is some function which is never 

negative, and that the control input is constrained to be in 

some set 𝑢(𝑡) ∈ 𝑈. Model predictive control (MPC) is a 

proven technology for the control of multivariable systems 

in the presence of input, output, and state constraints and is 

capable of tracking pre-scheduled reference signals. 

Usually MPC uses linear or nonlinear discrete-time models. 

Extended MPC to class of discrete systems that can be 

described by a model that is “linear” in the max-plus algebra 

[2]. The max-plus linear (MPL) system is state-space 

description for a certain class of discrete-event-systems that 

are linear in the max-plus algebra, MPC method for MPL 

systems has been proposed. 

(MPC) is a rolling horizon optimization control method 

with guaranteed stability properties. Boom and Schutter 

consider the stability of MPC for these (MPL) systems with 

guaranteed stability [3]. They show that with this end-point 

constraint the optimized cost function can be seen as a 

Lyapunov function for the system and can thus be used to 

prove stability. MPC is a popular controller design 

technique in the process industry. In previous research, Bi-

objective MPC application in a numerical simulation can be 
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used as a controller for supply chain management without 

delay. Various studies have discussed control theory for 

inventory management in the supply chain is an important 

research domain, although stability studies for predictive 

tracking control have been carried out, but many of these 

control applications do not take into account stability in the 

supply chain. Bi-objective predictive control model for 

inventory management in the supply chain, research 

conducted by Widowati [4]. The bi-objective predictive 

access model in supply chain management without delay. 

On the other hand, economic model predictive control is a 

control strategy that purely aims to minimize economic 

costs without considering the stability of the system during 

its performance. Adaptive Weighted Sum (AWS) method is 

used to design a biobjective optimization problem by 

combining these two control strategies and weighing each 

of the respective strategy based on a subjective perspective. 

The acquired control is then compared to model predictive 

control and economic model predictive control in a 

numerical simulation. Based on the results from the 

simulation, it can be seen that the control obtained through 

AWS method could stabilize a system with more cost-

effective inputs when it is compared with model predictive 

control. The results also show that the control can stabilize 

a wider range of initial state when it is compared to 

economic model predictive control. 

In this paper, we developing a bi-objective predictive 

control model for max-plus linear systems. In order to 

improve the robustness and stability of the model predictive 

control system, we combine with max-plus theory. The goal 

of design optimization is to seek the best design that 

minimize the objective function by changing design 

variables while satisfying design constraints. During design 

optimization, one often needs to consider several design 

criteria or objective function simultaneously. We do 

development Bi-objective MPC for MPL system. Based 

MPC for MPL systems, we model Bi-objective model 

predictive control by introducing maximal additive 

algebraic theory to developing bi-objective predictive 

control an optimal strategy. Therefore the model predictive 

control based on the max-plus theory has important 

theoretical and practical significance for systems with 

guaranteed stability, thoroughness, and robustness. 

2. METHODS  

The method used to developed Bi-objective Predictive 

Control for Max-Plus Linear system is approached by 

designing technique for the control systems, as follows. 

a. Known: 

1. Bi-objective Model Predictive Control  

2. Max-Plus Algebra and Max-Plus Linear 

system 

b. Identify MPC for MPL systems: 

1. Derive an output prediction equation using 

the control process model, 

2. Determine an optimal control sequence in the 

future based on the predictive equation, 

3. Apply the Receding Horizon algorithm. 

c. Develop Bi-objective Model Predictive Control 

for MPL system by using MPC for MPL system. 

2.1. Mathematical Modelling 

Model bi-objective predictive control design has been 

shown by several researchers ([5], [4]). The method used in 

combining the two functions of the control objective is the 

Adaptive Weighted Sum (AWS) method. The proposed 

using adaptive weighted sum method focuses on 

unexplored regions by using a priori weight selections and 

by specifying additional inequality constraints. It is 

demonstrated that the adaptive weighted sum method 

produces well-distributed solutions, finds pareto optimal 

solutions in non-convex regions, can be a potential liability 

of normal boundary intersection, and neglects non-pareto 

optimal solutions [6]. The bi-objective predictive control 

model consists of a function an economic objectives and 

tracking. In here, we only present the highlights of the bi-

objective predictive control model. Introducing a bi-

objective stage cost, which is an economic stage cost and a 

tracking stage cost. The economic cost for implementing 

input 𝑢 from state 𝑥 is given by ℓ𝐸(𝑥, 𝑢). The optimal 

steady-state problem for the economic cost is defined as: 

 

𝑚𝑖𝑛𝑥,𝑢ℓ𝐸(𝒙(𝑗), 𝒖(𝑗)) = 𝑞
𝑇𝒙(𝑗) + 𝑟𝑇𝒖(𝑗)   

(1)

 

  

 

s.t. 

𝑥 = 𝐴𝑥 + 𝐵𝑢 +
𝐵𝑑𝑑𝑠,
  

𝑥(𝑗) ∈ 𝕏 , 

𝑢(𝑗) ∈ 𝕌, 

 
where 𝑞𝑇 and 𝑟𝑇 are vectors which represent the effect of 

the current state and input to the economic cost of the 

system. While the tracking stage cost for implementing 

input 𝑢 from state 𝑥 is given by ℓ𝑇(𝑥, 𝑢; 𝑧𝑡), which modify 

the cost function in the terminal penalty formulation by 

adding a terminal penalty (penalize deviations) from a 

chosen steady-state 𝑧𝑡 = (𝑥𝑡 , 𝑢𝑡). The optimal steady-state 

problem for the tracking cost as follows: 

 

𝑚𝑖𝑛𝑥,𝑢ℓ𝑇(𝒙(𝑘), 𝒖(𝑘); 𝑧𝑡) = (𝒙(𝑘) − 𝒙𝑡)
𝑇𝑄(𝒙(𝑘) − 𝒙𝑡) + (𝒖(𝑘) − 𝒖𝑡)

𝑇𝑅(𝒖(𝑘) − 𝒖𝑡)  (2) 

s.t. 

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝑑𝑑𝑠,   
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𝑥(𝑘) ∈ 𝕏 , 

𝑢(𝑘) ∈ 𝕌, 

 
in which matrices 𝑄 and 𝑅 are positive semi-definite 

matrices which guides and maintain states and inputs to 

their respective steady-state. The parameter 𝜔 ∈ [0,1] is a 

relative weighting given to the economic costs and the 

tracking cost. Then acquired the bi-objective stage cost is of 

the form: 

 

 ℓ(𝑥, 𝑢) =
𝜔

𝑠𝐸
ℓ𝐸(𝑥, 𝑢) +

(1−𝜔)

𝑠𝑇
ℓ𝑇(𝑥, 𝑢; 𝑧𝑡)

 

(3) 

 
where ℓ𝐸(𝑥, 𝑢) and ℓ𝑇(𝑥, 𝑢; 𝑧𝑡) are two objective function 

to be mutually minimized, the scalling parameters are  𝑠𝐸  

and 𝑠𝑇 are obtained with consider the utopia and nadir 

points of the individual stage costs ℓ𝐸(𝑥, 𝑢) and 

ℓ𝑇(𝑥, 𝑢; 𝑧𝑡).     [6]. Denote 𝑧 = (𝑥, 𝑢), then solve  

𝑧𝑇 = (𝑥𝑇 , 𝑢𝑇) = arg𝑚𝑖𝑛𝑥(𝑗),𝑢(𝑗) ℓ𝑇(𝑥(𝑗), 𝑢(𝑗); 𝑧𝑡), 

𝑧𝐸 = (𝑥𝐸 , 𝑢𝐸) = arg𝑚𝑖𝑛𝑥(𝑗),𝑢(𝑗) ℓ𝐸(𝑥(𝑗), 𝑢(𝑗)), 

with  

𝐽𝑈𝑡𝑜𝑝𝑖𝑎 = 𝐽𝑈 = (ℓ𝐸(𝑧𝐸), ℓ𝑇(𝑧𝑇; 𝑧𝑡)), 

𝐽𝑁𝑎𝑑𝑖𝑟 = 𝐽𝑁 = (ℓ𝐸(𝑧𝑇), ℓ𝑇(𝑧𝐸; 𝑧𝑡)), 
 

therefore 

(𝑠𝐸 , 𝑠𝑇) = 𝐽𝑁 − 𝐽𝑈
= (ℓ𝐸(𝑧𝑇), ℓ𝑇(𝑧𝐸; 𝑧𝑡))

− (ℓ𝐸(𝑧𝐸), ℓ𝑇(𝑧𝑇; 𝑧𝑡)). 
 

Now the steady state problem can be written in detail as 

follows: 

 𝑚𝑖𝑛𝑥,𝑢
𝜔

𝑠𝐸
(𝑞𝑇𝑥 + 𝑟𝑇𝑢) +

(1−𝜔)

𝑠𝑇
((𝑥 − 𝑥𝑡)

𝑇𝑄(𝑥 − 𝑥𝑡) +

(𝑢 − 𝑢𝑡)
𝑇𝑅(𝑢 −

𝑢𝑡))
 

(4) 

with constraints  

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝑑𝑑𝑠, 
  

𝑥(𝑗) ∈ 𝕏, 

𝑢(𝑗) ∈ 𝕌. 

 
From the steady state problem can be obtained steady state 

(𝑥𝑠 , 𝑢𝑠; 𝑑) which represents the policy of the system. The 

following bi-objective predictive controls are designed with 

final constraints to ensure system stability. In model 

mathematics, the control of two optimization-based goals is 

formulated as. 

 

𝑚𝑖𝑛𝑢(0),𝑢(1),…,𝑢(𝑁−1)𝑉𝑁(𝑥0, 𝑢(0), 𝑢(1), … , 𝑢(𝑁 − 1)) 

 

(5) 

 
with constraints, 

 

𝑥(0) =
𝑥0,

  

𝑥(𝑗 + 1) = 𝐴𝑥(𝑗) + 𝐵𝑢(𝑗) + 𝐵𝑑𝑑𝑠 
,

  

𝑥(𝑗) ∈ 𝕏 , 

𝑢(𝑗) ∈ 𝕌,  

𝑥(𝑁) =
𝑥𝑠,
  

𝑗 ∈ {0, 1, 2, … , 𝑁 − 1} , 
 
with objective function  𝑉𝑁(𝑥0, 𝑢(0), 𝑢(1),… , 𝑢(𝑁 − 1)) is 

defined as the sum of the combined cost functions:   

 

𝑉𝑁(𝑥0, 𝑢(0), 𝑢(1), … , 𝑢(𝑁 − 1)) =

∑ (
𝜔

𝑠𝐸
ℓ𝐸(𝑥(𝑗), 𝑢(𝑗)) +

𝑁−1
𝑗=0

(1−𝜔)

𝑠𝑇
ℓ𝑇(𝑥(𝑗), 𝑢(𝑗); 𝑧𝑡)),

 

(6) 

 
with consider the following linear model  

 

𝑥(𝑗 + 1) = 𝐴𝑥(𝑗) + 𝐵𝑢(𝑗) + 𝐵𝑑𝑑𝑠, 
 

(7) 

 
in which 𝑥 ∈ ℝ𝑛 is the system state, 𝑢 ∈ ℝ𝑚 is the 

manipulated input, and 𝑑𝑠 ∈ ℝ
𝑑 is the disturbance to the 

system. Assumed that the system (𝐴, 𝐵) is stabilizable. The 

states and inputs are constrained as follows: 

𝑥(𝑗) ∈ 𝕏 , 

𝑢(𝑗) ∈ 𝕌. 

Theorem 1 [5]. (Lyapunov function with terminal 

constraint) 

Let the system (𝐴, 𝐵) be stabilizable. Let the constraint set 

𝕏 is convex and closed, there exists (𝑥𝑠 , 𝑢𝑠;  𝑑𝑠) is a unique 

solution and the multiplier  𝜆𝑠 is such that (𝑥𝑠 , 𝑢𝑠;  𝑑𝑠) 
uniquely solves, and the system 𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝑑𝑑𝑠 is 

strictly dissipative with respect to the supply rate 𝑠(𝑥, 𝑢) =
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ℓ(𝑥, 𝑢) − ℓ(𝑥𝑠 , 𝑢𝑠) and storage function 𝜆(𝑥) = 𝜆′𝑠𝑥 hold. 

Then the steady state solution of the close loop system 𝑥+ =
𝐴𝑥 + 𝐵𝑢 + 𝐵𝑑𝑑𝑠   is asymptotically stable with 𝜒𝑁 as the 

region of attraction. The Lyapunov function is  

 

𝑉̃(𝑥) ≔ 𝑉𝑁
0(𝑥) + 𝜆′𝑠[𝑥 − 𝑥𝑠] − 𝑁ℓ(𝑥𝑠 , 𝑢𝑠) , 

 

in which 𝑉𝑁
0(𝑥) is the optimal cost function of (5). 

 

2.2. Max-Plus Linear Systems 

 
Before, we proposed about Max-Plus Linear system. We 

will present about Max-Plus Algebra. The basic operations 

of the max-plus algebra are maximization and addition, 

which will be represented by ⊕ and ⊗, respectively: 

 

𝑥 ⊕ 𝑦 = max (𝑥, 𝑦) and 𝑥 ⊗ 𝑦 = 𝑥 + 𝑦 

 
For 𝑥, 𝑦 ∈ ℝ𝜀 ≝ ℝ∪ {−∞}. Define 𝜀 = −∞. The structure 

(ℝ𝜀,⊕,⊗) is called the max-plus algebra by Baccelli et al., 

1992 [7]. The operation ⊕ and ⊗ are called the max-plus-

algebraic addition and max-plus-algebraic multiplication, 

respectively. Since many properties and concepts from 

linear algebra can be translated to the max-plus algebra by 

replacing + by ⊕ and × by ⊗.  

The matrix  𝜀𝑚×𝑛is the 𝑚 × 𝑛 max-plus -algebraic zero 

matrix: ( 𝜀𝑚×𝑛)𝑖𝑗 = 𝜀 for all 𝑖, 𝑗; and 𝐸𝑛 is the 𝑛 × 𝑛 max-

plus-algebraic identity matrix: (𝐸𝑛)𝑖𝑖 = 0 for all 𝑖 and 

(𝐸𝑛)𝑖𝑖 = 𝜀 for all 𝑖, 𝑗 with 𝑖 ≠ 𝑗. If 𝐴, 𝐵 ∈ ℝ𝜀
𝑚×𝑛, 𝐶 ∈

ℝ𝜀
𝑛×𝑝 then  

(𝐴 ⊕ 𝐵)𝑖𝑗 = (𝑎𝑖𝑗 ⊕ 𝑏𝑖𝑗) = max (𝑎𝑖𝑗 , 𝑏𝑖𝑗), 

(𝐴 ⊗ 𝐶)𝑖𝑗 =⊕𝑘=1
𝑛 (𝑎𝑖𝑘 ⊗ 𝑐𝑘𝑗) = max

𝑘
(𝑎𝑖𝑘 + 𝑐𝑘𝑗)  

For all 𝑖, 𝑗. Note the analogy with the conventional 

definitions of matrix sum and product. The max-plus -

algebraic matrix power of  𝐴 ∈ ℝ𝜀
𝑛×𝑛 is defined as follows: 

𝐴⊗
0
= 𝐸𝑛 and 𝐴⊗

𝑘
= 𝐴⊗𝐴⊗

𝑘−1
 for 𝑘 = 1, 2, 3, … . 

The MPL system represents the behavior of the discrete-

event systems described by state-space equations that are 

similar to the ones in modern control theory. DES with only 

synchronization and no concurrency can be modeled by a 

max-plus-algebraic model of the following form Bacelli et 

al., 1992[7]: 

   

𝑥(𝑘 + 1) = 𝐴𝑘⊗ 𝑥(𝑘) ⊕ 𝐵𝑘 ⊗𝑢(𝑘)     (8) 

𝑦(𝑘) = 𝐶𝑘⊗𝑥(𝑘)                                    (9) 

 
The index 𝑘 is the event counter, which indicates the 

number of event occurance from initial state. 𝑥(𝑘) ∈
ℝ𝑛, 𝑢(𝑘) ∈ ℝ𝑚, dan 𝑦(𝑘) ∈ ℝ𝑙  are the state variables, 

control inputs, and controlled outputs, respectively. 

Moreover, 𝐴𝑘 ∈ ℝ𝜀
𝑛×𝑛, 𝐵𝑘 ∈ ℝ𝜀

𝑛×𝑚 dan 𝐶𝑘 ∈ ℝ𝜀
𝑙×𝑛, 

where 𝑚 is the number of inputs and 𝑙 the number of 

outputs. Note the analogy of the description (8),(9) with the 

state space model (8),(9) for plus time linear systems. an 

important difference with the description (8),(9) is that now 

the components of the input, the output and the state are 

event times, and that the counter 𝑘 in (8),(9) is an event 

counter (and event occurance instants are in general not 

equidistant), whereas in (8)(,9) 𝑘 increases at each clock 

cycle. A discrete event system that  can be modeled by 

(8),(9) will be called max-plus linear time invariant discrete 

event system or max-plus linear (MPL) system [2]. Note 

that for MPL systems, the sequences are non-decreasing 

functions. This because the MPL system input is time so it 

applies: 

𝑢(𝑘) ≤  𝑢(𝑘 + 1)     (10) 

 
For each 𝑘 ≥ 0. In construct design MPC for MPL systems 

without constraint, state (10) will using. Then, made 

changes coordinates for MPL systems (8)-(10). The largest 

eigenvalue matrices 𝐴𝑘 is  𝜆𝑚𝑎𝑥 finite, then based on 

theorem (), there is a matrices invertible 𝑃 ∈ ℝ𝜀
𝑛×𝑛 so 

matrices 𝐴̃ = 𝑃⊗
−1
⊗𝐴𝑘⊗𝑃 fulfilled [ 𝐴̃]𝑖𝑗 ≤ 𝜆𝑚𝑎𝑥 for 

each 𝑖, 𝑗 = 1,2,… , 𝑛.  

Based on the existence of the 𝑃 matrices, the change in 

coordinates for the MPL system (8)-(10) becomes:  

 

𝐴̃ = 𝑃⊗
−1
⊗𝐴𝑘⊗𝑃 ⟹ 𝐴𝑘 = 𝑃⊗ 𝐴̃ ⊗ 𝑃⊗

−1
 (11) 

𝑥̃(𝑘) = 𝑃⊗
−1
⊗ 𝑥(𝑘) ⟹ 𝑥(𝑘) = 𝑃 ⊗ 𝑥̃(𝑘) (12) 

𝐵̃ = 𝑃⊗
−1
⊗𝐵𝑘 ⟹ 𝐵𝑘 = 𝑃⊗ 𝐵̃  (13) 

𝐶̃ = 𝐶𝑘⊗𝑃 ⟹ 𝐶𝑘 = 𝐶̃ ⊗ 𝑃⊗
−1

 (14) 

𝑦̃(𝑘) = 𝑦(𝑘) (15) 

𝑢̃(𝑘) = 𝑢(𝑘) (16) 

 
then, substitution equations (11)-(16) to  (8),(9) was obtained: 

𝑃 ⊗ 𝑥̃(𝑘 + 1) = 𝑃 ⊗ 𝐴̃ ⊗ 𝑃⊗
−1
⊗𝑃⊗ 𝑥̃(𝑘) ⊕ 𝑃⊗ 𝐵̃ ⊗ 𝑢̃(𝑘)  

= 𝑃⊗ 𝐴̃⊗ 𝑥̃(𝑘) ⊕ 𝑃 ⊗ 𝐵̃ ⊗ 𝑢̃(𝑘)  = 𝑃⊗ (𝐴̃ ⊗ 𝑥̃(𝑘) ⊕ 𝐵̃ ⊗ 𝑢̃(𝑘) ) 
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(17) 

and 

𝑦̃(𝑘) = 𝐶̃ ⊗ 𝑃⊗
−1
⊗𝑃⊗ 𝑥̃(𝑘) 

= 𝐶̃ ⊗ 𝑥̃(𝑘) 
Next, in the equation (17) the two segments multiplied by 

𝑃⊗
−1

from the left are acquired  

 

𝑃⊗
−1
⊗𝑃⊗ 𝑥̃(𝑘 + 1)

= 𝑃⊗
−1
⊗𝑃⊗ (𝐴̃ ⊗ 𝑥̃(𝑘) ⊕ 𝐵̃

⊗ 𝑢̃(𝑘) ) 
𝑥̃(𝑘 + 1) = 𝐴̃ ⊗ 𝑥̃(𝑘) ⊕ 𝐵̃ ⊗ 𝑢̃(𝑘) 

 
thus acquired the system  

 

𝑥̃(𝑘 + 1) = 𝐴̃ ⊗ 𝑥̃(𝑘) ⊕ 𝐵̃ ⊗
𝑢̃(𝑘)
 

(18) 

𝑦̃(𝑘) = 𝐶̃ ⊗
𝑥̃(𝑘)
 

(19) 

 
The next step is to normalize the system (18)-(19) by 

subtracting the state vector 𝑥̃, input 𝑥̃, dan output 𝑦̃ with 

𝜌𝑘, 𝜌 vector with entries > 0, and substracting each matrix 

entry 𝐴̃ with  𝜌, as follows : 

 

𝑥(𝑘) = 𝑥̃(𝑘) − 𝜌𝑘, 
𝑢(𝑘) = 𝑢̃(𝑘) − 𝜌𝑘, 
𝑦(𝑘) = 𝑦̃(𝑘) − 𝜌𝑘, 

[𝐴]𝑖𝑗 = [ 𝐴̃]
𝑖𝑗
− 𝜌, untuk 𝑖, 𝑗 ∈ {1,2,3, … , 𝑛} 

𝐵 = 𝐵̃ 

𝐶 = 𝐶̃ 
then the normalization system is obtained 

 

𝑥(𝑘 + 1) = 𝐴𝑘⊗ 𝑥(𝑘) ⊕ 𝐵𝑘 ⊗
𝑢(𝑘)
 

(20) 

𝑦(𝑘) = 𝐶𝑘⊗
𝑥(𝑘)
 

(21) 

 
Remark 1.[2] For plus time linear systems the influence of 

noise is usually modeled by adding an extra noise term to 

the state and/oroutput equation. For MPL models the entries 

of the system matrix correspond to production times or 

transportation times. So, instead of modeling noise (i.e. 

variation in the processing times) by adding an extra max-

plus-algebraic term in (20) or (21), noise should rather be 

modeled as an additive term to these system matrices. 

However, this would not lead to a nice model structure. 

Therefore, we will use the max-plus linear model (20), (21) 

as an approximation of a discrete event system with 

uncertainty and/or modeling errors when we extend the 

MPC framework to MPL systems. this also motivates the 

use of a receding horizon strategy when we define MPC for 

MPL systems, since then we can regularly update our model 

of the system as new measurements become available.  

 

2.3. The Model Predictive Control (MPC) for 

MPL Systems 

 
The MPC design method can be applied to various kind of 

system models. Especially, in case of an application to the 

MPL systems, the derivation of an output. Prediction 

equation straightforwardly can be done because the linear 

property satisfy multiplication between a matrix and a 

vector over, the max-plus algebra. Therefore, this research 

focuses on the MPC method. In this section, we will 

introduce the MPC systems (Schutter, and van den Boom, 

2001) [2]. Lets start with the derivation the predictive 

equations by using repeatedly, the state variables at the 

future events counter 𝑘 + 1, …𝑘 + 𝑁 can be straightly 

calculated as follows. 

 

{
 
 

 
 

𝑥(𝑘 + 1) = 𝐴𝑘⊗ 𝑥(𝑘) ⊕ 𝐵𝑘 ⊗𝑢(𝑘 + 1)

𝑥(𝑘 + 2) = 𝐴𝑘+1⊗𝐴𝑘⊗𝑥(𝑘) ⊕ 𝐴𝑘+1⊗𝐵𝑘 ⊗𝑢(𝑘 + 1)⊕ 𝐵𝑘+1⊗𝑢(𝑘 + 2)
⋮

𝑥(𝑘 + 𝑁) = 𝐴𝑘+𝑁−1⊗…⊗𝐴𝑘⊗𝑥(𝑘) ⊕ 𝐴𝑘+𝑁−1⊗…⊗𝐴𝑘+1⊗𝐵𝑘
⊗𝑢(𝑘 + 1)⊕ 𝐴𝑘+𝑁−1⊗…⊗𝐴𝑘+2⊗𝐵𝑘+1
⊗𝑢(𝑘 + 2)⊕ …⊕ 𝐵𝑘+𝑁−1⊗𝑢(𝑘 + 𝑁)

 

 
In [2] too, we have shown that prediction of future values 

of 𝑦(𝑘) for the system (20)-(21) can be done by successive 

substitution, leading to the expression  

 

𝑦 ̃(𝑘) = 𝐶 ̃ ⊗ 𝑥(𝑘) ⊕ 𝐷̃ ⊗ 𝑢̃(𝑘) 
 

where 𝐶 ̃ and 𝐷̃ are given by  
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𝐶 ̃ =

[
 
 
 

𝐶 ⊗ 𝐴

𝐶 ⊗ 𝐴⊗
2

⋮

  𝐶 ⊗ 𝐴⊗
𝑁𝑝
]
 
 
 

 

 

𝐷̃ = [

𝐶 ⊗ 𝐵 𝜀 ⋯     𝜀
𝐶 ⊗ 𝐴⊗𝐵 𝐶 ⊗𝐵 ⋯     𝜀

⋮

𝐶 ⊗ 𝐴⊗
𝑁𝑝−1

⊗𝐵

⋮

𝐶 ⊗ 𝐴⊗
𝑁𝑝−2

⊗𝐵
  
⋱
⋯

⋮
𝐶 ⊗ 𝐵

] 

 

and 𝑢̃(𝑘), 𝑦 ̃(𝑘) are defined as 

𝑦 ̃(𝑘) = [

𝑦̂(𝑘 + 1)

𝑦̂(𝑘 + 2)
⋮

𝑦̂(𝑘 + 𝑁𝑝)

] , 𝑢̃(𝑘) = [

𝑢(𝑘)

𝑢(𝑘 + 1)
⋮

𝑢(𝑘 + 𝑁𝑝 − 1)

] 

 
The MPC formulation that will be carried out is the MPC 

formulation for the normalized MPL system. Where 𝑦̂(𝑘 +
𝑗) denotes the predictionof 𝑦(𝑘 + 𝑗) based on knowledge at 

event step 𝑘 and  𝑁𝑝 is the prediction horizon. The MPC 

problem for MPL systems is called the MPL-MPC problem 

is formulated as follows [2]: 

 

min
 𝑢(𝑘),𝑦 ̃(𝑘)

𝐽( 𝑢̃(𝑘), 𝑦 ̃(𝑘)) = min
 𝑢(𝑘),𝑦 ̃(𝑘)

𝐽𝑜𝑢𝑡( 𝑦 ̃(𝑘)) + 𝜆𝐽𝑖𝑛( 𝑢 ̃(𝑘)) (22) 

 

 

Subject to,  

 

𝑦 ̃(𝑘) = 𝐶 ̃ ⊗ 𝑥(𝑘) ⊕ 𝐷̃ ⊗ 𝑢̃(𝑘), (23) 

𝐸(𝑘)𝑢̃(𝑘) + 𝐹(𝑘)𝑦̃(𝑘) ≤ ℎ(𝑘),  (24) 

Δ𝑢(𝑘 + 𝑗) ≥ 0   for 𝑗 = 0,1, … , 𝑁𝑝 − 1, (25) 

Δ2𝑢(𝑘 + 𝑗) ≥ 0   for 𝑗 = 𝑁𝑐 , … , 𝑁𝑝 − 1, (26) 

 
where Δ𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1) and Δ2𝑢(𝑘) = Δ𝑢(𝑘) −
Δ𝑢(𝑘 − 1) = 𝑢(𝑘) − 2𝑢(𝑘 − 1) + 𝑢(𝑘 − 2), equation 

(24) reflects constraints on the input and output event 

separation times or maximum due dates for the output 

events, equation (25) guarantees a nondecreasing input 

signal and equation (26) is due to the control horizon 𝑁𝑐.  

Theorem 2 [2]. Let the mapping 𝑦 ̃ ⟶ 𝐹(𝑘)𝑦 ̃be a 

monotonically non-decreasing function of 𝑦 ̃. let (𝑢 ̃∗, 𝑦 ̃∗) 
be an optimal solution of the relaxed MPL-MPC problem. 

If we define 𝑦 ̃# = 𝐶 ̃ ⊗ 𝑥(𝑘)⊕ 𝐷̃ ⊗ 𝑢̃∗ then (𝑢 ̃∗, 𝑦 ̃#) is 

an optimal solution of the original MPL-MPC problem.  

So, known that the MPL-MPC problem can be recast as a 

convex problem. In the general case, the closed-loop system 

(consisting of the MPL process with the MPL-MPC 

controller) will not be an MPL system, but it will be 

pieceswise affine in the state 𝑥(𝑘) and reference 𝑟(𝑘). 
Stability means that all signals in this system should remain 

bounded. 

 

Definition 1[8]. A discrete event system is called stable 

if all its buffer levels remain bounded. 
Based on [3], The MPL-MPC problem is stable. The 

existence of a solution of the MPL-MPC problem at event 

step 𝑘 problem can be verified by solving the system, which 

describes the feasible set of the problem.  

3. RESULTS AND DISCUSSION  

 
As well as in design MPC for MPL systems, in design bi-

objective model predictive control for MPL system, we 

assume that 𝑥(𝑘), the state at event step 𝑘, can be measured 

or estimated using previous measurements. We can then use 

(20)-(21) to estimate the evolution of the output of the 

system for the input sequence 𝑢(𝑘),… , 𝑢(𝑘 + 𝑁𝑝 − 1). Has 

been explained in the previous section about bi-objective 

model predictive control, the steady state problem can be 

written in detail as follows : 

𝑚𝑖𝑛𝑢(0),𝑢(1),…,𝑢(𝑁−1)𝑉𝑁(𝑥0, 𝑢(0), 𝑢(1), … , 𝑢(𝑁 − 1); 𝑥0) 

 
with constraints  
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𝑥(0) = 𝑥0,  

𝑥(𝑘 + 1) = 𝐴𝑘⊗ 𝑥(𝑘) ⊕ 𝐵𝑘 ⊗ 𝑢(𝑘) , 
𝑥(𝑘) ∈ 𝕏,  

𝑢(𝑘) ∈ 𝕌,  

𝑥(𝑁) = 𝑥𝑠, 
𝑘 ∈ {0, 1, 2, … , 𝑁 − 1}, 
 
in which the cost function  

𝑉𝑁(𝑥0, 𝑢(0), 𝑢(1), … , 𝑢(𝑁 − 1); 𝑥0) = ∑ (
𝜔

𝑠𝐸
ℓ𝐸(𝑥(𝑘), 𝑢(𝑘)) +

(1−𝜔)

𝑠𝑇
ℓ𝑇(𝑥(𝑘), 𝑢(𝑘); 𝑧𝑡))

𝑁−1
𝑗=0 ,  

where the control horizon is denoted by 𝑁. 

We can get the prediction equation in a vector form expressed as, 

𝑦(𝑘) = 𝐶 ⊗ 𝑥(𝑘) ⊕ 𝐷 ⊗ 𝑢(𝑘) 
where  

𝑦(𝑘) = [

𝑦(𝑘)
𝑦(𝑘 + 1)

⋮
𝑦(𝑘 + 𝑁 − 1)

] , 𝑢(𝑘) = [

𝑢()
𝑢(𝑘 + 1)

⋮
𝑢(𝑘 + 𝑁 − 1)

],  

 

 

where 𝐶 and 𝐷 are given by  

𝐶 = [

𝐶𝑘+1𝐴𝑘
𝐶𝑘+2𝐴𝑘+1𝐴𝑘

⋮
𝐶𝑘+𝑁𝐴𝑘+𝑁−1…𝐴𝑘

] =

[
 
 
 
𝐶 ⊗ 𝐴

𝐶 ⊗ 𝐴⊗
2

⋮

  𝐶 ⊗ 𝐴⊗
𝑁
]
 
 
 
 

 

𝐷 = [

𝐶 ⊗ 𝐵 𝜀 ⋯     𝜀
𝐶 ⊗ 𝐴⊗ 𝐵 𝐶 ⊗ 𝐵 ⋯     𝜀

⋮

𝐶 ⊗ 𝐴⊗
𝑁−1

⊗𝐵

⋮

𝐶 ⊗ 𝐴⊗
𝑁−2

⊗𝐵
  
⋱
⋯

⋮
𝐶 ⊗ 𝐵

] 

 
The next, we will derive an optimal input using the output 

prediction equation. Now let the desired reference signals 

be given as 

𝑅(𝑘 + 1) = [

𝑟(𝑘 + 1)
𝑟(𝑘 + 2)

⋮
𝑟(𝑘 + 𝑁)

], 𝑟(𝑘 + 𝑖) = [

𝑟1(𝑘 + 𝑖)

𝑟2(𝑘 + 𝑖)
⋮

𝑟𝑞(𝑘 + 𝑖)

] 

then, it can be considered that the desired control inputs 

𝑈(𝑘 + 1) for the given reference signals is the solution of 

the following equation. 

𝑅(𝑘 + 1) = 𝐶𝑥(𝑘) ⊕ Du(k + 1) 
 
Theory in the max-plus algebra, the solution by solving the 

transformed linear equation given as 

 

Du(𝑘 + 1) = 𝑅(𝑘 + 1)⊕ Cx(k) 
This equation has the form a linear equation in the max-plus 

algebra. It implies that the desired input using 𝑅(𝑘 + 1) =
𝐶𝑥(𝑘)⊕ Du(k + 1) can be obtained by solving the linear 

equation. The solution from equation Du(𝑘 + 1) = 𝑅(𝑘 +
1)⊕ Cx(k) is expressed by utilizing the greatest 

subsolution method as follows: 

𝑢(𝑘 + 1) = D𝑇 ⊙ {𝑅(𝑘 + 1) ⊕ 𝐶x(k)} 
The input to the system are determined by utilizing the 

Receding Horizon method. Namely, the first element of 

𝑢(𝑘 + 1), in equation  𝑢(𝑘 + 1) = 𝐷𝑇⊙ {𝑅(𝑘 + 1) ⊕
Cx(k)}  is only applied to the controlled system as shown in 

the following way. 

 

𝑢(𝑘 + 1) = [𝑒𝑝, 𝜖𝑝𝑝, 𝜖𝑝𝑝, … , 𝜖𝑝𝑝]𝑢(𝑘) 

 
The input after the (𝑘 + 1)-th step are determined by 

equation  

𝑢(𝑘 + 1) = [𝑒𝑝, 𝜖𝑝𝑝, 𝜖𝑝𝑝, … , 𝜖𝑝𝑝]𝑢(𝑘 + 1) as the event 

counter increases. Thus, a feedback control against changes 

of the internal state can be realized. 
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4. CONCLUSION  

The main contribution of this paper is the research about bi-

objective model predictive control with develop model bi-

objective MPC for MPL systems, where is introduced 

maximal additive algebraic theory to developing bi-

objective predictive control an optimal strategies. In design 

bi-objective model predictive control for MPL system, we 

acquire the explicit form of bi-objective model predictive 

control for MPL systems. Based on systems , we can solve 

the optimization problem to achieve optimal result with 

controls consider bi-objective function. Furthermore, bi-

objective model predictive control to stabilize the MPL 

systems.  
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