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ABSTRACT

Type 2 diabetes mellitus (T2DM) has been identified as one of the most challenging chronic diseases to manage. In recent years,

Received 06 Mar 2020 the incidence of T2DM has increased, which has seriously endangered people’s health and life quality. Glycosylated hemoglobin
Accepted 07 Sep 2020 (HbAIc) is the gold standard clinical indicator of the progression of T2DM. An accurate prediction of HbAlc levels not only

helps medical workers improve the accuracy of clinical decision-making but also helps patients to better understand the clinical
Keywords progression of T2DM and conduct self-management to achieve the goal of controlling the progression of T2DM. Therefore, we
Network introduced the long short-term memory (LSTM) neural network to predict patients’ HbAlc levels using time sequential data
Machine learning from electronic medical records (EMRs). We added the self-attention mechanism based on the traditional LSTM to capture the
T2DM

long-term interdependence of feature elements and which ensure that the memory was more profound and effective, and used
the gradient search technology to minimize the mean square error of the predicted value of the network and the real value.
LSTM with the self-attention mechanism performed better than the traditional deep learning sequence prediction method. Our
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Self-attention mechanism

1. INTRODUCTION

Diabetes is a prevalent metabolic disease that reduces life
expectancy. The prevalence of diabetes is projected to increase from
4% in 1995 to 4.5% in 2035, and by 2045, the number of people suf-
fering from diabetes is estimated to reach 629 million worldwide,
according to the World Health Organization (WHO) [1,2]. Type 2
diabetes mellitus (T2DM), which accounts for more than 90% of
diabetes cases, is one of the four priority noncommunicable dis-
eases identified by the WHO [3]. The global prevalence of T2DM is
rapidly increasing due to the aging of the population, urbanization,
and changes associated with lifestyle [4]. The significant increase in
the prevalence of T2DM has imposed high costs on the individual’s
health and substantial challenges to national healthcare systems.

T2DM is mainly caused by insulin resistance (insulin secretion is
high but the utilization rate is low) and insufficient insulin secre-
tion, which will lead to increased levels of glycosylated hemoglobin
(HbA1c). A high HbAlc level not only leads to the deterioration
of T2DM but also leads to many fatal health complications, such as
kidney failure, blindness, heart disease, etc. [2]. HbAlc is the most
valuable index to judge the state of blood sugar control and the
progression of T2DM. The detection of HbAlc is simple and easy,
and the results are stable and are not affected by meal times and
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research provides a good reference for the application of deep learning in the field of medical health management.
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short-term lifestyle changes. Therefore, in the actual clinical
decision-making process, medical workers often use HbAlc as the
key criterion for assessing the clinical progression of T2DM. They
closely monitor the level of HbAlc in patients with T2DM and
adjust the treatment plan accordingly to provide the appropriate
clinical intervention that will stabilize its levels near the optimal
value. In addition, in 2009, the International Expert Committee rec-
ommended the use of HbAlc to diagnose T2DM and prediabetes
[2]. In 2010, the American Diabetes Association (ADA) endorsed
the recommendations of the Expert Committee on the diagnosis of
T2DM and recommended HbAlc as the preferred method [5-7].
In 2011, the WHO approved HbA1lc as the gold standard for the
diagnosis of T2DM [5,6]. In summary, maintaining HbA1lc levels is
very important for reducing the risk of T2DM and clinical decision-
making.

Therefore, many researchers have extensively analyzed HbA1lc. For
example, Chemlal ef al. used patients’ previous HbAlc levels and
physical activity as input variables for the risk prediction model
for T2DM [8]. Based on this prediction model, Chemlal et al. also
implemented a mobile phone application, which predicts and pro-
vides feedback on HbAlc levels in patients with T2DM [9]. Torre-
grosa et al. developed the 3 point-of-care HbAlc analyzer devices
for use in physicians offices to provide immediate results and
reduce inconvenience to the patients [10]. Georga et al. designed
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a diabetes monitoring and management system through which
patients record details about their daily lives, and obtain HbAlclev-
els and various alarms according to these records [11]. However,
most of these studies have focused on the accuracy of HbAlc moni-
toring or explored the relationship among glycosylated hemoglobin
levels and T2DM and its complications. Few studies have examined
the future prediction of HbAlc levels and the role of predicted val-
ues in the self-management of patients with T2DM. In addition,
the results of these studies remain unclear. Therefore, a challenging
research issue is to predict the development of trends in HbAlc lev-
els. The HbA1c levels of patients with T2DM changes with time. In
practice, HbAlc is regularly checked every three months in patients
with T2DM to reflect their blood glucose control in the past 8-12
weeks. This is obviously a typical time sequential prediction prob-
lem. In the current deep learning methods of time sequential pre-
diction, the long short-term memory (LSTM) neural network has
been proved to have better performance (described in the literature
review), so this paper uses LSTM to predict the trend of HbAlc
level. In addition, although LSTM has the ability to capture long-
term information, the single use of LSTM to capture long-term
information is not effective. Because the gap between HbAlc data
in patients with T2DM is long. Here, this paper introduces self-
attention (SA) mechanism to enhance the ability of LSTM to cap-
ture long-term information, so as to more accurately apply it to the
prediction of HbA1c data. In the present study, we aim to accurately
predict the future HbA1c levels based only on previous HbAlc lev-
els recorded for patients to ensure that if patients will be able to
receive data about a future HbA1c level in advance and only rely on
a simple indicator, namely HbA1lc records, they will be able to sim-
ply and easily manage their T2DM.

The structure of this article is described below. In Section 2, we
briefly review the common models that have been applied to predict
sequential events. In Section 3, we clarify data acquisition and pro-
cessing methods. In Section 4, we provide detailed descriptions of
the principles and frameworks of the long short-term memory with
self-attention mechanism (SA-LSTM) model. Section 5 describes
the experimental process and analyzes the results, Section 6 dis-
cusses the experimental results, and Section 7 contains the
conclusions.

2. LITERRATURE REVIEW

The future development of T2DM mainly depends on the patients’
conditions and interventions received over a long period, and the
prediction of T2DM based on the HbAlc level is a sequential pre-
dictive event. Additionally, the data of HbA1c levels obtained from
EMR used in this paper are time sequential and have the charac-
teristics of continuous and irregular intervals. Therefore, we should
use time sequential methods to construct the prediction model,
which is consistent with the dynamic development of T2DM. The
existing time sequential prediction models in the field of medical
health management are described below.

Many researchers have used time discretization data to construct
time sequential prediction models, among which the classical mod-
els are continuous-time Markov chain models and time Bayesian
networks. Bueno et al. used hidden Markov models that are able
to cope with uncertainty and sequential phenomena to propose a
probabilistic framework for predicting disease dynamics guided by
latent states [12]. Nazari et al. suggested that the implementation of
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a Markov model with a continuous-time process would yield bet-
ter results for modeling diabetes. By considering the time intervals
between the changes in the disease states, the model would pro-
vide a more comprehensive perspective of the processes involved
in the disease [13]. However, the time interval of each admission
is irregular, leading to the irregular intervals of recorded data. In
addition, the information recorded at each admission includes con-
tinuous data, such as biochemical parameters, discrete variables,
and medication data. Continuous-time Markov chain models are
often unable to adequately address these complex data. Therefore,
Bueno et al. used a dynamic Bayesian network (DBN) model to cap-
ture changes in the patient status distribution and explore poten-
tial pathophysiological changes over time [14]. Liu et al. noted that
typical time Bayesian networks are divided into dynamic Bayesian
networks with an assumption of discrete time and continuous-time
Bayesian networks with an assumption of continuous time when
studying disease processes and compared the advantages of the
two networks in different data distributions [15]. Although this
approach is advantageous for analyzing complex medical data, its
power has yet to be confirmed, and it further assumes that discrete
states are inefficient [3,16].

As new application of deep learning methods in the medical health
management field are becoming increasingly successful, particu-
larly in medical image and sound data, deep learning methods
have attracted increasing attention, among which LSTM is the most
advanced method [17,18]. Reddy and Delen used a recurrent neu-
ral network (RNN)-LSTM method to predict hospital readmis-
sions for patients with lupus [19]. Tsiouris et al. introduced LSTM
networks to predict epileptic seizures based on EEG signals and
verified that the proposed LSTM-based methodology delivers a sig-
nificant increase in seizure prediction performance compared to
both traditional machine learning techniques and convolutional
neural networks [20]. Swapna et al. employed deep learning net-
works with a convolutional neural network—LSTM to automati-
cally detect the abnormality of heart rate variability signals [17].
Most of these studies used LSTM to generate relevant predictions
with time sequential EMR data, which are critical for understand-
ing and slowing disease progression. LSTM has a strong adaptabil-
ity in time sequential data analysis and performs better in sequence
learning than other traditional predicting methods, such as RNNs,
support vector machines, hidden Markov models, etc.

However, for long-term interdependence, LSTM must incorporate
several time steps of information accumulation to link the data. A
longer time results in a lower the effectiveness of capturing infor-
mation is [21]. Therefore, we introduce the SA mechanism, an effi-
cient deep learning method, to address the shortcomings of LSTM.
The SA mechanism ensures that the memory of LSTM is more pro-
found and effective by adequately capturing long-term information
interdependence to improve the accuracy of the prediction. In fact,
the SA mechanism was first applied in image processing field. With
the continuous development of the SA mechanism, it has become
a research hotspot in neural networks and has been used in com-
bination with other deep learning methods in different fields and
has shown good performance. Wu et al. integrated the SA mecha-
nism into a convolutional neural network to improve image fidelity
for accelerated magnetic resonance image acquisition [22]. Vudda-
giri et al. constructed deep neural networks with attention archi-
tectures (DNN-WA) to develop automatic language identification
systems, and the proposed model performed better in terms of an
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equal error rate [23]. Cinar ef al. extended the attention mechanism
into RNNss for time sequential forecasting with missing values [24].
However, the SA mechanism is rarely used in the medical health
management field or in combination with LSTM. The SA mech-
anism better solves the problem of long-term interdependence of
LSTM in theory. The integration of LSTM and the SA mechanism
in the medical health management field requires further study.

In summary, we construct the SA-LSTM model to predict patients’
HbA c levels using time sequential data in this paper. We compare
this improved model with the traditional LSTM and random forest
(RF) models to study the effectiveness of the integrated SA-LSTM
model in time sequential predictions.

3. DATA PREPROCESSING

3.1. Data Source

We obtained 6009 records from the electronic medical records
(EMRs) provided by The Anhui Provincial Hospital of Tradi-
tional Chinese Medicine, and 3885 effective patient records were
retrieved. These EMRs are digital versions of patients” health infor-
mation documented from 2012 to 2018, which store basic personal
information (age, sex, marital status, etc.), laboratory test results
(glycosylated hemoglobin, fasting blood sugar, fasting C-peptide,
etc.), diagnostic information (admission time, discharge time, ICD-
10, etc.), and drug information (drug name, dosage, route of drugs,
etc.). Every patient has a complete EMR each time he or she is hos-
pitalized.

3.2. Data Processing

Because patients stay in hospital for a long time and medical work-
ers closely monitor patients” glycosylated hemoglobin levels during
hospitalization, every patient in the hospital has more than one gly-
cosylated hemoglobin value in the EMR. We screened patients who
had been hospitalized five or more times, because fewer hospitaliza-
tions do not reflect the trend of glycosylated hemoglobin levels and
are not meaningful for predictions and may even reduce the accu-
racy of prediction. Then, we selected the glycosylated hemoglobin
values and the time of each test during each patient’s hospitaliza-
tion from each complete EMR. The time of hospitalization for each
patient varied according to the severity of T2DM, but was usu-
ally approximately 14.56 days. In addition, the intervals between
hospitalizations were irregular, and thus we used sequential data
with irregular intervals. The basic statistics of the effective data
are shown in Table 1. We sequentially arranged the data according
to the time of each patient’s detection of glycosylated hemoglobin
level. Each glycosylated hemoglobin value is reported as a percent-
age. Detailed data structures are shown in Table A1 of the Appendix.

Table 1 The basic statistics of data.

ITEM Statistical Results

Total number of patients 3885
Average number of HbAlc records per hospitalization 23

Average duration per hospitalization 14.56 days
Average interval between hospitalizations 184.52 days
Max HbAlc level 16.8%

Min HbAlc level 4.1%
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4. MODEL
4.1. Self-ASA Mechanism

The attention mechanism was first proposed in the field of visual
images. In recent years, the attention mechanism has been widely
used in natural language processing based on deep learning meth-
ods and achieved good results. Its core idea is to draw lessons from
the fact that the human brain will focus on a particular place at a
particular time and allocate less attention to unimportant informa-
tion. The SA mechanism is a special variant of the attention mech-
anism. More specifically, the attention mechanism occurs between
an encoder and decoder, or between input and output information.
The SA mechanism occurs within the information sequence and
captures the connections between the distant information, which is
also called internal attention.

The principle of the SA mechanism is understood from the perspec-
tive of key value query. As shown in Figure 1, the key value query
has three basic elements: Query, Key, and Value. Supposing we have
n key vectors K = [ky,...,. k] € R™K each one representing as a
vector of dimensionality K. For a given query vector Q € RX, the
system finds the same key and returns the corresponding values
V = [v1, .., v,] € R™V. If the system cannot find the same key, the
similarity w of query and each existing key is calculated separately.
Notably, w is assigned to all values as a weight, and their weighted
sum is returned. Corresponding to the sequential data, the output
sequence is the Query, the input sequence is the Key, w represents
the similarity of the two, and the Value is set to 1.

The computational steps of the SA mechanism are described below.

i. Calculate the similarity of each Query and Key to obtain §;
(weight coefficients for each Key corresponding to the Value).
The commonly used calculation methods are the point prod-
uct method (formula 1), cosine similarity method (formula 2),
and neural network (MLP) evaluation method (formula 3).

Si(QK)=Q K; (1)
Q-K;

S (QK) = —>i 2

N TR @

ii. By introducing a similar softmax function to normalize the
weights, the weights of important elements become more
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Figure 1 The principle diagram of the self-attention
mechanism.
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prominent. The calculation is shown in formula 4.

a; = Softmax (S;) = ;Xp& (4)

D, exp(S)

j=1

iii. The final attention value is obtained by the weighted summa-
tion of g; and the corresponding value, and the calculation is
shown in formula 5.

N
AQ,9 =4V (5)
i=1

4.2. Long Short-Term Memory

LSTM is a variant of the RNNs proposed by Hochreiter and Schmid-
huber in 1997 [25]. LSTM is suitable for learning from experience
and predicting time sequential problems, which is also a differ-
ence from other neural network models. The key feature of LSTM
to solve time sequential problems is the cell state. LSTM adds and
deletes information from the cell state. We must use an informa-
tion gate, namely, the forgetting gate, input gate and output gate,
to achieve this goal. LSTM forgets, retains, and outputs historical
information through gate selectivity [26]. The specific structure of
LSTM is shown in Figure 2.

In Figure 2, h denotes the output, x denotes the input, tanh
denotes the hyperbolic tangent function, o denotes the sig-
moid function, and A denotes a hidden layer node. As
shown in the figure, the gates in LSTM are controlled or
activated by a sigmoid function. The output value of the
sigmoid function ranges from 0 to 1, which determines how much
information is passed through the gate. If the sigmoid function
output is 0, the information is not transmitted. If the output is 1, all
information is transmitted.

The information processing steps of LSTM are described below.
i. A decision is made about which historical information must

flow into the cell through the sigmoid network layer of the for-
getting gate. It is expressed using the following formula:

fi=o (Wf- concat (h,_, x;) + bf) (6)

where Wy denotes the weight matrix of forgetting gate, by
denotes the bias term, h,_; denotes the output value of the
previous period, and x, denotes the input value of the current

period.
*
) P ¢ Tadh r
A I A

e o o

Figure 2 The specific structure of long short-term memory
(LSTM).

ii. The new information that must be updated through the input
gate is determined. A sigmoid network layer is used to deter-
mine the weight of the information that must be updated and a
tanh layer is used to calculate the alternative content for updat-
ing the current cell. It is expressed using the following formu-
las:

C; = tanh (W, - concat (h,_1, x;) + bc) 7)

iy = o (W, - concat (h,_y, %) + b;) (®)

where W, denotes the weight matrix, b denotes the bias term,
W; denotes the weight matrix of the input gate, and b; denotes
the bias term.

iii. =~ The cell state is updated by multiplying the output value of the
forgetting gate by the old cell state C;_; and adding the product
of i, and C}" to obtain the new cell state using the following
formula:

C =ft -G+ CtN 9)

iv.  The information that flows into the next cell from the current
cell through the output gate is determined. Similarly, a sig-
moid network layer is used to calculate the weight of the out-
put information and then a tanh layer is used to process the
information after the current cell is updated. The final output
of the current cell is obtained by multiplying the two using the
following formula:

o, = 0 (W, - concat (h,_1,x,) + b,) (10)

h; = o, - tanh (C,) (11)

where W, denotes the weight matrix of the input gate and b,
denotes the bias term.

4.3. Integrated SA-LSTM Model

Based on the introduction to LSTM provided above, it has a good
memory of previous information and is a very suitable method for
time sequential prediction research. However, as mentioned above,
LSTM has a long-term interdependence problem, namely, LSTM
calculates hidden states and outputs in a stepwise manner for input
sequences, but is unable to easily capture the connections between
long-term distant data. It may require more time steps to react.
For patients with T2DM, the HbA1c level measured in the hospi-
tal undergoes dynamic changes over time. These sequential data are
limited and intrinsically correlated, but not an isolated set of points.
Therefore, the prediction results obtained using LSTM alone may
not be ideal. In this paper, we introduced the SA mechanism into
the traditional LSTM method to improve the accuracy and applica-
bility of the prediction. The SA mechanism focuses on sequential
information at different times and fully adopts all the contents in
front of the sequence to better solve the problem of long-term inter-
dependence [27]. The introduction of the SA mechanism enables
the model to store the important intermediate information of the
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current moment for a subsequent time, which better expands the
expressive ability of the neural network and enhances the long-
distance interdependence effect.

As shown in Figure 3, the integrated SA-LSTM model consists of
four modules: input layer, LSTM layer, SA mechanism layer, and
output layer.

i. Input layer: Introduce glycosylated hemoglobin time sequen-
tial data from patients with T2DM. The input layer requires
three dimensions, namely, sample capacity (batch size), time
series (time step), data content (input data). Combined with
this experiment, the sample size is the total number of patients
with T2DM. Each patient enters the input layer as a sam-
ple. Each patient contains a number of sequential glycosylated
hemoglobin values to form a time series. The specific glycosy-
lated hemoglobin values in each time series are the data con-
tent [26]. See Table A1 of the Appendix for specific sample
input values.

ii. LSTM layer: There are two LSTM layers. The first LSTM layer
includes 35 memory cells and the second LSTM layer, includes
30 memory cells. We introduce Dropout, which is a way to
overcome network over-fitting, and adjust the learning ability
of the neural network model and learn more robust features
adaptively. The dropout rates are set to 0.5.

iii. SA mechanism layer: The SA layer uses a multiple linear
regression analysis to sense the effect of input data on the pre-
dicted value and calculates the weighted value of each feature
that affects the predicted value. The SA mechanism achieves a
linear combination of all hidden states in LSTM with different
weights. Set the input matrix as

Xll X12 e Xlt
X=1: i i
X Xap oo Xgt
Then Q and K is calculated as follows:

Q= ReLU (X W)
K =ReLU(X - Wy)

where W, denotes the weight matrices of query, Wy denotes
the weight matrices of key, ReLU is used as activation
function.

iv.  Output layer: We use regularization to add penalty items to
the coefficients trained by the network to reduce the test error.
The penalty items punish those coefficients that are too large
and increase the coefficients that are too low to prevent the
model from over-fitting and obtain the final output. In this
experiment, the output layer has only one dimension, that is,
the predicted value of glycosylated hemoglobin.

The flow-process of the proposed model is shown in Figure 4. First,
we collected the HbA Ic test value and test time of T2DM patients.
Then, we normalize the preprocessed sequential HbAlc data as
the original input data with the formula 12. We train the proposed
model with 30% samples to adjust and optimize the parameters.
Besides, the feature information of input data is extracted by the
LSTM layer and a deep information structure feature is obtained.
The SA mechanism operates on the output of LSTM layer using
scaled point product attention to learn the structural characteris-
tics of time sequential data and capture long-term interdependence.
Finally, we added a regularization term (expressed as the formula
13) to the cost function to reduce the influence of disturbance and
noise in training data and obtain the prediction results.

X; — min
X = (12)
max — min

where x; is the original value, min and max are the minimum and
maximum values of the location of the variable x;.

r_ A
e =e(w)+ 25" W (13)

where e is the original error function, w is the weight vector, 4 is set
to 0.01 by default.
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Figure 3 The structure of the integrated self-attention long short-term memory (SA-LSTM) model.



X. Wang et al. / International Journal of Computational Intelligence Systems 13(1) 1578-1589

5. EXPERIMENT AND RESULT

5.1. Experiment

5.1.1. Experimental setting

We extracted HbAlc data and test times from the EMR of patients
with T2DM to form datasets. We considered using previous data
records of patients to predict the last value. We used previously
recorded data for each patient as characteristics, and the last data
point as the prediction label. Patients whose sample size was less
than 5 were excluded. Finally, we divided these processed data into
7:3 parts: 70% of the datasets were used to train the model and 30%
of the datasets were used for testing. We used the above data to
train the integrated SA-LSTM model proposed in this paper and
obtain the prediction results. The accuracy of the prediction results
obtained using the integrated SA-LSTM model must be verified;
therefore, we chose the RF and the traditional LSTM models, which
have performed well in the time sequential prediction task, for com-
parison to prove the superiority of the model.

RE, a machine learning method, has been widely used in medicine,
psychology, energy, and other fields in recent years because of its
fast training speed, strong generalization ability, and ability to pro-
cess high-dimensional data. A large number of studies using the
RF model have revealed better performance in time sequential pre-
diction tasks than most machine learning methods [28]. For exam-
ple, Zhao et al. used a RF regression model to predict outcomes of
chronic kidney disease from EMR data and noted that the RF algo-
rithm showed higher stability and robustness with varying train-
ing parameters and better success rates and ROC analysis results
[29]. Galiano ef al. confirmed that RF outperformed an Artificial

Start
.

Collect the obzervation sample data
|

Select and normalize sample data

Regular the data to the form [baich_siza fime_step,n_arributs_feate]

Timestep 3

Timastap L Timestep 2
x[.......] XJ[ ...... ] m[...._.]

Initialize the parameters of the propozed madel

Figure 4 The flow-process diagram of the integrated
self-attention long short-term memory (SA-LSTM) model.
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Neural Network, Regression Tree, and Support Vector Machine for
modeling mineral prospectivity [30]. Daghistani et al. evaluated the
abilities of an Artificial Neural Network, Support Vector Machine,
Bayesian Network, and RF to predict the in-hospital length of stay
(LOS) [31]. The RF model provided more accurate LOS predictions
for patients with heart disease. LSTM is the most advanced deep
learning method, as we have already specified in the second part of
the literature review. Here, we compared the integrated SA-LSTM
model proposed in this paper with LSTM and RF in the same data
environment.

(a) RF: Because the prediction target is based on continuous-
time sequential data, we adopted the regression strategy in the
method.

(b) LSTM: Although LSTM adds threshold control based on
RNN, almost all papers using LSTM have different structure
and parameter settings for the LSTM model. In this exper-
iment, the input dimension of LSTM model is three, data
passes through two hidden layers, and the size of each hidden
layer is four. The model has been trained and iterated 6000
times.

(c) The integrated SA-LSTM model: The input of the network is
the same as LSTM, except that the SA layer is added to the
internal structure. LSTM is used to extract time sequential
information and the SA mechanism is used to differentiate the
importance of sequential information. The model has been
trained and iterated 3000 times.

5.1.2. Parameter settings

The main parameters and their values in this experiment are shown
in Table 2. In this paper, we find the appropriate range of learning
rate based on continuous iterative training, and we finally choose
2 as the learning rate. Because there are 84000 lines of data and
3000 times of training, the batch size is 28 (84000/3000). In prac-
tice, three or two layers of neural network are generally selected.
Deeper neural network will not only lead to over-fitting, but also
increase the difficulty of experimental calculation. In this paper, we
find that the performance of two-layer neural network is better than
that of three-layer neural network. So we choose two hidden layer
units. When the dropout rate is equal to 0.5, the effect is the best,
because dropout randomly generates the most network structures
at this time.

5.1.3. Evaluation index

In this paper, we use mean square error (MSA), root mean square
error (RMSE), mean absolute error (MAE), and mean absolute per-
centage error (MAPE), which are often used as criteria to measure

Table 2 Main parameters and their values in the experiment.

Parameters Parameter Description Value
R Learning rate 2
Batch_size Data batch processing 28
Hidden_units Number of hidden layer unit 2
Dropout Neuron discarding rate 0.5
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the predicted results of deep learning models, to evaluate the exper-
imental results. MSE is the sum average of the square of the dif-
ference between the real value and the predicted value. RMSE is
used to measure the deviation between the real value and the pre-
dicted value. MAE, also known as mean absolute deviation, better
reflects the actual situation of the predicted value error and avoids
the problem of mutual cancellation of errors. MAPE is used to eval-
uate the prediction effect of different models using the same data.
The related calculations are shown in formulas (14-17).

(14)
1 N 2
MSE= =3 (v =) (15)
i=1
1 N
MAE = N;(}’z—)’i)’ (16)
mapE = 12%% i u) (17)
N i=1 i

where N denotes the number of samples, y; denotes the real value,
and J; denotes the predicted value.

Random Forest

— prediction
— Real

glycosylated hemoglobin{®%)
ghycosylated hemoglobin{%)

0 200 400 600 800 1000 13 200 400

patients

(a) (b)
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5.1.4. Model training

In this paper, a gradient descent algorithm is used for model train-
ing and an MSE loss function is used for the loss function. The goal
of the model is to minimize the difference between the predicted
output value of HbAlc and the real value in the training sample.
The calculation of the difference is shown in formula (15).

5.2. Results

We used RF and LSTM, two commonly used time sequential pre-
diction models, to conduct comparative experiments with the inte-
grated SA-LSTM model. All three models were trained and tested
on the same dataset to avoid interference from other factors. The
results are shown in the figures below, where the abscissa repre-
sents the number of samples in this experiment and the ordinate
represents the value of HbAlc. Figure 5 shows the degree of fit of
the predicted values and real values from the three models at 1000
sample sizes. Figure 6 shows the degree of fit of the predicted values
and real values from the three models at 2000 sample sizes. Figure 7
shows the degree of fit of predicted values and real values from the
three models at 3000 sample sizes.

As shown in Figure 5, when the sample size is 1000, the predicted
HbA1lc values obtained using LSTM and the integrated SA-LSTM
model were very similar to the real values, and the results obtained
using RF were not ideal compared with the other two models. As
shown in Figure 6, when the sample size is 2000, LSTM was more
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Figure5 Predicted values from the three models at 1000 sample sizes. (a) The degree of fit of the predicted values and real values obtained
by random forest RE. (b) The degree of fit of the predicted values and real values obtained by long short-term memory LSTM. (c) The
degree of fit of the predicted values and real values obtained by the integrated self-attention long short-term memory SA-LSTM model.
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Figure 6 Predicted values from the three models at 2000 sample sizes. (a) The degree of fit of the predicted values and real values
obtained by random forest RF. (b) The degree of fit of the predicted values and real values obtained by long short-term memory LSTM. (c)
The degree of fit of the predicted values and real values obtained by the integrated self-attention long short-term memory SA-LSTM model.
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Figure 7 Predicted values from the three models at 3000 sample sizes. (a) The degree of fit of the predicted values and real values
obtained by random forest RE. (b) The degree of fit of the predicted values and real values obtained by long short-term memory LSTM. (c)
The degree of fit of the predicted values and real values obtained by the integrated self-attention long short-term memory SA-LSTM model.
accurate than the RF prediction, and the performance of the inte- ~ Table3  Evaluation results using different criteria.
grated SA-LSTM model was obviously better than RF and LSTM. Model MSE RMSE MAE MAPE
In Figure 7, when the sample size is 3000, the integrated SA-LSTM RF Te35s 12001 3.8962
model provided the best prediction of the HbAlc levels, and an LSTM gg;;g 0.5985 04126 52726
almost perfect match was observed between the predicted values SA-LSTM 0.0230 0.1516 0.1037 1.3764

and real values. In particular, the prediction accuracy of the inte-
grated SA-LSTM model was higher with larger sample sizes.

The evaluation results of the integrated SA-LSTM model proposed
in this paper, RF and LSTM on 3000 sample datasets are shown in
Table 3.

As shown in the table, when predicting HbAlc levels, the MSE,
RMSE, MAE and MAPE of the integrated SA-LSTM model
increased by 99.14%, 90.73%, 91.42% and 90.09%, respectively,
compared with the RF model. The integrated SA-LSTM model
improved the MSE, RMSE, MAE and MAPE by 93.28%, 74.67%,
74.87% and 73.90%, respectively, compared with LSTM. The inte-
grated SA-LSTM model was significantly better than the RF model
and showed better predictive performance than LSTM. This finding
confirms the feasibility and superiority of the integrated SA-LSTM
model, and the introduction of SA mechanism plays an important
role in optimization of traditional sequential prediction methods.
The SA mechanism solves the problem of long-term interdepen-
dence in deep learning methods such as LSTM and improves the
accuracy of the time sequential prediction model by increasing the
long-distance interdependence of feature elements.

6. DISCUSSION

We have compared the performance of the integrated SA-LSTM
model with RF and traditional LSTM models. The performance
was evaluated by calculating the MSE, RMSE, MAE, and MAPE. As
shown in Table 3, the integrated SA-LSTM model achieved a higher
prediction performance than the RF and traditional LSTM models,
which are competitive deep learning methods used to generate time
sequential predictions. This result may be easily explained.

In this paper, we use regression strategy for the compared RF
method. This method refers to the analysis and prediction of sam-
ples by building a combination model of multiple decision trees.
Each decision tree model will have a prediction value. The regres-
sion method will calculate the average value of the prediction value
of each tree to obtain the final prediction value. This approach often
results in a failure of the RF model to make predictions beyond the

MSE, mean square error; RMSE, root mean square error; MAE, mean absolute error; MAPE,
mean absolute percentage error; RE random forest; LSTM, long short-term memory; SA-
LSTM; self-assistant long short-term memory.

range of data in the training set during the regression. When noisy
data are present in the dataset, this method is likely to over-fit to
reduce the accuracy of the prediction generated by the model. How-
ever, the HbA1c levels from patients with T2DM used in this paper
will inevitably produce some noisy data due to the long interval and
low frequency of data collection. Therefore, the use of RF to predict
the HbAlc level in this experiment is not ideal.

LSTM is powerful in analyzing sequential problems because it
is able to control the proportion of historical information being
remembered through the gate structure and constantly updates the
instant information in the new state. In addition, LSTM has a large
number of nonlinear transport layers, and its feature expression
is more detailed than traditional models; therefore, it can be used
in complex modeling environments. When a sufficient number of
training samples is available, the LSTM model completely mines the
information contained in the dataset without being disturbed by
noisy data. However, as mentioned above, LSTM inevitably has the
problem of long-term interdependence, namely, when the time at
which sequential data were collected is prolonged, the initial infor-
mation will disappear when time accumulates to a certain value.
However, the time interval between patients’ visits to the hospital
to detect HbA1c levels is very long. Using the data collected in this
paper as an example, the average time interval for detecting HbA1lc
levels was 184.52 days and the shortest time interval was 28.44 days.
Therefore, LSTM is unable to save and transmit information for a
long time in this experiment, which reduces the accuracy of the
prediction.

Based on these findings, we proposed the integrated SA-LSTM
model, which improves the accuracy of the prediction from three
aspects by introducing SA mechanism. (i) Capturing long-term
interdependence: Attention is computed for the data of time nodes
in the SA mechanism; thus, regardless of the distance between
the nodes, the maximum path length is only 1, which captures
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long-term dependencies and improves long-term memory ability.
Therefore, the integrated SA-LSTM model improved the MSE,
RMSE, MAE, and MAPE by 93.28%, 74.67%, 74.87%, and 73.90%,
respectively, compared with LSTM. (ii) Learning the interdepen-
dence in the process of sequence transformation: The SA mech-
anism effectively solves the problem of information loss in dif-
ferent time steps by learning the interdependence relationship
in the process of sequential data transformation to improve the
accuracy of the prediction generated by the model. However,
the RF model is unable to capture the internal relationships of
the information and ignores the relationships in the process of
sequence transformation. Therefore, the prediction accuracy of the
RF model is much lower than the integrated SA-LSTM model for
the different measurement indicators, and is reduced by 99.14%,
90.73%, 91.42%, and 90.09%, respectively. (iii) Improving the out-
put quality of the dynamic structure of the model. As shown in
Figures 4-6, the degree of fit between the predicted values and the
real values obtained from the integrated SA-LSTM model is higher
than the RF and the traditional LSTM models, because both the RF
and the traditional LSTM models inevitably lose some of the his-
torical information in the prediction process and are unable to dis-
tinguish the importance of the retained information. However, the
introduction of the SA mechanism enables the model to dynami-
cally acquire some information that requires attention at different
times. Therefore, the model more effectively obtains useful infor-
mation between input data and output data, and then generates a
more reasonable output.

7. CONCLUSION

In recent years, the risk of T2DM has consistently increased, which
seriously affects people’s quality of life and health. A reduction in
the risk of T2DM not only relies on the clinical treatment but also
on another very important role, prognosis self-management. The
rational implementation of prognosis self-management activities
requires patients to have a clear and correct understanding of their
current and future situations. Therefore, this paper proposes the
integrated SA-LSTM model to predict HbAlc levels, a gold stan-
dard indicator that adequately measures the progression of T2DM.
The integrated SA-LSTM model introduces the SA mechanism into
the hidden layer of the traditional LSTM model, which addresses
the limitation of the long-term interdependence of LSTM by uti-
lizing the ability of the SA mechanism to connect distant informa-
tion. The integrated SA-LSTM model performed better than the RF
and traditional LSTM models in predicting HbAlclevels in patients
with T2DM.

This paper has three main contributions: (i) SA mechanism solves
a persistent problem of LSTM model well and the integrated SA-
LSTM model can more accurately predict the sequential trend of
HbAlc in patients with T2DM. It provides a good reference for
the improvement of deep learning methods in the field of medical
and health management. (ii) HbAlc is a key clinical indicator for
evaluating the progression of T2DM. Grasping the sequential trend
of HbAlc accurately will help patients to better understand their
future illness state and adopt a reasonable self-management strategy
to reduce the risk of T2DM. (iii) Accurate prediction of HbAlclevel
can help medical workers to judge the progression and condition
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of patients with T2DM, so as to improve the scientific diagno-
sis and decision-making of medical workers. This is an impor-
tant basis for rational utilization and optimal allocation of social
medical resources. Of course, some limitations in this paper must
be acknowledged. First, the prediction of HbAlc levels provides a
prognostic self-management strategy for patients only from the per-
spective of clinical testing information. The prediction model also
must incorporate patients’ individual signs and social networks,
which have been proven to affect the risk of T2DM, to help patients
manage T2DM more comprehensively. Second, most of the patients
included in this study were hospitalized five times or more, and the
average interval was 184.52 days. If a greater number of hospital-
izations occurred at a shorter interval, the sequential data for the
HbA1c level would be more conducive to increasing the specific
accuracy of the prediction. These shortcomings provide a direction
for our future research, such as methods to incorporate patients’
individual characteristics, which are discontinuous and nonsequen-
tial data, into the time sequential prediction. Furthermore, we plan
to examine whether these features are realized by modifying the
initial state of time sequential prediction methods or by acquiring
the external input actively at any time step according to the spe-
cific event. Moreover, with the emergence of new models of neural
networks, the appropriate design of the SA mechanism to better
integrate with the new models is also a hot topic to study [16].

In summary, this paper proposed the integrated SA-LSTM model to
predict HbA1c levels, which has guiding significance for improving
the health management level and reducing the future risk of T2DM.
The study further verifies the feasibility of applying deep learning
in the field of medical and health management. In the future, we
will further study the existing methods and models to improve the
adaptability and superiority of deep learning in the field of medical
and health management.
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APPENDIX

Table A1 Detailed data structures.

Row ID Patient Code Inhospital ID HbAlc Unit
1 78452 121379 8 %
2 78452 122476 7.5 %
3 78452 122950 7.8 %
4 78452 124004 8 %
5 78464 120360 7.5 %
6 78464 118300 6.9 %
7 78464 119321 10.2 %
8 78468 117412 8.9 %
9 78468 117758 8.7 %
10 78468 117571 7.4 %
11 78468 117952 6.6 %
12 78469 117553 53 %
13 78469 117389 8 %
14 78477 121463 7.5 %
15 78477 123065 7.4 %
16 78477 118913 6.5 %
17 78477 118330 8.9 %
18 78481 117382 9.3 %
19 78482 117568 9.6 %

20 78482 117403 8.9 %
21 78486 117651 5.8 %
22 78488 122945 6.8 %
23 78488 122754 6.5 %
24 78491 117422 6.3 %
25 78491 117453 5.7 %
26 78494 121499 6 %
27 78494 119248 7.5 %
28 78498 120296 6.5 %
29 78498 120101 6.3 %
30 78498 119963 7.2 %
31 78498 119504 7.1 %
32 78498 121439 6.2 %
33 78498 120668 7 %
34 78498 121763 5.9 %
35 78498 118493 6.9 %
36 78498 119290 6.8 %
37 78498 119015 7.2 %
38 78498 119786 9.1 %
39 78498 118804 6.5 %
40 78504 119745 9.8 %
41 78504 120450 7.3 %
42 78504 121199 7.5 %
43 78504 122565 6.3 %
44 78504 118318 6.2 %
45 78524 120344 7.4 %
46 78524 120913 6 %
47 78524 119272 8.3 %
48 78524 118714 14.9 %
49 78524 117807 6.2 %
50 78532 117632 10.2 %
51 78534 118239 5.7 %
52 78538 121073 9.2 %
53 78538 122244 9.8 %
54 78538 123124 6.3 %

(Continued)
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Table A1 Detailed data structures. (Continued)

Row ID Patient Code Inhospital ID HbAlc Unit
55 78538 122386 7.8 %
56 78538 118391 7.2 %
57 78538 119323 9.9 %
58 78544 120925 10 %
59 78544 118736 11.4 %
60 78545 117974 9.3 %
61 78545 119072 9.3 %
62 78548 119768 5.4 %
63 78548 118857 8.9 %
64 78554 119790 7.5 %
65 78554 120459 8 %
66 78554 122497 9.6 %
67 78554 118404 9.4 %
68 78554 119021 7.5 %
69 78554 117811 9.3 %
70 78558 120222 9.4 %
71 78558 122817 9.6 %
72 78558 119176 11.7 %
73 78561 120384 8.9 %
74 78561 121638 10.1 %
75 78561 123140 9.3 %
76 78561 118413 8 %
77 78570 120800 14.1 %
78 78570 120885 14.4 %
79 78570 117757 9.4 %
80 78570 117416 11.6 %
81 78570 117586 12 %
82 78570 117933 12 %
83 78576 123795 9.1 %
84 78577 119977 6.9 %
85 78577 121107 6.5 %
86 78577 123465 6.5 %
87 78577 123962 6.4 %
88 78577 123889 6 %
89 78577 123047 6.4 %
90 78577 122623 6.4 %
91 78577 118671 8.4 %
92 78577 124100 5.8 %
93 78601 121300 6.2 %
94 78601 117941 6.2 %
95 78623 120160 7.8 %
96 78623 122188 9.5 %
97 78623 117777 11.7 %
98 78623 117521 8.3 %
99 78623 119086 10.9 %

100 78632 118098 7.7 %
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