
International Journal of Computational Intelligence Systems
Vol. 13(1), 2020, pp. 941–953

DOI: https://doi.org/10.2991/ijcis.d.200625.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

Research Article

Whale Optimization for Wavelet-Based Unsupervised
Medical Image Segmentation: Application to CT and
MR Images

Thavavel Vaiyapuri, Haya Alaskar*,

College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia

ART I C L E I N FO
Article History

Received 17 Mar 2020
Accepted 21 Jun 2020

Keywords

Medical segmentation
Unsupervised machine learning
Wavelet transform
Texture features
Clustering
K-means
Fuzzy K-means
Particle swarm optimization
Genetic algorithm
Whale optimization
CT and MRI

ABSTRACT
Image segmentation plays crucial role in medical image analysis and forms the basis for clinical diagnosis and patient’s treat-
ment planning. But the large variation in organ shapes, inhomogeneous intensities, poor contrast, organic nature of textures and
complex boundaries in medical images makes segmentation process adverse and challenging. Further, the absence of annotated
ground-truth dataset in medical field limits the advantages of the trending deep learning techniques causing several setbacks.
Though numerous unsupervised methods are reported in literature to combat the challenges in medical domain, achieving bet-
ter segmentation quality still remains as an open issue. This work aim to address this issue integrating the strength of multires-
olution analysis and the meta-heuristic optimization techniques for unsupervised medical image segmentation. The proposed
approach employs undecimated wavelet frames to extract translation invariant texture and gray information at different orien-
tations to effectively characterize the textures in medical images. Next, the approach introduces the latest meta-heuristic whale
optimization algorithm (WOA), the global optimizer to enhance the performance of unsupervised clustering algorithm with
optimized cluster centers to cluster the extracted wavelet texture features. Moreover, the study contributes to fill the gap in liter-
ature investigating for the first time different intelligence algorithms such as fuzzy, genetic algorithm (GA) and particle swarm
optimization (PSO) for unsupervised medical image segmentation to demonstrate the efficacy of the proposed approach. Evalu-
ation was performed on medical CT and MR images based on feature similarity (FSIM), dice (DC) and feature of merits (FOMs).
Experimental results demonstrates the supremacy of the proposed approach over other intelligence algorithms. Finally, statisti-
cal study with ANOVA analysis was carried out to confirm the significance of the proposed approach in determining the optimal
solution and displaying promising segmentation results toward diagnostic support for radiologist.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Medical image segmentation plays an extremely crucial role and
forms the preliminary step in medical image analysis by segment-
ing the interested region from medical image according to clini-
cal needs [1–4]. Unfortunately, most of the medical images exhibit
poor contrast, large variation in shapes, inhomogeneous intensities
and missing boundaries [5,6]. These issues makes the segmenta-
tion process in medical images are more difficult and challenging
task. Though researchers has put forth extensive efforts in facing
this challenge for the past few decades, there is always room for
improvement and the problem still remains a paramount issue.

Recently, the supervised deep learning approaches has drawn the
attention of researchers and several segmentation methods has
been devised utilizing the significant features of deep learning tech-
niques [7,8]. But the success of these methods solely relies on the
quality and the amount of dataset employed for learning process.
Acquiring the vast number of images along with its annotated
ground-truth information especially in medical field is daunting
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task that comes at high cost [9]. To this end, unsupervised machine
learning approaches has demonstrated lot of success as their work-
ing principles is based on the notion that all information required
for image segmentation are contained in the given reference image
and does not consider to learn any information in advance about
the reference image. Generally, these unsupervised machine learn-
ing approaches perform segmentation in two steps, feature extrac-
tion (FE) and clustering [10,11].

FE is a very essential preliminary step in image segmentation as they
empower the subsequent clustering process in improving the seg-
mentation quality [12,13]. Keeping this in view, several FE meth-
ods has been devised in the past decades [14,15]. Most of the early
work rely only on extracting gray scale information which is not
suffice for medical images as it contains regions with different tex-
ture patterns [16]. Texture is a primary attribute of an image utilized
to discriminate homogeneous regions with different patterns. Con-
sequently, texture FE is a long-standing problem in medical image
segmentation. To this end, multiresolution approaches has drawn
considerable attraction in recent years [17]. Among them, Gabor
and wavelet filters has emerged as an effective tool in providing
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multiscale view on texture and in enabling to extract features at dif-
ferent orientations [18]. Though, Gabor has demonstrated success-
ful results, the adjustment of their center frequency and tuning of
their filter parameters greatly influences their performance. Added
on, Gabor filters are nonorthogonal and results in texture features
that are significantly correlated. To overcome these shortcomings,
the application of wavelet has been recommended in literature. This
recommendation is considered and wavelet filter is adopted in the
present study for texture FE at different orientations and scales.

In machine learning, Clustering is the best known and exten-
sively used unsupervised learning technique for image segmenta-
tion [19]. Among clustering techniques, K-means (KM) algorithm
stands as one of the most efficient and popular technique for the
past few decades due to its simplicity and linear time complex-
ity [20]. However, their efficiency is sensitive to the initial cluster
centers. Another, long-standing drawback with KM is its conver-
gence to global optimum is not guaranteed. In recent trends, meta-
heuristic algorithms have proven their supremacy in solving any
kind of optimization problems. Motivated in this direction, several
researchers have attempted to introduce meta-heuristic optimiza-
tion techniques into clustering framework in identifying the opti-
mal cluster centers and improving the clustering results [21–23].
However, most of conventional optimization techniques such as
genetic algorithm (GA), particle swarm optimization (PSO), etc.,
are confronted with the problem of converging to local optima.
As reported in literature, an optimization algorithm with balanced
exploration and exploitation capabilities can be used to solve this
problem.

Whale optimization algorithm (WOA) is a latest and effective meta-
heuristic optimization algorithm with outstanding advantages such
as strong global optimization ability, a smaller number of parameter
adjustments and strong tendency to dynamically balance the explo-
ration and exploitation ability on search space [24]. Also, the appli-
cation of WOA has shown incredible success in many fields over
the past two years [25,26]. Moreover, encouraged by the promising
results of WOA in medical field [27–29], in the present work, we are
introducing for the first time WOA within texture-based cluster-
ing framework to achieve better segmentation results with optimal
cluster centers.

The key contributions of this work to the literature are as follows:

(a) A new approach that integrates the advantage of wavelet tex-
ture features and WOA into clustering framework for med-
ical image segmentation is proposed. This is accomplished
in three steps, first texture features are extracted in wavelet
domain subsequently image space is transformed into feature
space defining feature vector with texture, gray level and spa-
tial information. In the second step, WOA is applied to deter-
mine the optimal cluster centers based on compactness and
separation. Finally, clustering algorithm is employed to the
feature vector space to accurately segment the reference med-
ical image.

(b) A new approach utilizes the strength of undecimated wavelet
frames to extract translation invariant texture and gray scale
information at different orientation to best describe the tex-
ture patterns in medical images. This attempt of defining
wavelet texture feature descriptor is new and has not been
investigated before for medical image segmentation.

(c) To the best of knowledge of the authors, no previous work so
far has used WOA for solving texture-based clustering prob-
lem in medical image segmentation and this work is the first
attempt in this field. Further, this work aims to fill the gap
in literature investigating for the first time different intelli-
gence algorithms such as fuzzy, GA and PSO for texture-
based unsupervised medical image segmentation.

(d) Application of the proposed approach for medical image
segmentation is demonstrated conducting extensive experi-
ments on CT and benchmark MR images. Obtained results
display clearly the advantage of proposed approach in finding
the global optimal solution. Also, the significance of the pro-
posed approach over other intelligence algorithms is proved
with statistical ANOVA test.

2. BACKGROUND

2.1. Wavelet Transform

In the past decades, the development of FE techniques has wit-
nessed substantial development because of their crucial role in
addressing complex problems in various fields such as computer
vision, image processing and pattern recognition. Despite numer-
ous techniques are reported for FE, the challenge is still gaining
momentum especially in medical image processing because of the
complex tissue structure. To this end, wavelet transform (WT) has
proven to be an effective tool for texture FE due to its excellent prop-
erties for multiresolution and optimal spatial-frequency localiza-
tion [18]. Mathematically, the WT of 1D signal f(x) with a family of
basis wavelet functions 𝜓a,b(x) is given as follows [30]:

(Waf)(b) = ∫ f(x)𝜓a,b(x)dx (1)

The family of wavelet functions are generated by performing trans-
lation and scaling operation on “mother wavelet,” 𝜓(x) which is
strongly localized in both spatial and frequency domain as given
below:

𝜓a,b(x) =
1
√a

𝜓
(
x − b
a

)
(2)

Here, a and b represents scaling and translation factors, respec-
tively. Under multiresolution decomposition, 1D signal f(x) is
wavelet transformed using father 𝜙(x) and mother 𝜓(x) wavelet
function into approximation component with low frequency con-
tent of the reference signal, and detail component with high fre-
quency content, respectively. This is represented as follows:

approximationa(b) = ∫ f(x).𝜙a,b(x)dx

detaila(b) = ∫ f(x).𝜓a,b(x)dx

(3)

The extension of WT multiresolution decomposition for 2D images
is given by Eq. (4) to produce four subband images, low-low (LL),
high-low (HL) and high-high (HH). Here, LL represents approx-
imation image with low frequency components of the original
image. On other hand, LH, HL and HH represents feature images
of the original image in three orientation such as vertical, horizon-
tal and diagonal, respectively. Only the approximate image is uti-
lized for the next level decomposition. The process is repeated until
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required level of multiresolution is reached. Figure 1 illustrates two-
level decomposition process for WT.

appra(b) = ∫ f(x, y)𝜙a,b(x)𝜙a,b(y)dxdy

detHa (b) = ∫ f(x, y)𝜓a,b(x)𝜙a,b(y)dxdy

detVa (b) = ∫ f(x, y)𝜙a,b(x)𝜓a,b(y)dxdy

detDa (b) = ∫ f(x, y)𝜓a,b(x)𝜓a,b(y)dxdy

(4)

2.2. Clustering Algorithm

Clustering is an unsupervised machine learning algorithm
employed especially for pattern recognition [18]. It aims to group
image pixels with similar pattern values into same cluster. There
are two types of clustering technique namely, discriminative and
generative [19]. The present work employs discriminative clus-
tering technique. This category of clustering groups image pixels
according to the pairwise similarities between the pattern values.
The most widely used discriminative clustering algorithm in real-
world pattern recognition application is KM [22]. It groups the
given image pixels into k clusters minimizing the average squared
distance of within clusters. Thus, the objective function of KM is
written as follows:

D =
K

∑
i=1

∑
Ii,j∈Ck

∥ Iij, 𝜇k ∥ (5)

In solving the above the objective function, the KM algorithm starts
the clustering process by selecting randomly k initial cluster centers
and then refines these centers iteratively as follows [22]:

i. Assigns each image pixels to the nearest cluster center accord-
ing to their Euclidean distance measure

ii. Revises each cluster center computing the mean of all image
pixels in a cluster.

Figure 1 Wavelet decomposition at level 2.

The KM converges when there is no further change in assignment
of image pixels to clusters

2.3. Whale Optimization Algorithm

WOA is a renowned meta-heuristic algorithm proposed by Mir-
jalili and Lewis in 2016 for modern optimization process [25,31].
This algorithm takes the inspiration from the behavior of hump-
back whales in nature. In its mode of operation, the WOA is sim-
ilar to GA and PSO but are more powerful in exploring the global
solutions [26]. Compared to PSO, WOA stores only global opti-
mal solution during the search process and enables to enhance
the storage efficiency. On other hand, in contrast to GA, WOA
explores variety of optimization paths retaining the knowledge
of best solutions at same time its optimization strategy is more
comprehensive. Owing to its exploration/exploitation ability, WOA
is considered as a global optimizer. In general, it adopts the three
main operations namely, encircling prey, constructing bubble-net
attacking and searching for prey to identify its global optimal solu-
tion. The working principles of these operations are summarized
below [25,26].

2.3.1. Encircling prey

During this operation, WOA algorithm presumes the current best
solution as the location of the target prey and the rest individual
whales tries to encircle the prey updating their positions. The math-
ematical representation of this behavior is as follows:

D⃗ = |C⃗.X⃗∗(t) − X⃗(t)|

X⃗(t + 1) = X⃗∗(t) − A⃗ ⋅ D⃗

(6)

Here, X⃗ and X∗ represents the position vector of individual whale
and target prey (i.e., best optimal solution acquired so far), respec-
tively. The t denotes the current iteration, ⋅ and || represents the
element multiplication and absolute value, respectively. The coeffi-
cient vectors A⃗ and C⃗ are determined as follows:

A⃗ = 2 ⃗a ⋅ ⃗r − ⃗a
C⃗ = 2 ⋅ ⃗r

⃗a = 2 − 2 t
tmax

(7)

where ⃗r is a random vector in [0, 1], a is a controlling variable that
decreases linearly from 2 to 0 with the course of iterations in both
exploration and exploitation phases. Here, exploitation emphasizes
local search strategy and attempts to refine the promising solution
avoiding large jumps in search space whereas exploration empha-
sizes global search strategy and explores the search space for best
optimal solutions.

2.3.2. Bubble-net attacking method (exploitation
phase)

WOA mimics this behavior of humpback whale performing two
strategies: shrinking encircling and spiral updating. It adopts 50%
probability in choosing between these two strategies to update the
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positions of whales in the process of optimization. This is mathe-
matically modeled as follows:

X⃗(t + 1) = {X⃗
∗(t) − A⃗ ⋅ D⃗ p < 0.5

D⃗′ ⋅ ebl ⋅ cos(2𝜋l) + X⃗∗(t), p > 0.5
(8)

where b is a constant for defining spiral shape, p, l are random num-
ber in the range of [0, 1] and [-1,1], respectively. Notably, here the
D⃗′ is the distance of current whale position to optimal position as
follows:

D⃗′ = ||X⃗∗(t) − X⃗(t)|| (9)

2.3.3. Search for prey (exploration phase)

During this operation, the exploration (global search) ability is
enhanced by updating the position of individual whales according
to the position of randomly chosen whale rather than the position of
the prey (best optimal solution discovered so far). This enforces the
individual whales to swim away from reference whale and enables
to reach global optimum rather than getting stuck to local optima.

D⃗ = ||C⃗.X⃗rand(t) − X⃗(t)||

X⃗(t + 1) = X⃗rand(t) − A⃗.D⃗

(10)

Here, vector A⃗ takes the values> 1 to enforce exploration and X⃗rand
is a random position vector of a whale selected from the current
population.

3. PROPOSED METHODOLOGY

The architecture of the proposed approach consists of two key com-
ponents as illustrated in the Figure 2. The detail description of these
components are as that follows.

3.1. Wavelet for Texture FE

The present work employs an overcomplete wavelet representation
called discrete wavelet frame (DWF), a variation of WT, for tex-
ture characterization [32]. In contrast to WT, no down-sampling
is performed in DWF decomposition along the levels of hierar-
chy. This provides translation invariance and anti-aliasing that are
highly desirable for texture description of input image. Also, DWF
does not imposes any restrictions on filter design and selection. The
present work avails these inherent characteristics of DWF to esti-
mate the texture statistics more effectively and detail the character-
ization at region boundaries more precisely.

In this process of texture feature characterization, the reference
image is first decomposed with DWF to one-level and then the
wavelet energy features are computed using Eq. (11) on the result-
ing LH and HL detail images due to fact that the most of the tex-
ture information are contained only in these subimages [33,34]. For
this purpose, the present work employs Daubechies wavelet func-
tion considering its low complexity and high texture characteriza-
tion capability. Thus, feature vector is generated for every pixel in
the image with spatial, gray scale and energy information that are
required for image segmentation.

F(i, j) = 1
2552

i+n
∑

x=i−n
∑

y=i−n
i + ns(x, y)2p[s(x, y)] (11)

Here, p[s(x, y)] is the probability of the pixel s(x,y) intensity in the
subimage. The features extracted from different subbands vary in
magnitude. This might affect the clustering decision, therein the
raw texture features are normalized in the range of [0, 1] to avoid
the bias during clustering process.

3.2. WAO-Based KM for Image
Segmentation

The present work addresses the drawbacks of KM clustering
for texture-based image segmentation system in two stages:

Figure 2 Architecture of the proposed approach.
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Optimization and Segmentation. In optimization phase, a meta-
heuristic algorithm called WOA is applied to identify the optimal
or the near optimal cluster centers for KM clustering. Subsequently,
the identified optimal cluster centers are utilized in KM clustering
for image segmentation to achieve fast convergence and avoid being
trapped in a local optimal solution. The encoding scheme, fitness
function and the convergence criteria of the proposed WOA are
detailed in Section 3.2.1.

3.2.1. Population generation

In the present work, each whale represents a clustering solution and
contains the centers for the given number of K clusters. The dimen-
sional size of the whale depends on the number of texture attributes
computed for segmentation process and the predetermined number
of clusters. If K and nf is number of clusters and feature attributes
then dimensional size of whale is given as K × nf. For instance,
the encoding representation of whale with 3 clusters is shown in
Figure 3. The whale population (P) is initially created with random
cluster centers that are limited within lower and upper boundary of
its possible values.

3.2.2. Fitness function

The fitness function plays crucial role in determining the fitness of
the clustering solution encoded in the whale population and enables
to identify the optimal clustering solution that can lead to achieve
accurate image segmentation. To this end, the fitness function uti-
lized in the present work is formulated considering the two most
widely used criteria in clustering [35]:

• Compactness: evaluates how closely related are the image
pixels within the same cluster. It is measured by computing the
average of distances between the image pixels within same
cluster as follows:

Tcomp =
1
K

K

∑
i=1

1
|Ck|

∑
Ii,j∈Ck

d(Iij, 𝜇k) (12)

Thus, compactness is variance that should be minimized to
obtain good clustering.

• Separation: evaluates how widely the clusters are separated. It
is measured by computing average of distances between
different clusters as given below and this variance should be
maximized to obtain well-separated clusters.

Tsep =
2

K(K − 1)
K

∑
1⩽q<p

d(𝜇p, 𝜇q)2 (13)

Figure 3 Whale encoding for the proposed approach.

Now, the fitness function is designed as a regularization function
combining these two criteria as given in Eq. (14). Here, the separa-
tion criteria that has to be maximized is represented as (1 − Tsep)
to qualify the fitness function to minimize both these criteria. This
enables the fitness function to select the clustering solution that
attains the minimum fitness value as the optimal solution for image
segmentation.

fitnessfunction = w1Tcomp + w2(1 − Tsep) (14)

3.2.3. Termination condition

The optimization process requires indeed an adequate termination
criteria to limit the computational expenses and obtain a reason-
able fitness. The present study as suggested in [36] terminates the
hunting process of WOA, when any one of the following criteria is
met: (i) the global optimal solution is discovered, (ii) the maximum
iteration is reached, (iii) the fitness of all whales are same. After
the reach of termination condition, the whale with minimum fit-
ness value is recommended as the optimal cluster centers. The algo-
rithm of WOA for KM clustering in the proposed approach is given
in Algorithm 1. Also, the flow of input image through the two key
components of the proposed architecture to obtain segmentation
results with WOA optimized cluster centers is shown in Figure 4.
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Figure 4 Flow of image in the proposed approach.

4. EXPERIMENTAL SETUP

This section describes the environment employed for conducting
experiments to evaluate the performance of the proposed method-
ology. First, it introduces the description of the dataset utilized in
this study. Subsequently, it illustrates briefly the parameters set-
tings and different evaluation metrics chosen to compare the per-
formance of different algorithms.

4.1. Dataset Description

The proposed method is validated on real patient data provided
by MICCAI BRATS [37] and Medpix [38]. Both these databases
are publicly available and thus do not require ethical committee
approval. Medpix is a radiology archive integrating images from
various types of imaging modalities. The archive contains teach-
ing cases and case reports with 59,000 indexed and curated images,
from over 12,000 patients. The MICCAI BRATS dataset is a bench-
mark dataset for MRI brain tumor segmentation with 220 high-
grade and 53 low-grade patient images. Each patient’s brain scan
is included with four MR sequences T1, T1c, T2 and FLAIR. The
present study evaluates the performance of the proposed method
establishing two different set of experiments. The first set of experi-
ments are conducted selecting randomly five CT images and second
set on five T1c brain scan MR images.

4.2. Parameter Setting

To ensure the capability of the proposed method, comparison was
carried out with other most commonly used intelligence algorithms
such as adaptive KM, fuzzy, PSO and GA. For a fair comparison,
all algorithms used in this paper were experimented under same
platform and standard condition. For example, after several runs
on trial and error basis, it was noted that the behavior of all these
algorithms approached the best solution when the maximum num-
ber of iterations and population size was set as 150 and 100, respec-
tively. Similarly, other parameters were selected to maintain both
the stability of the algorithm and obtaining high-quality solutions.
The cognitive, social and neighborhood acceleration coefficient of
PSO was set to 2, 2 and 1, respectively. The crossover and mutation
rate of GA was set to 0.8 and 0.06, respectively. Other parameter

values used in the present study to adjust the performance of WOA
is presented in Table 1. For all these experiments, the number of
clusters was determined based on the number of coherent regions
in the reference image.

4.3. Performance Metrics

The quantitative metrics used in the present study to assess the
quality of segmentation results of different algorithms are described
briefly as follows: this section presents the performance metrics
used to compare the performance of the proposed method for med-
ical image segmentation.

4.3.1. Feature similarity

This index measures is used to assess the interdependencies
between the ground-truth image and the segmented image based
on two key criteria: phase congruency and gradient magnitude. The
phase congruency is invariant to contrast and is capable of detect-
ing important features in frequency domain. The similarity of phase
congruency between two images are computed as follows [39]:

SPC =
2PC1PC2 + T1
PC21PC

2
2 + T1

(15)

In the same way, the similarity of gradient magnitude of two images
are obtained as follows:

SG =
2G1G2 + T2
G2
1G

2
2 + T2

(16)

where (PC1, PC2) and (G1,G2) represents the phase congruency
and gradient magnitude of segmented and ground-truth images,
respectively. Now, the feature similarity (FSIM) is obtained by com-
bining these two measures together as given below:

SL(x) = [SPC(x)]𝛼 [SG(x)]𝛽 (17)

where 𝛼 and 𝛽 are two constants used to adjust the relative impor-
tance of these two features. In this study, both 𝛼 and 𝛽 are set to 1.
FSIM is in the range of [−1, 1], and its higher value indicates better
segmentation quality.



T. Vaiyapuri and H. Alaskar / International Journal of Computational Intelligence Systems 13(1) 941–953 947

Table 1 Parameter settings for optimization algorithms.

GA, genetic algorithm; PSO, particle swarm optimization; WOA, whale optimiza-
tion algorithm.

4.3.2. Dice

It is another popular index that measure the amount of overlap
between the ground-truth image and the segmented results. It is
computed as follows [40]:

DC = 2 ∗ |SI ∩ GT|
|SI| + |GT| (18)

where SI is segmented image and GT is ground truth. Dice (DC) is
in the range of [0, 1] and segmentation quality increases as its value
tends to 1.

4.3.3. Feature of merits

Feature of merit (FOM) is another performance measure proposed
by Pratt to measure image segmentation performance. It is deter-
mined using the formula given below [41]:

FOM = 1
max(ESI,EGT)

EGT

∑
i=1

1
1 + dm2(i)

(19)

where edge-segmented image (ESI) and edge ground truth (EGT)
represents the number of edge pixels in the edge map of the seg-
mented image and ground-truth image, respectively. m(i) is the dis-
tance of ith boundary pixel in segmented image to the closest pixel in
ground-truth images and d is the scaling constant. FOM also takes
values in the range of [0, 1] and its higher values indicates better the
segmentation performance.

5. RESULTS AND DISCUSSION

This section presents and compares the segmentation results of the
proposed method with other competing intelligence algorithm both
qualitatively and quantitatively. Finally, the statistical analysis of the
results is presented.

5.1. Qualitative Analysis

The reference medical input images used for qualitative analysis are
shown in Figure 5. The segmentation results on these images are

Figure 5 Reference medical images used for qualitative analysis.

presented along with the edge map and ROI mask in row 1, row 2
and row 3, respectively. Similarly, the images segmented by adaptive
KM, Fuzzy KM, PSO-KM,GA-KM and proposed method (WOA-
KM) are presented in column A, B, C, D and E, respectively.

5.1.1. Application to CT images

The performance of proposed method was first evaluated on CT
brain scan image shown in Figure 5(a-I). This CT shows a hyper
attenuating (white) mass lesion with two different densities, and
a thin peripheral margin of lucency. Subsequently, it was evalu-
ated on an axial CT image with branchial cleft cyst as shown in
Figure 5(a-II). A low-density well-circumscribed lateral neck cystic
mass can be seen in this CT at the peri-mandibular region of the left
neck lateral to common carotid artery.

The results obtained on these two CT images are shown in
Figure 6(a). Observing the results on CT brain scan image in
Figure 6(a), it can be seen that adaptive KM, Fuzzy KM and GA-
KM fails to delineate lesion that is present with two different densi-
ties. This demonstrates the inability of these traditional algorithms
to cluster accurately the extracted wavelet features. On other hand,
the segmentation offered by PSO-KM delineates the high-density
mass lesion but fails to display accurately the low-density region of
lesion. Thus, it is evident that the segmentation result of the pro-
posed algorithm emphasizes clearly the two different stages of blood
clot retraction and display the lesion delineation vividly. This could
guide the radiologist to accurately diagnosis the position and com-
mence the therapeutic procedure.

The visual inspection of CT cervical scan results in Figure 6(b)
clearly demonstrate that adaptive KM and GA-KM suffers from
under segmentation and requires improvement in clustering the
wavelet features correctly for better delineation of the tumor region.
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Figure 6 Comparison of segmentation results on CT images.

On other hand, fuzzy KM and PSO-KM shows better segmentation
results in displaying the tumor region but fails to accurately delin-
eate the boundary region of the tumor. The segmentation results
delivered by the proposed algorithm in tumor identification and
delineating its region accurately is remarkable compared to other

competing intelligence algorithms. This might be attributed to the
fact that the proposed algorithm employs WAO to control the trade-
off between exploitative and exploratory behaviors during opti-
mization process and obtain the global optimal centers for effective
clustering of wavelet features.
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Figure 7 Comparison of segmentation results on MR images.

5.1.2. Application to MR images

The reference MR brain scan images used to evaluate the perfor-
mance of the proposed approach are shown in Figure 5(b-I) and
(b-II). The results obtained on these two MR images are shown
in Figure 7(a) and (b), respectively. According to the results of
Figure 7(a), it can be seen that all competing intelligence
algorithms and proposed approach delivers satisfactory results. But

with careful observation of the results, the inability of fuzzy KM and
PSO-KM can be noted with under segmentation of tumor region.
This could mislead the radiologist during clinical examination. On
other hand, the effective segmentation of the proposed algorithm
is remarkable in identifying the tumor region despite of intensity
inhomogeneity. This demonstrates the diversified searching abil-
ity of WOA for global solution to achieve accurate segmentation
results.
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The visual inspection of results in Figure 7(b) clearly demonstrate
that PSO-KM exhibits over segmentation in identifying the tumor
region. Also, it can be seen that fuzzy KM and GA-KM identifies the
tumor region correctly but fails to isolate the edema region accu-
rately which is notably important for starting therapeutic proce-
dure. Though intensity variations in the tissue regions of tumor and
edema are not strong, the proposed algorithm remarkably identi-
fies the tumor region and reduces the cumbersome in isolating the
tumor region from edema which could greatly help radiologist dur-
ing clinical procedure. This owes to the advantage of employing
wavelets for strong texture FE and WOA for global optimal solution
to improve the segmentation quality especially, in delineating the
tumor region accurately.

5.2. Quantitative Analysis

The FSIM, DC and FOM metrics calculated for the segmentation
results obtained from five different intelligence algorithms, adap-
tive KM, Fuzzy KM, PSO-KM, GA-KM, WAO-KM on five CT and
MRI images are given in Table 2. The comparative graphs for the
FSIM, DC and FOM metrics in Table 2 are shown in Figure 8. It
can be understood from these figures that the proposed WOA-KM
approach displayed higher segmentation performance compared to
other methods. Nevertheless, statistical analysis was conducted to
conform the promising performance of the proposed approach.

Table 2 Quantitative comparison of segmentation results on CT and MR images.

GA, genetic algorithm; PSO, particle swarm optimization; WOA, whale optimization algorithm; KM, K-means; DC, dice; FSIM, feature
similarity; FOM, feature of merits.

Table 3 Statistics with ANOVA.

GA, genetic algorithm; PSO, particle swarm optimization; WOA, whale optimization algorithm; KM, K-
means; DC, dice; FSIM, feature similarity; FOM, feature of merits.
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Figure 8 Quantitative analysis of segmentation
results.

5.3. Statistical Analysis

5.3.1. ANOVA anlysis

The quantitative results given in Table 2 were used to perform var-
ious statistical analyses. Toward this, as first step ANOVA analysis
was carried out on FSIM, DC and FOM results and the findings
are given in Table 3. Observing the statistical results in Table 3, it is
clear that the standard deviation and standard deviation error value
of FSIM, DC and FOM results are lower for the proposed approach
compared to other competing algorithms. Also, the higher values
of mean, 95% confidence interval for mean values under proposed
approach conforms that its ability in displaying better segmentation
results among all other intelligence methods.

5.3.2. Significance of ANOVA analysis

Here the quantitative results reported in Table 2 were used to per-
form ANOVA significance analysis to demonstrate the significant
differences among the five different intelligence algorithms with
respect to FSIM, DC and FOM. The obtained ANOVA significance
report is given in Table 4. It can be observed from Table 4 that the
significance value of FSIM, DC and FOM is less than 0.05 with F
value 31.78, 31.38 and 66.03, respectively.

These values clearly state that significant difference exists among
the five intelligence algorithms with respect to FSIM, DC and FOM.
Encouraged by these results, post-hoc multiple comparison was

Table 4 ANOVA significance results on quantitative metrics.

performed to prove that the proposed approach differed signifi-
cantly from other intelligence algorithm.

5.3.3. Post-hoc ANOVA analysis

Finally, post-hoc pairwise multiple comparison analysis was per-
formed on FSIM, DC and FOM results and the findings are shown
in Figure 9(a), (b) and (c), respectively. In this figure, the blue and
red bar indicates the mean difference for the proposed approach
and other competing algorithms, respectively. From the visual
inspection of these figures, it can be seen that in all the three figures
the red bars does not overlap the blue bar. This clearly confirms that
segmentation results obtained from the proposed approach is sta-
tistically different and higher compared to other competing algo-
rithms in term of FSIM, DC and FOM.

6. CONCLUSIONS

A new approach for unsupervised medical image segmentation
is presented. The proposed approach integrates the merits of
wavelet-based multiresolution analysis for texture FE and the global
optimizer WOA for cluster center optimization to maximize the
efficiency of the KM clustering algorithm for medical image seg-
mentation. Further, a comparison study with four different intelli-
gence algorithms, adaptive KM, fuzzy KM, GA-KM and PSO-KM
is presented on CT and MR images with respect to FSIM, DC and
FOM. The comparison results revealed the efficacy of the proposed
approach over other intelligence algorithms. Finally, the statisti-
cal analysis results conformed the promising performance of the
proposed approach and can be recommended to achieve clinical
significance.

The future research can be taken forward in three directions. First,
the proposed work can be further enhanced combining color infor-
mation with texture features to segment tumor subregions, such
as edema, enhancing tumor region and enhanced tumor region
for better treatment planning. Also, the inclusion of more texture
features from 3D medical images with high third dimension res-
olution can further broaden the space for enhancement. Second,
the proposed approach can be experimented with unsupervised
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Figure 9 Post-hoc ANOVA analysis of segmentation results.

deep learning strategy such as auto-encoders and deep belief net-
works to extract the essential low-dimensional features to exam-
ine whether their impact on performance is positive or negative.
Third, the performance of proposed approach can also be investi-
gated hybridizing WOA with other optimization algorithms such as
Coyote, Galactic swarm and Butterfly optimizer.
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