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ABSTRACT
At present, most of the first-order logic theorem provers use a binary-resolution method, which can effectively solve the general
first-order logic problems to a certain extent. However, the cooperative processing ability of this method for multiple clauses
is insufficient, and it is easy to cause rapid expansion of clause set in the deductive process. In this paper, we propose a novel
first-order logic theorem prover based on the standard contradiction separation (S-CS) rule. This prover can realize the dynamic
cooperative deduction of multiple clauses in each deduction process, as well as it can effectively learn and control the deduction
process. This paper incorporates the S-CS rule with thewell-known prover Prover9, to build a combined system, which effectively
integrates the advantages of the two methods, not only improves the binary-resolution prover’s ability, but also solves more than
100 problems that cannot be solved by other provers.
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1. INTRODUCTION

As an essential branch of artificial intelligence, automated reason-
ing has always been a research hotspot, especially the develop-
ment of formal verification puts forward higher requirements for
the automated theorem prover (ATP) [1–3]. At present, most of
first-order theorem (FOF) provers (in the sequel simply provers) are
based on the resolution method proposed by Robinson [4]. Mainly
adopt the saturation algorithm framework for proof search [5]. That
is, given two sets of the P (processed set) and the U (unprocessed
set), initializing all clauses into theU and selecting one clause from
U each time. Then making a binary resolution with the clauses in
process, and putting the resolvents into U. This method inevitably
produces a large number of resolvents, and hence bring a rapid
expansion of the proof-search space.

Furthermore, only two clauses are resolved at a time. Not only the
processing efficiency is low, but the correlation between multiple
clauses is ignored. Modern provers introduces hyper-resolution [6]
into the saturation algorithm framework, and achieves the resolu-
tion of one clause andmultiple unit-clauses. To some extent, the col-
laborative processing ability betweenmultiple clauses is considered,
and excellent results have been achieved in practice. However, mul-
tiple nonunit clauses cannot be processed cooperatively. In 2018, Xu
et al. [7] proposed a standard-contradiction-separation rule (in the
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sequel simply S-CS, also see Section 2)-based dynamic multi-clause
synergized automated deduction. The standard contradiction
separation (S-CS) rule is a novel inference rule. Unlike binary
resolution, the S-CS rule allows multi-clause to deduction together
(also call synergy). And the rule implies the thought of dynamic
control of the deduction process, which has higher deductive effi-
ciency. In the paper [8] shown this point.

In this paper, our contribution is, firstly, we propose an architec-
ture of prover based on S-CS Rule. We were discussing some prob-
lems of applying the S-CS rule to proof-search. Then analyzed the
characteristics of heuristic strategy based on S-CS rule. Finally, we
proposed and implement a novel combinational system, CoProver,
which integrates the advantages of the S-CS rule and traditional
binary resolution. Experimental results show that the S-CS rule
has better poof-search ability than traditional binary resolution.
Furthermore, the CoProver solves more than 100 problems with
rating = 1 that cannot be solved by other existing provers in the
TPTP library.

The structure of this paper is as follows: Firstly, we review the cur-
rent development of ATP and analyze the problems of the tradi-
tional binary resolution methods.

Section 2 introduces the basic concepts of the Contradiction Sepa-
ration rule and notations and conventions of ATP.

In Section 3, we describe the specific design strategy of our pro-
posed prover based on S-CS rule and describe the key technologies
for implementing this prover.
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Section 4 introduces the construction of a hybrid system based on
our proposed provers.

In Section 5, a series of experiments are conducted, and the exper-
imental results are evaluated.

Finally, in Section 6, we give conclusions and our future research
directions.

2. PRELIMINARIES

In this paper, we are primarily interested in the first-order formula
in conjunctive normal forms (CNF). We assume the following nota-
tions and conventions.

Definition 2.1. [9] (Term). A term is defined inductively as follows:

i. Each free variable and each constant is a term.

ii. If t1, .., tn are terms and f is an n-ary function symbol, the
f(t1, .., tn) is also a term.

The set of all terms is called T. We write the T = (F,V), F is a finite
set of function symbols with an n-ary function (denoted f1, f2), if
n = 0 the T is a constant term, is written “a1, a2, ..., an.” V is a finite
set of variable symbols (denoted x1, x2).

A term is written as lower-case with a number, e.g., “t1, s1,” espe-
cially, term t (t ∈ T) is ground term if it contains no variables, the
symbol G noted the set of ground term, and the symbol “g” is a
ground term g ∈ G.

Definition 2.2. [10] (literal).A literal is an expressionA (a positive
literal) or ~A (a negative literal), where A is an atom.

An atom (or atomic formula) is an expression P(t1, ..., tn) where P
is a predicate symbol of arity n and t1, ..., tn are terms. Two literals
A and ~A are said to be complementary.

We write the letter “l” with a number for literal, e.g., l1, l2.

Definition 2.3. [9] (clause). A clause C is a finite set of literals and
their disjunction, written as C = {l1, ..., ln}. The empty clause is
denoted by. Especially if C has only on literal, the clause is called a
Unit clause.

Let S is a clause set, usually, is written S = {C1,C2, … ,Cm}.
Definition 2.4. [9] (substitution). A (variable) substitution is a
mapping 𝜎 ∶ V → T. Such that 𝜎(x) ≠ x for only finitely many
x ∈ V. We write 𝜎 = {t1/x1, L, tn/xn} xn ∈ V and ti ≠ xi if ti ∈ G
then 𝜎 is ground substitution.

Xu [7] proposed the new reference rules standard contradiction
separation rule (S-CS).

Definition 2.5. [7] (Contradiction) Suppose a clause set
S = {C1,C2, … ,Cm} is a standard contradiction (SC). If
∀(l1, … , lm) ∈ ∏m

i=1 Ci there exists at least one complementary
pair among{l1,…, lm}. The symbol ∏m

i=1 Ci denotes the cartesian
product of C1,C2, … ,Cm. If S = Λm

i=1Ci is unsatisfiable, then
S = Λm

i=1Ci is called a quasi contradiction (QC).

Definition 2.6. [7] (S-CS Rule in First-Order Logic) Suppose a
clause set S = {C1,C2, … ,Cm} in first-order logic. Without loss

of generality, assume that there does not exist the same variables
among C1, C2,…, Cm. The following inference rule that produces a
new clause from S is called a standard contradiction separation rule,
in short, an S-CS rule.

For each Ci (i = 1, 2, … ,m), firstly apply a substitution 𝜎i to
Ci (𝜎i could be an empty substitution but not necessarily the most
general unifier), denoted as C𝜍i

i ; then separate C𝜍i
i into two sub-

clauses C𝜍i−
i and C𝜍i+

i such that

i. C𝜍i
i = C𝜍i−

i ∨ C𝜍i+
i , where C𝜍i−

i and C𝜍i+
i have no common

literals.

ii. C𝜍i+
i can be an empty clause, but C𝜍i−

i cannot be an empty
clause.

iii. Λm
i=1C

𝜍i
i is a SC. That is, ∀(x1, … , xm) ∈ ∏m

i=1 C
𝜍i−
i , there

exists at least one complementary pair among {x1,…, xm}.

3. PROVER BASED ON S-CS RULE AND
KEY TECHNOLOGIES

This section will discuss the design strategy of a novel prover based
on the CS rule and the solutions to critical technologies. From
Section 2, we can see that the core of CS rule is constructing the SC
and obtaining the contradiction separation clause (S), which is the
C+ part. When the C+ is empty, i.e., the original formula set S is
proved.

3.1. The Architecture of Provers Based on
the S-CS Rule

We build two sets of U (unprocessed clause set) and P (processed
clause set) by using the current mainstream given-clause frame-
work. We initialize the clauses and put all of them into U to present
an improved architecture, as shown in Figure 1.

The workflow is as follows:

Step 1. Initializing and preprocessing all clauses in S and put them
into U .

Figure 1 The architecture of provers based on standard
contradiction separation (S-CS) rules.
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Step 2. Obtaining the given-clause Cg according to heuristic
strategy.

Step 3. Simplifying Cg, according to some simplified rules and puts
the result into set P.

Step 4. Applying the S-CS Rule to Cg to divide it into C−i and C+i ,
and building a new contradiction C− with the other clauses in P.

Step 5. Applying CS Rule to obtain the contradiction separation
clause C+.

Step 6. If C+ is empty, then S is UNSAT and the process end, else
switching to Step 7.

Step 7. Obtaining a new clause C’ from C+. and simplifying C’. If C’
is not trivial, then adding C’ to U.

Step 8. Repeating Step 1.

As can be seen from the above framework process, implementing
the ATP based on the S-CS Rule needs to solve the following key
points:

1. Constructing the SC C− and get the contradiction separation
clause C+ efficiently.

2. Obtaining the given-clause Cg.

3. Employing dynamic learning heuristics strategy in
deduction

3.2. Dynamic Construction of the SC

3.2.1. The process of separating SC

Unlike a traditional binary resolution, the CS rule is essentially
a dynamic, multi-clauses deduction rule. It should be noted that
the contradiction separation clause C+ is not only the result of
two clause resolutions but also the cooperative deduction result of
multi-clauses in the P.

The SC is separated from multi-clauses in the P. Intuitively, the
deductive based on S-CS Rule is the process of obtainingC+ by sep-
arating contradictions from P until C+ is empty.

According to Definition 2.1, the contradiction is a cartesian
set. The core of applying the S-CS rule is effectively separat-
ing CS from multi-clauses to obtain the contradiction separation
clause C+.

Thus, we propose a method to obtain C+ quickly. We assume the
processed clause set P = {C1,C2, ...,Cm}, and the literals in each

clause are divided into two parts. That is, C𝜍i
i = {C𝜍i+

i ,C𝜍i−
i },

(𝜎i is a substitution to Ci). What’s more, C+ = {C𝜍1+1 , … ,C𝜍m+
m },

C– = {C𝜍1−1 , … ,C𝜍m−
m }. The process is as follows:

Step 1. Obtaining given-clause Cg = {l1, … , ln} from U according
to clause selection strategy. Putting all literal into C+g , then C+g =
{l1, … , ln} and C−g = ∅.

Step 2. Find a substitute 𝜎i make 𝜎ili {li ∈ C+g } and ∼ 𝜎ilj {lj ∈ C−}

be a complementary pair. Then, removing 𝜎ili from C𝜍i+
g .

Figure 2 The pseudo-code for Bulid standard constradiction
algorithm.

Step 3. If C𝜍i+
g is empty, canceling all substitutions and returning to

step 1.

Step 4. Finding a substitute 𝜎i to make 𝜎ili {li ∈ C+g }, and
∼ 𝜎ilk {lk ∈ C𝜍k+

k andC𝜍k−
k = ∅} be a complementary pair. Then,

moving the ∼ 𝜎ilk from C𝜍k+
k to C𝜍k−

k and removing 𝜎ili from C𝜍i+
g .

Step 5. Repeating Step2 until no substitute 𝜎i is found.
Step 6. Putting C𝜍+g into C+.

The pseudo-code in Figure 2 is correspond to the above process
of build SC, when Cg added to P, we can obtain a new contradic-
tion separation clauseC+ in the deduction. This process is dynamic.
Finally, C+ is the result of multi-clauses cooperating.

In the above process, there will be some cases of given-clause Cg:

i. All literals need to be removed from C𝜍i+
g

(a) Because they are complementary to ∼ 𝜎ilj lj ∈ C−
(Step 3). We think this inference is invalid because
Cg has no direct effect on obtaining the C+ (no increase,
no decrease).
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(b) Because they are complementary to ∼ 𝜎ilk{lk ∈
C𝜍k+

k andC𝜍k−
k = ∅} (Step 4). This case will be dis-

cussed in Section 3.2.2.

ii. No literal is removed from Cg.
No newly generated CS and Cg remain in P.

iii. Some literals are removed from C𝜍i+
g .

It is the most common case, which means that the S-CS rule
is successfully applied with Cg so that the new C+ can be
obtained.

3.2.2. Restart

The technology for finishing the current CS construction process
and starting a new deduction process is called the restart. Employ-
ing some restart strategies can avoid falling into a local search.

i. Restarting when all literals are removed from Cg in Step 4.

Obviously, in this case, the number of words in the C+ is the
least. Thus, by removing some literals from C+ without adding
new ones in it, we can restore all substitution (rollback) and put
the Cg back to U.

ii. Restarting when the clause cannot be selected from U.

In this case, either set U is empty, or each clause in U participating
in the deduction is invalid.

Note that we say a clause is invalid has two situations: the case i)
and some constraints are notmet. For example, themaximumnum-
ber of literals in C+ is 2, but when some given-clauses participate in
deduction, this limit is exceeded.

The restart process is as follows:

i. Adding all clauses in P to U and clearing the set p.

ii. Simplifying set U and removing redundant clauses.

iii. Selecting clause Cg from U again and putting it into P
according to the selection strategy to start a new round of
deduction.

3.3. Clause Selection Strategy Based on
S-CS Rule

A powerful ATP requires three elements [11]: 1). Powerful infer-
ence rules; 2). Good heuristic search strategy; 3). Efficient data
structure.

The traditional binary resolution is due to the simple deduction
rules: only two clauses for resolution. Therefore, most of the ATPs
focuses on the research of heuristic search strategies. For example,
vampire [12] has hundreds of different heuristic strategies. Further-
more, some articles [13,14] employ artificial intelligence ormachine
learning to generate different search strategies. These search strate-
gies can improve the performance of ATPs to a certain extent.
However, usually, too many strategies lead to too complicated
heuristic strategies, or they are only useful for certain types of prob-
lems. These drawbacks make it difficult to find a generally good
heuristic strategy.

In this section, firstly, we propose rules for formulating heuristic
strategies based on the characteristics of the S-CS Rule, and then
give the clause selection strategy based on the S-CS Rule.

3.3.1. Heuristic strategy based on S-CS rule

The traditional binary resolution based on saturate employs var-
ious heuristic strategies. These strategies usually come from two
considerations:

i. Controlling the expansion of the proof-search space asmuch as
possible to avoid too fast expansion of the clause set. However,
such control is limited. In most cases, it is difficult to avoid the
rapid expansion of the search space because the decision time
increases.

ii. Based on the goal-oriented strategy, employing the conjecture
clause is preferred in the resolution process. It is a roughheuris-
tic strategy, so the conjecture-clause participation in resolution
will generate a large number of lemma clauses. Therefore, most
of ATPs will generally combine the goal clause with the mini-
mum age of the hybrid strategy.

Compared with the binary resolution method, the deduction
method based on the S-CS rule comes with an outstanding feature:
If and only if the contradiction separation clause C+ is empty, the
clause set S is UNSAT. Therefore, for the heuristic strategy based
on S-CS rule, the following two rules are followed:

Rule 1: The literals in the contradiction separation clause C+ is as
little as possible.

Rule 2: The effect of unification/substitution on literals in C− is as
small as possible.

For rule 1, there are twomeanings. The first is to make themost use
of the unit clause. The priority to use the unit clause must satisfy
rule 1. Secondly, make full use of the coordination of multi-clause
when there are more than two clauses in P. The more synergized
effectors of all clauses are involved, themore literals will be removed
from given-clause Cg.

For rule 2, the literal P(x) has better synergy than literal P(a). So we
do not want the literal instanced too early, which will be discussed
in Section 3.4.

Compared with the traditional binary resolution, the above two
rules make the heuristic strategy based on the S-CS rule pay more
attention to dynamic control of the deductive process, as well as are
comfortable to be implemented.

3.3.2. Clause selection

Clause selection is the most crucial choice point of resolution-
based provers [5]. The VAMPIRE prover was the CASC (Confer-
ence on Automated Deduction ATP System Competition) winner
in recent years, which uses two parameters for clause selection: the
age and the weight of a clause [12]. Another powerful purely equa-
tional theorem prover E prover uses some heuristic strategiesy [5]:
first-in/first-out FIFO, symbols count, and goal-directed evaluation
function. GKC [15] is a fresh resolution prover, which uses a 2-layer
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clause selection queues algorithm. The first layer uses the common
ratio-based algorithm. Further, the second layer uses four separate
queues based on the clause’s age.

In the ATP based on the S-CS rule, we perform the selection of a
given clause by employing a dynamic-static combined strategy to
satisfy the above rules, as has been proposed in Section 3.3.1.

Our clause selection strategy based on S-CS rule as follows:

i. Static clause selection strategy
(a) Selecting clauses from one of the queues by Least literals

priority.

(b) Selecting clauses from one of the queues by employ-
ing a stability-weight ratio. That will be discussed in
Section 3.4.

ii. Dynamic clause selection strategy

Unlike the binary resolution, the dynamic strategy is one of the
significant advantages of S-CS rule. The core idea is to guide
the entire deduction process by the control strategy of the con-
tradiction separation clause C+.
(a) Dynamic strategy for controlling the number of literals

in C+

Each deduction based on the S-CS rule will generate aC+.
In order to make the literals in C+ be as little as possi-
ble, we set a threshold Nr. Let |C+|denote the number of
literals in C+. If |C+| > N , contradiction separation fails,
i.e., this inference is invalid. Rollback and put theCg back
to U, reselect given clause.

Setting the threshold N is also a dynamic learning pro-
cess. For example, with an initial value N = 1, when all
the given-clause Cg from U are invalid, then N = N + 1;

(b) Least |C+| priority strategy
The dynamic strategy is different from the static strat-
egy. When N > 1 and there are some candidate clauses
C1,..., Cm with the same number of literals. We can try
to inference with them separately, so the clause with the
smallest |C+i |, (i ∈ m) is preferred. Due to trying each
candidate clauses, the deduction efficiency is affected. In
practice, the candidate clause with more complementary
predicates in the C− is preferred.

(c) Older clause or goal clause priority strategy
Firstly, the older clause needs to be chosen; the two
clauses are of the same age, choosing the goal clause or
the descendants of the goal clause.

3.4. Dynamic Learning Heuristics Strategy

According to the analysis in Section 3.3.1, there are two guiding
rules for the heuristic strategy based on the S-CS rule, where Rule 2
primarily refers to the control over the literal instances during the
inference process.

In this section, we will propose a weight evaluation method
and discuss a dynamic learning heuristics strategy based on
Term Stability.

3.4.1. Weight function based on term stability

In the unification and substitution process, the variable in first-
order logic probably replaces other variables and constants. Term
stability is applied to evaluate how easy it is for a term to
substitute for another term during the inference process, which
reflects the complexity of the term’s substitution. Thus we the term
f (x) is more stable than x, and ground term f (a), a is the most
stable.

Definition 3.1. Let t be a term in first-order logic, t ∈ T, term
stability S(t) is defined as if S ∶ T ↦ R+, which satisfies

S(t) =
⎧⎪
⎨
⎪
⎩

Wx, t ∈ V
Wg, t ∈ G

Wx +
W(tf)

W(tf) + 1, t ∈ Fv

. (1)

In (1) V is a finite set of variable symbols, G denotes the set of
ground terms, Fv indicates a set of function terms with variables,
and tf is a function term involve variables.Wx, Wg are the weight of
variable and ground-term, respectively. They are fixed values and
satisfyWg >Wx > 0.W(tf) is the weight of tf :

W(tf) = Wg ∗ |t|g +Wx ∗
n

∑
i=1

|t|DXi
+∑

tfi

S(tfi). (2)

where |t|g denotes the number of ground terms in the term t.
n

∑
i=1

|t|DXi
represents the sum of the nesting depths of variable xi in

term t, e.g., there is a term t1
t1 = f5(f (x1), f2(x2, x3), x4, f1(a1), a2). Then |t|g = 2,

n

∑
i=1

|t|DXi
= 2 + 2 + 2 + 1 = 7.

Example 3.1. Calculate the term stability of the following three
terms:

t1 = f3(a1, f1(x1), f1(x2)).

t2 = f3(x1, x2, f1(f1(x3))).

t3 = f3(x1, a2, f1(f1(x3)), x3).

LetWg = 2,Wx = 1. ThenW(t1) = 5.333, S(t1) = 1.842.

W(t2) = 3.636, S(t2) = 1.784.

W(t3) = 5.636, S(t3) = 1.849.

Definition 3.2. (Clause stability) There is a clause C = l1 ∨… ∨ ln.
Clause stability of C is defined as

Sc =
1
n

k

∑
i=1

S(li). (3)

When selecting Cg, the clauses with smaller Sc are preferred to par-
ticipate in the deduction.
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In practice, if there are multiple literals with the same variable in a
clause, then any variables instance will affect more than one literal.
For example, for clause C1: P2(x1, x2)∨P1(f (x1)), if x1 in P1(f (x1))
is substituted as a1, then P2(x1, x2) changes to P2(a1, x2) by substi-
tution 𝜎:{a1/x1}.
We call this correlation between such kind of literals is literal-
relational in the same clause.

Definition 3.3. Let l be literal in clause C. literal-relational R(l) is
defined as if R ∶ T → R+, which satisfies

R(l) = 1 −
∑ |l|xi
|V|c

(4)

where |V|c denotes the total number of variables in C and ∑ |l|xi
indicates the variable xi in literal l.

Example 3.2. There is a clause

C1 ∶ P2(x1, x2) ∨ P1(f(x1)) ∨ P2(f2(x1, x3), f2(x1, x2)

|V|c = 7, then literal-relational of each literal is as follows:

R(P2(x1, x2)) = 1 − (3 + 1) /7 = 3/7.

R(P1(f(x1))) = 1 − 3/7 = 4/7.

R(P2(f2(x1, x3), f2(x1, x2)) = 1 − (2 + 1 + 0) /7 = 4/7.

3.4.2. Literal selection

During the S-CS building process, it needs to find a substitute 𝜎i
that makes 𝜎ili{li ∈ C+g } and ∼ 𝜎ilj{lj ∈ C− or lj ∈ C+} a comple-
mentary pair. It is known that different substitution sequences lead
to different results. For example, there is a set C− in P and a given
clause.

Cg ∶ P2 (x11, a1) ∨ Q2 (x12, a1) ∨ P3 (a1, a2, a3) .

C−:{~P3(x1, x2, x3), ~P2(x1, x2), ~Q2(x1, x3)}. If we prefer literal
P3(a1, a2, a3), we will obtain a substitution 𝜎1:{a1/x1, a2/x2, a3/x3}.
Obviously, there is no complementary pair in C− for the literals
P2(x11, a1), Q2(x12, a1).They will be added into the C+. But if we
find 𝜎 for literal P2(x11, a1), at first. Then only literal P3(a1, a2, a3)
is retained. In other words, literal selection strategies directly affect
ATP performance.

Actually, we hope that literal selection strategies can achieve the
following effects:

A. Keeping the literals as few as possible in Cg

B. Avoiding literal instance in C−, if possible, in the deduction
process. To has the minimum influence on the C− after the
unification.

Therefore, we employ some literal-selection strategies as
follows:
i. Literal-stability priority queues.

It gives higher priority to literal with smaller S(l).

ii. Literal-relational priority queues.
It gives higher priority to literal with smaller R(l).

Figure 3 The framework of CoProver.

iii. Dynamic information for literal priority queues.
The dynamic weight function is: d (l) = usel + 𝛼fi,
𝛼 > 1 where usel indicates the actual usage count of lit-
eral l, fi denotes the statistics on the number of failures of
the l in the inference process. It gives higher priority to
literal with smaller d(l).

3.4.3. Other dynamic restriction strategies

According to the limitation of computing resources, such as CPU
time,memory size, and storage space，we give the dynamic restric-
tion strategies based on the S-CS rule.

Themain idea is to set some thresholds, initially small values.When
some property of a new clause exceeds these thresholds, discard this
new clause. If the S-CS rule fails and the proof-search restart, these
thresholds are increased.

These limits are as follows:

• Limit the maximum function layer of clause.
At first, we count the maximum function nesting layer of the
original clause, let flimit = [fmax/2, fmax]. The proof-search begin
of the limit flimit, if maximum funcion nesting layer of C+

exceeds flimit, it is discarded. If the S-CS proof-search fails,
flimit = flimit+1.

• Limit the maximum size of clause.
As same, count the maximum length of clause in S, let
|C|limit = [1, |C|max]. If |C+| > |C+|limit, the C+ is discarded

4. THE COMBINED ATP BASED ON
S-CS RULES

The CoProver is a hybrid inference system constructed by SCS-
Prover and Prover9. Figure 3 shows the main framework of
CoProver.

SCS-Prover is an ATP system based on S-CS rule, while Prover9 is
a famous resolution-based prover, its overall architecture is very
similar to that of Otter-3.3 [16,17]. In the works of other scholars,
Prover9 is often used nowadays as a benchmark tomeasure the per-
formances of the proposed provers.

The workflow of CoProver is as follows:

Step 1. SCS-Prover is first applied to the initial set of clauses S for
deduction and generates an inference result, i.e., contradiction sep-
aration clause C+.
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Step 2. IfC+ is empty, the proof is found, outputUNSAT.Otherwise,
putting C+ into the clause set R.

Step 3. If the terminating condition of S-CS rule is reached, then we
obtaining new clause set S’ = S ∪ R. Otherwise, go Step1.

Step 4. Input S’ into the Prover9 for proof-search and obtaining a
result.

In the above process, there are some points.

i. The termination condition for SCS-Prover mainly includes
time limit and restart times limit.

ii. The clause set R can be regarded as a lemma set of S.

According to the features of S-CS rules, we can control the C+ in
the deduction process; to generate as more unit clauses and ground
clauses as possible. Experiments show that the addition of these
lemmas can greatly improve the ability of Prover9.

5. EXPERIMENTS

C++ in the 64-bit Unbuntu operating system is used to implement
the first-order logic proverCSC-Provers based on the S-CS rule, and
the combined system CoProver.

5.1. The Result of Competition Problems

We testify CoProver by the first-order logic problems taken from
the category FOFs of the last three years CASC [18] competition
(2017–2019).We assign the value 2 to theMax literals number ofC+

(|C+| = 2). For the problems in 2017 and 2018, the CoProver runs
with a CPU time limit of 300 s per problem; specifically, the CPU
time limit of CSC-prover is 180s, and the CPU time limit of Prove9
is 120s. In addition, for the competition problems in 2019, we set
the total CPU time limit to 180s. first, the maximum CPU time of
CSC-prover was 120s, and then 60s is left to Prover9

All the experiments are done in an Intel(R) CPU I7 @ 3.4 GHz and
8GB of main memory. The experimental results are presented in
Table 1.

Table 1 shows the comparison result of Prover9 and CoProver solv-
ing the competition problems in 2017–2019. The “Ratio” row is the
radio of the number of solved problems of CoProver and Prover9.
We can see that CoProver can solve 63% more problems than by
Prover9.

Next, the performance of the hybrid ATP system is analyzed
further. Table 2 shows the results of different phases of CoProver.
The “CSC-Prover” denotes the results that only the CSC-Prover

Table 1 Comparison of the number of solved problems from Conference
on Automated Deduction ATP System Competition (CASC).

2017 (500) 2018 (500) 2019 (500)

Prover9 140 122 100
CoProver 238 199 163
Ratio (%) 70 63 63

based on S-CS rule is used in the first phase, the “Prover9+” row
denotes the results of the secondphase. In this stage, the input clause
set S’ for Prover9 is S ∪ R, where S is the original clauses set, and R
is the obtained lemma set by CSC-Prover. The “New Solved” indi-
cates the number of newly solved problems. That is, these problems
cannot be proved by using Prover9 itself alone. For example, for the
problems in 2017, the “Prover9+” can only solve 55 problems of
them,while the other 18 problems cannot be solved only byProver9.
The “Ratio” is the ratio of the above two values. Higher ratios indi-
cate that the combined system has a better performance than other
provers. That is, the lemma-set R is more helpful to improve for
Prover9.

Table 2 also shows that the lemmas provided by S-CS rule-based
ATP have a significant effect on improving Prover9’s performance.
Especially for the problems in 2019, even if they are harder. Actually,
the performance of Prover9 has been improved to 47.22%.

Figure 4 shows the relationship between the solution number and
CPU time. It can be seen that with some lemmas (i.e., contradiction
separation clause) are provided by CSC-Prover, most problems can
be solved in a short time, where many problems cannot be solved
by Prover9.

5.2. The Result of Benchmark Problems
in TPTP

We testifyCoProver on the first-logic problems with rating = 1 from
the TPTP-v6.1.0 [19] problems library. The rating is an indicator of
how hard the problem is, so the problem with rating = 1 meant that
it could not be solved by any ATPs system. However, we proposed
a hybrid ATP system based on the S-CS rule. Namely, the CoProver
can solve 103 problems with rating = 1, within the CPU time limit
300 s. See the detailed proof in Appendix.

Table 2 Analysis at the different phase of CoProver.

2017 2018 2019

CoProver 238 199 163
CSC-Prover 183 129 136
Prover9+ 55 70 36
New solved 18 21 17
Ratio (%) 32.73 30.00 47.22

Figure 4 First-order theorem (FOF)
results-proof-time by CoProver.
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6. CONCLUSIONS AND FUTURE WORKS

In this paper, we firstly proposed a simplified and effective imple-
mentation scheme for the S-CS rule. We also presented a dynamic
heuristic strategy based on the S-CS rule scheme. Then, we intro-
duced the CoProver as a novel combined ATP based on S-CS rule
for more effectively and efficiently solving the problems with
rating = 1.

Experimental results showed that compared with the provers based
on binary resolution, the performance of the prover based on
S-CS rule is significantly improved.As a result, in theTPTPproblem
library, our proposed combinational ATP system CoProver suc-
cessfully solved 103 problems, which could not be solved by any
other existing prover.

In the future, we will further optimize the dynamic coordination
strategy based on the separation rules of contradictions. Notably,
the first-order logic formula decision strategy of equivalent words
will be optimized and improved.
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APPENDIX

Table A.1 List of problem with rating = 1 by CoProver.

Problem Time (s) Problem Time (s) Problem Time (s)

LCL148-1 124.04 RNG010-1 224.05 LCL530+1 242.63
REL040-4 156.56 RNG027-1 105.46 LAT216-1 216.61
ROB006-3 168.78 LAT064-1 160.68 LCL554-1 217.03
GEO046-2 121.13 LAT225-1 79.84 CT065-1 106.55
RNG028-9 86.91 REL038-1 135.08 WV850-1 227.17
RNG028-7 192.77 REL040-1 293.45 ET021-3 162.16
LCL147-1 273.25 REL037-1 41.84 REL039+1 99.76
LAT191-1 224.73 LAT231-1 43.96 LCL477+1 229.48
LAT190-1 218.57 LAT206-1 84.41 NUM005+1 233.36
REL032-1 123.05 ALG238-1 58.17 ALG001-1 219.57
GRP740-1 0.94 LAT221-1 149.93 REL040+4 85.43
REL032-2 284.34 KLE149+1 175.64 LAT226-1 270.66
GRP196-1 187 KLE149+2 2.56 LAT188-1 249.16
REL017-1 1.25 LAT161-1 139.06 KLE047+1 97.77
LAT193-1 279.66 REL016+1 19.33 LAT187-1 143.5
REL016-1 7.1 REL017+1 4.40 WW456-1 44.52
LAT074-1 140 REL020+1 92.31 RNG028-1 295.03
ALG243-1 31.14 REL032+1 91.99 LAT139-1 168.89
LAT077-1 124.6 REL032+2 216.19 LCL417-2 287.98
LAT229-1 280.74 REL040+1 169.07 KLE162+1 133.51
RNG029-2 244.72 REL041+1 40.09 LAT140-1 64.18
GEO031-3 59.89 KLE033+1 58.16 ANA004-3 2.96
REL040-2 169.73 KLE155+2 205.42 GEO113+1 86.60
RNG027-2 249.82 LDA009-2 64.46 REL016+2 99.37
GRP732-1 211.75 ET970+1 11.26 REL039-1 89.98
LAT181-1 252 KLE164+1 75.77 LDA005-2 91.12
LAT078-1 12.26 KLE168+1 37.92 NUM923+1 106.25
LAT224-1 294.31 LAT075-1 276.75 KLE163+1 196.50
ALG241-1 42.4 RNG029-1 294.78 LAT215-1 193.22
LAT202-1 102.77 REL040+2 240.94 LAT189-1 178.95
LAT185-1 78.48 KLE077+1 41.7 WV953-1 77.68
LAT184-1 154.19 REL040+3 153.87 REL017+2 182.15
LAT186-1 258.24 WV719-1 84.05 REL017-2 133.86
LAT180-1 177.93 LCL511+1 110.45 ALG344-1 110.87
ALG010-1 284.51
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