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ABSTRACT
Community detection structure is very important for understanding the organization of the complex networks. This problem is
NP-hard, which is modeled as a seriously nonlinear optimization problem. Recently, different intelligence algorithm has shown
promising results for this problem. The chemical reaction optimization (CRO) algorithm is a novel evolutionary algorithmwhich
mimics the phenomenon of interactions among molecules in a container. The one characteristic of CRO is that the size of the
population is changing. In this paper, we redefined the operator of CRO, and using the method of multiobjective decomposition
decomposed the community detection problem into a scalar of sub-problems and using the proposed a discrete variant of CRO
(MODCRO) to optimization. In the proposed method, neighbor-based turbulence of on-wall ineffective collision operator and
decomposition operator are redefined which is responsible for searching local exploitation ability of algorithm, and the inter-
molecular ineffective collisions operator and synthesis operator is also redesigned which is responsible for searching global
exploration ability of algorithm. Experimental results clearly demonstrate that the proposed algorithm outperforms a number
of state-of-the-art multiobjective optimization evolutionary algorithms (MOEAs) on modularity.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Complex networks have utilized in many fields such as computer
science, biology, physics and mathematics, which represent differ-
ent types of complex systems. Many examples of complex systems
include collaboration networks, communication networks, biologi-
cal networks, bibliography networks, technological networks, social
networks and even political election networks. These complex net-
works have inhomogeneous and consisted some substructures. In
the substructures, there have some vertices (or nodes) and connec-
tion (or links or edges) to form different network structure. The
property of the complex network attracted many researchers from
different field to study, is community structure. A community is
defined as a subset of nodes in a network that connection between
these nodes are denser than other nodes of the rest network, which
called a cluster or module. Community detection is the process of
discovering the hidden community structures in complex networks,
and it can be used for discovering a complex network topology
structures and understanding complex functions [1]. Therefore, the
detection and analysis of community structures is of great signif-
icance for investigating the organization and function of complex
systems [2,3].

*Corresponding author. Email: lihongye8@163.com

Generally, a community refers to a subset of nodes within the net-
work such that connections between the nodes are denser than
connection with the rest of the network. Over the last decade,
many different methods have been proposed for community detec-
tion [4]. Among these algorithms, evolutionary algorithms (EAs)
have shown the competitive performance in finding the commu-
nities. Therefore, lots of studies have been done based on meta-
heuristic methods like: genetic algorithm (GA), chemical reaction
optimization (CRO), particle swarm optimization, memetic algo-
rithm, teaching learning optimization and so on. Pizzuti [5,6] has
proposed a single objective GA-net for network clustering. Gong
et al. [7] have suggested a memetic algorithm-based network clus-
tering method. A discrete particle swarm optimization algorithm
and a clonal selection algorithm for community detection are pro-
posed by Cai et al. [8,9].

All of the abovementioned approaches optimize only one objective.
However, community detection not only considers one objective,
but also considers other objectives, at the same time. Recently, sev-
eral multiobjective community detection methods were developed
by different researchers. These methods include multiobjective
genetic algorithm (MOGA-Net), in which the network commu-
nities were discovered by employing a GA and the number of
clusters is automatically determined [10], multiobjective EA with
decomposition (MOEA/D-Net) [11]. Zou et al. [12] proposed
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a discrete teaching–learning-based optimization for community
detection. Shadi Rahimi et al. [13]  proposed a novelmulti-objective
community detection method based on a modified version of par-
ticle swarm optimization. They innovation in PSO algorithm is
changing the moving strategy of particles. Zhang et al. [14] pro-
posed a local information based MOEA, termed LMOEA that
an individual updating strategy is suggested to improve the qual-
ity of community detection. Jiao et al. [15] proposed quantum
mechanism-based particle swarm optimization algorithm which
attempt to apply the quantum mechanism-based discrete particle
swarm optimization algorithm into network clustering.

In this work, a new multiobjective method of MODCRO algo-
rithm is developed to solve the community detection problem.
In the MODCRO, using the locally based adjacency representa-
tion strategy initializes a population, firstly. In the population,
a molecular represents a value of the cluster. Then using the
framework of decomposition decomposes the multiobjective com-
munity detection problem into a scalar sub-problem. In the last
stage, those sub-problems were optimization redefined the CRO
algorithm.

The remainder of this paper is organized as follows: Prelimi-
naries are introduced in Section 2. Section 3 describes the pro-
posed method for community detection. Section 4 presents the
tests on real-world complex networks and the experiments are
conducted along with statistical tests. Conclusions are given in
Section 5.

2. PRELIMINARIES

2.1. Community Detection Problem

A networkN can be modeled as an undirected graph [3]G = (V, E),
where V = (v1, v2, … , vn) denote the sets of nodes and E =
(e1, e2, … , em) is a set of edges (links) connecting two elements in
V. In the graph G, if node i connect with j, then Aij = 1, else Aij = 0.
Then the graph G can descript as a network adjacency matrix A =
(Aij)nxn, where n is the number of vertices or nodes in the complex
network. Let V1 ⊆ V,V2 ⊆ V, and V1 ∩ V2 = 𝜙, L (V1,V2) =
∑

i∈v1,j∈v2
Aij, L (V1,V1) = ∑

i∈v1,j∈v1
Aij, L

(
V1,V1

)
= ∑

i∈v1,j∈V1
Aij,

among them, V1 = V − V1. Let x = (G1 (V1,E1) , … ,Gk (Vk,Ek)),
denote a partition of network G, where, Vi and Ei represent vertex
set and edge set of the sub-network Gi (i = 1, 2, … , k), respectively.
Let n represents all possible partitions of network G, then network
G, then the module density (abbreviated as D) of network G under
x division is defined as follows:

D (x) =
k

∑
i=1

d(Gi) =
k

∑
i=1

L(Vi,Vi)
|Vi|

−
k

∑
i=1

L(Vi,Vi)
|Vi|

, x ∈ Ω. (1)

The two terms in Eq. (1) respectively reflect the tightness of the con-
nection between themodules and between themodules, and reflect
the topological characteristics of the community structure. These
two items will be selected here as different optimization goals.

In [11], they formulated the complex network as a multiobjective
optimization problem, in which two objectives termed as negative

ratio association (NRA) and ratio cut (RC) were to be minimized.
The optimization can be defined as

min

⎧⎪⎪
⎨⎪⎪
⎩

f1 = −
k
∑
i=1

L (Vi,Vi)
|Vi|

= NRA

f2 =
k
∑
i=1

L
(
Vi,Vi

)
|Vi|

= RC

. (2)

In this paper, we used the kernel k-means (KKM) to replace NRA
[11], thus, the community detection problem of the unsigned com-
plex network is defined as follows:

min

⎧⎪⎪
⎨⎪⎪
⎩

f1 = 2 (n − k) −
k
∑
i=1

L (Vi,Vi)
|Vi|

= KKM

f2 =
k
∑
i=1

L
(
Vi,Vi

)
|Vi|

= RC

. (3)

2.2. Multiobjective Optimization

AMOP can be defined as follows:

{
minF(x) = (f1(x), f2(x), ..., fm(x))

subject to : x ∈ Ω.
(4)

where Ω ⊂ ℝn is the decision space and x = (x1, x2, ..., xn) ∈ Ω
is a decision variable which represents a solution to the target MOP.
F(x) ∶ Ω → ℝm denotes the m-dimensional objective vector of
the solution x. The attainable objective set is defined as the set
{F(x)|x ∈ Ω}.
Very often, since the objectives in (4) contradict each other, there
is no point in Ω minimizes all the objectives simultaneously. The
answer is set of solutions that define the best tradeoff between com-
peting objectives. The best tradeoffs among the objectives can be
defined in terms of Pareto optimality. The set of Pareto optimal
solutions in the objective space is called the Pareto optima front
(PF) and the set of all Pareto-optimal objective vectors is the Pareto
set (PS) [16]. Generally, a decision maker requires an approxima-
tion to the PF for having a good insight to the problem and making
her final choice.

2.3. Chemical Reaction Optimization

Lam and Li first developed a new computation intelligencemethod,
called CRO for the optimization problems. It mimics the natu-
ral phenomenon to solve the optimization problem [17,18]. The
two factors that have taken the researchers interests in a chemical
reaction are

• Chemical reaction always gives a more stable product with
minimum energy in it.

• The chemical reaction is a stepwise searching for an optimal
solution.

CRO has emerged as one of the efficient techniques for different
optimal problems [19–24]. The objective function of the optimiza-
tion problem is represented by potential energy in CRO. Besides,
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Table 1 Attributes of a molecule [21].

Symbol Chemical Meaning Mathematical Meaning

w Molecular structure Solution
PE Potential energy Objective function value
KE Kinetic energy Measure of tolerance of having

worse solutions
NumHit Number of hits Current total number of moves
MinPE Minimum value Current optimal function value
MinHit Minimum hit number Move number at current optimal

solution

some other terminology of the chemical reaction is represented in
CRO algorithm such as molecules, kinetic energy, the number of
hits, etc. The meanings of these terminology used in CRO are given
in Table 1.

The basic chemical reaction algorithm has four kinds of reaction
operator including on-wall ineffective collision, decomposition,
inter-molecular ineffective collision and synthesis.

1. On-wall Ineffective Collision operator of CRO
The on-wall ineffective collision reaction occurs when a
molecule hits the wall of the container and then bounces back.
After the on-wall collision, the structure of molecules will
change. This collision is used to implement local search in
the search space. Basically, a very small change occurs in the
molecular structure of the participant molecule and thus tra-
verses neighborhood space. If the current molecular structure
is w, it turns into another state w′. The reaction process is
defined by Eq. (5).

w (i) → w (i)′ , (5)

where, w (i)′ = Neighbor (w (i)).
As a rule of thumb, when a molecule hits a wall, a portion of its
KE will be lost, the lost energy is stored in the central energy
buffer, when the reaction completes. Its KE is updated by

KEw′ =
(
PEw − PEw′ + KEw′

)
× 𝛼, (6)

where 𝛼 is a random number that lies in between [KELoss-
Rate,1], where KELossRate is a parameter of CRO.

If there is high KE processed by the molecule, then there is a
possibility that PE could be increased depicting the worst solu-
tion. This change is desirable to make the algorithm to escape
from its local minimum. The KE drops as an effect of collision.
Its level of tolerance in getting a worst solution is lowered.

2. Decomposition operator of CRO
A decomposition operator means that a molecule w hits a wall
of the container and then breaks into two or more molecules.
Compared with the ineffective collision, the decomposition
is more vigorous and the resultant molecule structures have
greater differences from that of the original one. This opera-
tor can be considered as the situation when we finish the local
search from w to w1′ and w2′. Due to the conservation of
energy,wmay sometimes not have enough energy to sustain its
transformation into w1′ and w2′. A certain portion of energy
in buffer accumulated from on-wall ineffective collisions can
be utilized to support the change.

3. Inter-molecular Ineffective Collision operator of CRO
An inter-molecular ineffective collision occurs when two or
more molecules collide with each other and then separate.
The number of molecules involved in this collision remains
unchanged after the collision. If more molecules are involved
in the reaction, more energy is needed, and the structure of
the molecule is also more flexible. In the original implemen-
tation in the simulation, we assume only two molecules, e.g.,
with molecular structures w1 and w2, involved. Similar to the
on-wall ineffective collision, this collision is also not vigorous
and the newmolecular structuresw′

1 andw
′
2 are produced from

their own neighborhoods separately.

4. Synthesis operator of CRO
Synthesis does the opposite of decomposition. A synthesis
refers to the situation when two or more molecules collide and
then combine to form one new single molecule. This process
implies that the search regions are expanded, i.e., diversifica-
tion of solutions.

2.3.1. Energy handling

Energy can be transformed from one type to another type but all
energy manipulations must follow the first law of thermodynamics
that states the energy can neither be created nor destroyed. A gen-
eralized form of elementary reaction can be written as follows:

w1 + … + wk → w′
1 + … + w′

l , (7)

where k and l are the numbers of molecules involved before and
after the reaction, respectively. For k = 1 and l = 2, the reaction can
be said to be a decomposition reaction.

The corresponding energy equation can be written as follows:(
PEw1 + … + PEwk

)
+
(
KEw1 + … + KEwk

)
+ buffer

=
(
PEw′1 + … + PEw′

l

)
+
(
KEw′1 + … + KEw′

l

)
+ buffer′.

In the above equation, the change of the total energy of the
molecules before and after the reaction is represented the left- and
the right-hand side of the equality respectively.

The general acceptance rule for the new solution is given as follows:

k

∑
i=1

PEwi
+

k

∑
i=1

KEwi
−

l

∑
i=1

PEwi
≥ 0. (8)

2.3.2. The sketch of CRO algorithm

As explained above, the step-wise procedure for the implementation
of CRO can be summarized as follows:

In the iteration stage, one reaction from the designed reactions
occurs to meet the termination condition. This is done by select-
ing a random variable from 0 to 1 and then checking the ran-
dom variable with MoleColl. If the random variable is greater than
MoleColl then an intramolecular reaction will be occurred other-
wise inter-molecular reaction will be occurred. After each iteration,
the NumHit of any particular molecule increases if the reaction is
intramolecular or NumHit of two or more molecules increases if
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the reaction is inter-molecular. Besides, the resultant molecule is
checked with all other molecules to see whether the molecule is
local best or not. In the finalization stage, the global best solution
with the objective function value is returned as output. The pseudo
code of CRO algorithm is given in Algorithm 1.

3. THE PROPOSED ALGORITHM MODCRO

In this section, the proposed MODCRO method is used to deal
with community detection problem in a complex network. The pro-
posed MODCRO algorithm is easy to implement, and the detailed
description for the MODCRO algorithm is as follows:

3.1. Motivations

When a single-objective optimization algorithm solves commu-
nity detection network, it only considers clustering, without
considering other constraints such as degree. Therefore, single-
objective algorithmsmay not be suitable for networks withmultiple
potential structures [10]. Community detection considered that the

connection within a community is distributed densely and the links
between different communities are distributed sparsely. It can be
formulated a two-objective function optimization problems, which
one objective is minimized the inter-links. The other is maximum
intra-links. However, as far as we know, there is no research of
using the multiobjective CRO algorithm to detect the communi-
ties in complex networks till now. Based on these considerations,
we put forward a discrete new multiobjective method of decompo-
sition (MODCRO) for community detection in complex networks.
The specific operation of the algorithm is shown in Section 3.2.3.
The flow chart of the algorithm is shown in Figure 1. A detailed
description of the MODCRO algorithm for community detection
is shown in Algorithm 6.

3.2. MODCRO

In this section, we propose a decomposition-based multiobjec-
tive CRO algorithm for community detection in complex networks
(MODCRO). The proposed MODCRO algorithm has two major
contributions are proposed to solve the community detection in
complex networks, and the details are listed in the following:
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• Firstly, the decomposition-based multiobjective CRO
algorithm (MODCRO) is introduced as a new method to
optimization the community detection in complex networks,
which supplied the framework of TMOEA/D to solve the
practical applications with unknown Pareto frontiers.

• Secondly, the multiobjective optimization of decomposition
selection operation is adopted to overcome the modularity
resolution limitation problem.

3.2.1. Representation

The MODCRO use a molecule (a real integer vector) as a parti-
tion of a complex network for community detection problem. In
the population, each molecule (individual) of population can be
expressed as a set of real integer values. In solution, if there have
some integer values of different nodes are the same value, those
nodes corresponding the node or vertices are the same community;
otherwise, there have some integer values of different nodes are dif-
ferent, those nodes corresponding the node or vertices are differ-
ent community. The dimension of eachmolecule (individual) is the
same as the number of total nodes (vertices). Therefore, a molecule
(individual) vector represents a partition of the network. As men-
tioned above, there areN vertices withC communities in a complex
network, the molecule (individual) vector Xi is defined as follows:

Xi = (xi1, xi2, ..., xiN) . (9)

Each dimension of position is a random integer between 1 and N,
i.e., xij ∈ [1,N], whereN is equal to the total vertices number of the
network. xij represents the community that the j-th vertex of the i-th
individual belongs to. If xij = xik, it indicates that the j-th node (ver-
tices) and k-th node (vertices) of i-th molecule (individual) belong
to the same community. Figure 1 shows the representation of a dis-
cretemolecular, Figure (a) shows the graph topology of the graphG;
Figure (b) shows the community and vertex of the molecular (indi-
vidual) {1 3 2 3 1 1 2 2 3}; Figure (c) shows the community.

3.2.2. Initialization

The proposed MDCRO algorithm is easy to implement. First, ini-
tialize a population with N individuals (molecules) by using a
problem-specific strategy, which initialize in the way of Figure 1
until all vertices are traversed, and then a valid molecule x is gen-
erated. After repeating the above operation for PopSize time, a set
of valid individual was got as the initial population. In the pro-
posed MODCRO, a label propagation-based initialization strategy
[25] is used to initialization the population, which can quickly reach
a consensus on a unique label by collection the densely connected
groups of nodes. The label propagation-based initialization strategy
can reduce the searching space and the same to save the time for the
algorithm.

Figure 1 Illustration of the representation of a discrete molecular.

3.2.3. Reproduction procedure

MODCRO firstly decomposed the community detection problem
into a set of single objective optimization problems, and then
use the discrete CRO to optimize those problems at same time.
The CRO has four operators: on-wall ineffective collision opera-
tor, decomposition operator, inter-molecular ineffective collisions
operator and synthesis operator.

1. On-wall Ineffective Collision operator of MODCRO
The on-wall ineffective collision operator and inter-molecular
ineffective collisions operator are similar. The on-wall ineffec-
tive collision operator has onemolecular involved but the inter-
molecular ineffective collisions operator has two molecules
involved. The on-wall ineffective collision operator is carried
on the local search, which can be described in Algorithm 2
and figure 2. The on-wall ineffective collision operator is sim-
ple, but it does not take any guidance into account. From the
Figure 1 and Section 3.1, we know that changing one vertex of
individual may greatly change the division. Therefore, the pro-
cedure on-wall ineffective collision operator gives MODCRO
the ability to explore other promising areas.

2. Decomposition operator of MODCRO
Decomposition operator of MODCRO used the total
half change method by A. Y. S. [17]. The pseudocode of the
decomposition operator is shown in Algorithm 3. First, copies
w1′ and w2′ come from one individual w. Then selecting ⌊n/2⌋
vertices of individual w1′ is randomly which can represent by
INDX1. For each of vertex, e.g., w1i′ , selecting a vertex from
the neighbors of i is randomly, and then assign it to w1i′ .
Above shows the generation process of w1′, the generation
process of w2′ is similar to w1′. The Figure 3 shows the deco-
mosition operator.

Inter-molecular Ineffective Collision operator ofMODCRO
The Inter-molecular ineffective collision operator has two
ways to search. The one way is greedy search the neighbor
of molecular, and the other is searching by using on-wall
ineffective collision operator.

3. Synthesis operator of MODCRO
Combing two individual w1 and w2 into a new individual w is
using the synthesis operator. The probabilistic selection strat-
egy [17] is used to generatew. The pseudocode of the synthesis
operator is shown in Algorithm 5. For each vertex wi is com-
ing from w, generating a random number 𝜂 ∈ [0, 1]. If 𝜂 > 0.5,
wi is replaced byw1i otherwise,wi is replaced byw2i, which can
show in Figure 5.

3.3. Framework of the Proposed Algorithm

In the proposed algorithm, the adopted decomposition method is
widely usedweight summethod, which is described form-objective
problems using a weight vector Λi = (𝜆i1, 𝜆i2, ..., 𝜆im). The algo-
rithm flow is shown in Figure 6.

min gws
(
xi|Λi) = 𝜆i1 ⋅ f1

(
xi
)
+ 𝜆i2f2

(
xi
)
+⋯+ 𝜆imfm

(
xi
)
,
(10)
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Figure 2 Diagram showing on-wall ineffective collision the operator.

Figure 3 Diagram showing the decomposition operator.

wherem equals five in this paperΛi = (𝜆i1, 𝜆i2, … , 𝜆im) corresponds
to a sub-problem i (i = 1, 2, … ,Q), 𝜆1 + 𝜆2 +⋯ + 𝜆m = 1, and xi
is a solution to be optimized.

Many practical optimization problems have a Pareto front with
an irregular shape. To approximate the Pareto optimal solutions
of a multiobjective optimization problem, Q Zhang et al. [26]
recently developed a novel multiobjective EA based on decomposi-
tion (MOEA/D). It can work well if the curve shape of the Pareto-
optimal front is friendly. However, it shows poor performance
about the irregular shape of the Pareto-optimal front. For this prob-
lem, HL Liu et al. proposed an improved MOEA/D algorithm
(denoted as TMOEA/D [27]) that utilizes a monotonic increasing
function to transform each individual objective function into one
so that the curve shape of the nondominant solutions of the trans-
formed multiobjective problem is close to the hyper-plane whose
intercept of coordinate axes is equal to one in the original objective
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Figure 4 Diagram showing the inter-molecular ineffective collision
operator.

function space. We consider the community detection problem as
a discrete optimization problem, so TMOEA/D [27] was applied in
this work.

3.4. Computational Complexity

MODCRO is a decomposition-based algorithm, where the com-
putational complexity is O(MNT), where N is the population size,
M is the number of objectives and T is the number of the weight
vectors in the neighborhood of each weight vector.

4. EXPERIMENTAL RESULTS AND
DISCUSSIONS

For all experiments, 20 independent runs are carried out on the
same machine with a Celeron 3.40 GHz CPU, 4GB memory and
windows 7 operating systems, and conducted with the maximum
number of function evaluations (MAX_FES) as the termination cri-
terion. The proposed MODCRO and comparison algorithms were
implemented in Microsoft Visual Studio 2015 (C++).

In this section, six real world datasets were used to evaluate
the effectiveness and efficiency of the proposed MODCRO. The
results of GA-Net [5], Meme-Net [7], MOGA-Net [10], MOEA/
D-Net [11], MODPSO [4], QDM-PSO [15], MODTLBO/D [12]
and LMOEA [14] algorithms are compared with our proposed
algorithm.

4.1. Parameter Settings

The D-MOCRO algorithm was implemented in visual studio 2012.
In experiments have been performed on a computer having Intel
Core i5 CPU 2.67 GHz and 8GB of memory. The MAX_FES =
10,000, the population size N = 100, the neighborhood list size T =
5. Parameters of D-MOCRO are set as follows: The initKE equals to
10,000, the initBuffer equals to 100, the decThres equals to 800, the
synThres equals to 15, the lossRate equals to 0.1, the collRate equals
to 0.2. The initKE controls the molecular kinetic energy. The init-
Buffer controls container total energy which plays a keeping energy
conservation role. The decThres is a threshold value of carrying on
decomposition operator. The synThres is a threshold value of car-
rying on synthetic operator. The collRate is a threshold value of car-
rying on whether the molecules collide with the container wall or
collide with each other. All the compared algorithms stop when the
number of function evaluation reaches the maximum number. The
parameters of compared algorithms are listed in Table 2.

4.2. Test Data Sets

In this section, six real-world datasets are illustrated, i.e., the
Zachary’s karate club network [29], the dolphin social network [30],
the American college football network [31], the Santa Fe Institute
(SFI) network [32], the netscience network [33] and the power grid
network [34]. The characteristics and parameters of the networks
are given in the Table 3. In this work, each social network can be
considered as undirected and unweighted.

4.3. Evaluation Metrics

In this work, the modularity (Q) and the normalized mutual infor-
mation (NMI) are adopted to evaluate the quality of solution [36].
The modularity method is the most widely used in the commu-
nity detection of complex networks. It is measured the difference
between the actual fraction of edges within communities and its
expected value.  The modularity (Q) can be expressed as follows:

Q =
Nc

∑
i=1

(
li
2m −

(
di
2m

)2)
, (11)

wherem is the edges, NC is the communities, li is the total number
of links in the community i and di the total degree of vertices in the
community i.
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Figure 5 Diagram showing the synthesis operator.

Table 2 The parameter settings of the different compared algorithms.

Algorithm pop maxFES pc pm ns Reference

GA-Net 100 10000 0.9 0.1 – [5]
Meme-Net 100 10000 0.9 0.1 – [7]
MOGA-Net 100 10000 0.9 0.1 – [10]
MOEA/D-Net 100 10000 0.9 0.1 40 [11]
MODPSO 100 10000 0.9 0.1 40 [4]
QDM-PSO 100 10000 0.9 0.1 – [15]
MODTLBO/D 100 10000 0.9 0.1 40 [12]
LMOEA 100 10000 0.9 0.1 40 [14]

Table 3 Network parameters.

Network Node Number Edge Number Real Clusters Reference
Karate 34 78 2 [29]
Dolphin 62 159 2 [30]
Football 115 613 12 [31]
SFI 118 200 unknown [32]
Net-science 1589 2742 unknown [33]
Power grid 4941 6594 unknown [34]

Other popular metric is normalized mutual information (NMI)
[35,36], which is used to estimate the similarity between the true
partition and the detected partition for a network with the known
partition. It defined as follows: given two partitionsA andB of a net-
work, let C be the confusion matrix whose element Cij is the num-
ber of nodes shared in common by community i in partion A and
by community j in partition B. the NMI(A, B) is then defined as
follows:

NMI(A,B) =
−2∑CA

i=1
∑CB

j=1
Cij log

(
CijN/Ci.C.j

)
∑CA

i=1
Ci. log (Ci./N) +∑CB

j=1
C.j log

(
C.j/N

) , (12)

where CAand CB are the number of clusters in the commu-
nity partitions A and B. Cij is the number of vertices of com-
munity i of the partition A that are also in the community
j of the partition B. Ci.(C.j) is the sum of elements of C in
row i (column j), and N is the number of nodes of the net-
work. The higher NMI (A, B) value represents a greater sim-
ilarity between community A and community B. If A = B,
NMI(A, B) reaches the maximum value which equals to 1. If A ≠ B,
NMI(A, B) reaches the minimum value which equals to 0.

4.4. Comparison of Results on the
Extension of GN Benchmark Networks

In order to verify the performance of proposed MODCRO algo-
rithm, the GN benchmark networks [37] are used. The GN bench-
mark networks include 128 vertices, and each vertex has an average
degree 16. Those vertices ofGN benchmark network can be divided
into four clusters with the same number of nodes in every clus-
ter. The different mixing parameter effects on the structure of GN
benchmark networks. When the mixing parameter 𝛾 is bigger than
0.5, the structure of networks is rather sparse that means those net-
works has weak community structure. When the mixing parameter
𝛾 is smaller than 0.5, vertices of the networks have a tight network
structure. Therefore, the range of the mixing parameter 𝛾 is chang-
ing from 0.0 to 0.5. In the experiment, using eleven synthetic net-
works verify the proposed algorithm, and using the NMI measure
the similarity between the true partitions and the detected ones.
The larger value of NMI, the better clustering performance of the
algorithm archives. Figure 7 shows the average NMI values over 30
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Figure 6 Flow chart showing the working of MODCRO algorithm.

independent runs, obtained by compared algorithms for extended
GN benchmark. Our proposed algorithm MODCRO has the best
performance than comparing algorithms from the Figure 4. In
Figure 4,MODCROhas highly robust, due to the 𝛾 is equals to 0.45,
MOCRO archives high NMI value, 0.94.

The Table 4 shows the modularity Q of the proposed algo-
rithmMODCRO and compared algorithms of GA-Net, Meme-Net,
MOGA-Net, MOEA/D-Net, MODPSO and QDM-PSO on exten-
sive classical GN benchmark networks. Those values of modularity
Q are obtained over 30 independent runs. Each algorithm repre-
sents the mean value of the first line of the data, and the data
in the second row brackets denote the standard deviation. In the
Table 4, when the mixing parameter 𝛾 increased, the modularity
values of Q are decreased. The Table 4 shows the proposed algo-
rithm MODCRO obtained good modularity values of Q, which
has good performance on mixing parameter value 𝛾 on 0, 0.10,
0.25, 0.30, 0.35, 0.40, 0.45 and 0.50. In the early stages of evolution,
inter-molecular ineffective collisions operator and synthesis opera-
tor play the leading role, which can help the algorithm to explore the
unknown space, in contrast, in the later evolution stage of the algo-
rithm, the algorithm develops and utilizes the accumulated useful
knowledge information, which is conducive to the maintenance of
diversity and convergence of solution sets. Moreover, the on-wall
effect collisions operator and decomposition operator can enhance
the diversity of MODCRO algorithm to accelerate algorithm
converge optimal solutions during the search. In addition, the “-”
represents the corresponding algorithm cannot obtain data.

4.5. Comparison of Results on Real-World
Benchmark Networks

Table 5 shows the modularity of compared algorithms and the pro-
posed algorithm on different real-world networks. The Zachary’s
karate club network is a classical dataset from the literature in the

field of social network analysis which is a social network of friend-
ship between 34 members of a karate club. Every node of the net-
work represents a member of the club. From the Table 3, we can see
the Zachary’s karate club network is divided into two groups. The
Figure 8 (a) shows the proposed algorithm MODCRO successfully
detect the clustering which is divided into two groups. The Figure 8
(b) shows the maximum modularity of karate club network by the
partition in 4 communities, which obtained the highest modularity
Q is equals to 0.4198. From the Table 5, we can see the MODCRO
achieve the highest average value of NMI is equals to 1, and corre-
sponding to the highest average of Q is 0.9498.

The Bottlenose Dolphin social network is a network with 62 bot-
tlenose dolphins. This network is separate two large groups. The
one is the female group and the other is the male one. From the
Figure 9 (a) shows the true partitioning of dolphin network by
MODCRO (NMI = 1) which obtained from Table 5 (a), and (b)
shows the structure with the highest modularity value (Q = 0.5264)
which can be seen from Table 5.

The American college Football network represents American foot-
ball game, which was constructed by M. Girvan and M. E.J. New-
man. The network concludes 115 nodes, 616 edges and 12 clus-
ters. Every node of the network represents football team and the
each edge denotes the regular season game between two teams they
connect. Compared with the Zachary’s karate club network and
the American college Football network, the structure of Ameri-
can college Football network is relatively complex, the proposed
algorithm MODCRO can search the best value of modularity
(Q = 0.6045), the Figure 10 (a) and (b) shown the division of
the network.

From the Table 3, we can see the SFI network have 118 nodes,
200 edges and the real cluster is unknown. From the Table 5, the
highest modularity Q is equals to 0.7662, which is the best value
of Q compared with MOGA-net, MOEA/D-net, QDM-PSO and
MODPSO.



534 H. Li and W. Gan / International Journal of Computational Intelligence Systems 13(1) 524–537

Figure 7 Average NMI values obtained over 30 runs for the proposed
MODCRO and compared algorithms on the extended GN benchmark networks.

Table 4 Q (Modularity) obtained by seven algorithms on different eleven mixing parameters.

Mixing Parameter 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.6879 0.6695 0.6533 0.5992 0.5366 0.4454 0.3464 0.2623 0.1869 0.1428 0.1274
GA-Net (0.2361) (0.0854) (0.1512) (0.1362) (0.0110) (0.0156) (0.0208) (0.0172) (0.0102) (0.0076) (0.0050)

0.7405 0.6533 0.5996 0.5418 0.4627 0.3207 – – – – –
Meme-Net (0.1568) (0.0914) (0.1467) (0.1109) (0.1532) (0.0091)

0.6942 0.7011 0.5016 0.5464 0.3900 0.2026 0.0503 0.0210 – – –
MOGA-Net (0.0208) (0.0605) (0.1384) (0.0302) (0.0327) (0.0500) (0.0638) (0.0531)

0.6840 0.6440 0.4897 0.4512 0.4658 0.4753 0.2199 – – – –
MOEA/D-Net (0.0863) (0.0808) (0.2313) (0.2099) (0.1202) (0.0071) (0.0079)

0.7117 0.65332 0.5996 0.5508 0.5 0.4502 0.4023 0.3496 0.3105 0.2564 0.1426
MODPSO (0.0102) (0.0115) (0.0012) (0.0213) (0.0109) (0.0157) (0.0162) (0.0147) (0.0056) (0.0186) (0.0067)

0.7415 0.6879 0.6498 0.6498 0.5358 0.4975 0.4981 0.4479 0.3724 0.2578 0.1472
QDM-PSO (0.0077) (0.0541) (0.0071) (0.0071) (0.0418) (0.0036) (0.0041) (0.0030) (0.0329) (0.0412) (0.0234)

0.7934 0.6935 0.6541 0.6029 0.5303 0.5208 0.5016 0.4991 0.4432 0.3136 0.1993
MODCRO (0.0065) (0.0044) (0.0067) (0.0046) (0.0079) (0.0031) (0.0032) (0.0042) (0.0069) (0.0056) (0.0325)

The bold values are represented the best performance value.

Table 5 Q (Modularity) obtained by seven algorithms on six different real-world networks.

Network Karate Dolphin Football SFI Net-science Power Grid

GA-Net 0.4197 (0.3601) 0.5277 (0.5028) 0.5738 (0.5275) 0.7505 (0.7486) – –
Meme-Net 0.4020 (0.4013) 0.5072 (0.4901) 0.5597 (0.5330) 0.6881 (0.6817) – –
MOGA-Net 0.3714 (0.3654) 0.3735 (0.3715) 0.5661 (0.5487) 0.7486 (0.7452) 0.8906 (0.0092) 0.6927 (0.0105)
MOEA/D-Net 0.4197 (0.4130) 0.5264 (0.5148) 0.6033 (0.5918) 0.7486 (0.7428) 0.9064 (0.0078) 0.7582 (0.0094)
MODPSO 0.4197 (0.4185) 0.5263 (0.5148) 0.6032 (0.5946) 0.7395 (0.7269) 0.9127 (0.0088) 0.8257 (0.0126)
QDM-PSO 0.4198 (0.4146) 0.5265 (0.5161) 0.6042 (0.5951) 0.7403 (0.7317) – –
MODTLBO/D 0.4198 (0.00000) 0.52091 (0.00105) 0.60375 (0.00121) – – –
LMOEA 0.4198 (0.0000) 0.5206 (0.0010) 0.6044 (0.0000) – 0.9370 (0.0036) –
MODCRO 0.4198 (0.0000) 0.5264 (0.0534) 0.6045 (0.00034) 0.7662 (0.0035) 0.9443 (0.00351) 0.8553 (0.0011)
The bold values are represented the best performance value.

The netscience network is a network of co-authorship of scientists
working on network theory and experiment. In our experiment,
we handle the network as an unweighted one. From the result
of the Table 5, the MODCRO has the highest modularity value
(Q = 0.9443) compared with MOGA-net, MOEA/D-net,
QDM-PSO and LMOEA, which indicates the proposed MODCRO
has a strong structure.

The large-scale power grid network represents the Western States
Power Grid of the United States. The Table 3 shows the Power

grid network has 4941 nodes, 6594 edges and the real cluster is
unknown. Every node of the Power grid network is a power base
station and the edge denotes the transforming line between two
stations. For this network, our algorithm obtained the highest
modularity value of 0.8553 which compared with MOGA-net,
MOEA/D-net and MODPSO (Table 6).

The Figure 11 shows the Pareto front of karate club and dolphin
network by MODCRO.
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Figure 8 Clustering results on karate club network by MODCRO. (a) Real structure detected by
MODCRO. (b) Structure with highest Q value.

Table 6 Normalized mutual information (NMI) obtained by seven algorithms on three different
small-scale real-world networks.

Network Karate Dolphin Football

GA-Net 0.6872 (0.6624) 0.5932 (0.5836) 0.8251 (0.7638)
Meme-Net 1 (0.8635) 1 (0.9449) 0.8525 (0.8500)
MOGA-Net 1 (0.8593) 1 (0.7853) 0.8019 (0.8011)
MOEA/D-Net 1 (0.9455) 1 (0.9154) 0.8930 (0.8852)
MODPSO 1 (0.9945) 1 (0.9152) 0.8616 (0.8566)
QDM-PSO 1 (0.9498) 1 (0.9160) 0.8929 (0.8834)
MODTLBO/D 1 (0.9506) 1 (0.9259) 0.8809 (0.8357)
LMOEA 1 (0.9528) 1 (0.9430) 0.8987 (0.8661)
MODCRO 1 (0.9673) 1 (0.9459) 0.900 (0.8674)
The bold values are represented the best performance value.

Figure 9 Clustering results on karate club network by MODCRO. (a) Real structure detected by
MODCRO. (b) Structure with highest Q value.

5. CONCLUSION

CRO andMOCRO algorithms have been studied and used for con-
tinues and discrete optimization problems, but their applications
in discrete multiobjective optimization are still at low pace. This
paper first proposed a discrete multiobjective chemical reaction
algorithm, which the CRO framework and the four operators of on-
wall ineffective collision operator, decomposition operator, inter-
molecular ineffective collisions operator and synthesis operator are
redefined. Moreover, based on the proposed MODCRO, a novel
multiobjective discrete CRO algorithm is first presented to solve the
multiobjective community detection problem in the complex net-
work.MODCROalgorithm, theTMOEA/D framework can be used

to decomposition the multiobjective community detection prob-
lem into a scalar of sub-problems and using the redefined CRO
algorithm to optimize. Neighbor-based turbulence of on-wall inef-
fective collision operator and decomposition operator can enhance
the local exploitation ability of algorithm and the inter-molecular
ineffective collisions operator and synthesis operator enhance the
global exploration ability of algorithm. The multiobjective opti-
mization about decomposition selection operation is adopted to
overcome the modularity resolution limitation problem.

In order to verify the performance ofMODCRO, the proposed algo-
rithm comparedwith eight well-known algorithms, from the results
of experiments on both synthetic and real life network, we can see
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Figure 10 Clustering results on karate club network by MODCRO. (a) Real structure detected by
MODCRO. (b) Structure with highest Q value.

Figure 11 Pareto front on karate club and dolphin network by MODCRO.

theMODCRO can achieve better modularity and can find commu-
nity partitions close to the actual ones. It can be seen that theMOD-
CRO is a good algorithm for solving the multiobjective community
detection in the complex network problem.
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