
International Journal of Computational Intelligence Systems
Vol. 13(1), 2020, pp. 352–365

DOI: https://doi.org/10.2991/ijcis.d.200313.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

Regular paper

NNIR: N-Non-Intersecting-Routing Algorithm for Multi-Path
Resilient Routing in Telecommunications Applications

Lewis Veryard1,*, Hani Hagras1, Andrew Starkey2, Anthony Conway2, Gilbert Owusu2

1The Computational Intelligence Centre, The School of Computer Science and Electronic Engineering, The University of Essex, Colchester, Essex, UK
2BT Labs, BT plc, Ipswich, Suffolk, UK

ART I C L E I N FO
Article History

Received 14 Oct 2019
Accepted 09 Jan 2020

Keywords

Resilient Routing
Multi-Path Resilient Routing
Genetic Algorithm Routing
Multi-Path Routing
Routing
Telecommunication Routing

ABSTRACT
In this paper, we will present a N-Non-Intersecting-Routing (NNIR) algorithm which is used to reduce the cost of resilient rout-
ing in telecommunications problems. Resilient Routing is the connections between two locations in a graph through the use of N
completely independent routes. Resilient Routing is applicable in a wide variety of domains including telecommunications, logis-
tics and embedded systems design. The proposed NNIR algorithm increase the cost of the primary route by taking a less optimal
route, thus freeing a more optimal route for the resilient routes, in turn reducing the total cost of both routes. This is achieved
through the use of a Genetic Algorithm, Dijkstra’s Algorithm and the repair operator. The proposed NNIR shows an average
improvement of 34.2% when compared to Dijkstra’s Algorithm (one of the most widely used algorithm routing). Similarly, there
is an average improvement of 34.2% when compared to A* (another popular shortest path algorithm). Additionally, there is an
average improvement of 26.9% when compared to Simulated Annealing (a popular evolutionary technique used within routing
problems). In this paper we show how NNIR performs within two different routing domains (telecommunications routing and
road routing), and compares it against three other routing techniques to solve the resilient routing problem.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Routing has become very important within the modern world with
graphs being able to represent a wide selection of networks, and
is very useful in a wide selection of domains, such as telecoms,
logistics, traffic and embedded systems design. A start and finish
location on a graph can usually be connected in many different
ways where there is always a shortest route to connect these loca-
tions together. Single path routing describes the situation where
one route is used to connect two locations together (as shown in
Figure 1), as the blue line. Resilient Routing is the use of more than
one route to connect two locations together, as shown in Figure 1 as
the blue line and the gray line. To qualify as a resilient route, the two
routes must never intersect with the exception of the start and fin-
ish locations. The two routes shownwithin Figure 1 intersect within
the London area so they are not actually resilient routing, although
Figure 1 is a good representation of how two routes can be used to
get to the same location.

Resilient Routing is not a simple problem due to the tightly con-
strained nature of the routing situation and the number of poten-
tial routes available across a graph which can be very large. The UK
road network, for example, is a very complex graph with a very high
branching factor (i.e. there are many different ways to get between
London and Dover), which is complex enough to get one route
through let alone several.

*Corresponding author. Email: Lhfver@essex.ac.uk

Dijkstra’s Algorithm is known to be able to find the shortest route
in a weighted graph with non-negative weights [1]. Although, Dijk-
stra’s Algorithm struggles to find the best solution where multi-
ple unique routes are needed through a graph. The “best” solution
here considers the total cost of all routes together. The situation
described (where Dijkstra doesn’t find the best overall solution)
is the Resilient Routing problem. Resilient Routing is a term used
to describe the need for multiple distinct routes. The algorithm
proposed within this paper N-Non-Intersecting-routing (NNIR) is
designed to deal with just this situation. This routing situation has
two key constraints: firstly, the different routes must not use any of
the same edges or vertices excluding the start and end vertices and
secondly, NNIR must try to get as close to the desired number of
routes as possible.

There are many different techniques that can be used to find the
shortest path through a network. There are traditional routing algo-
rithms such as Dijkstra’s Algorithm [1] or A* [2], both of these
methods are inherently greedy approaches. If all of the cheapest
infrastructure is consumed by the shortest path, they do not leave
any good potential routes for the resilient routes, which can lead to
a sub-optimal solution. Thus, they have the pitfall of not being able
to consider the effect of one route using the cheapest infrastruc-
ture. Other approaches that can be used for this problem include
methods that are considered more exhaustive in their search of the
problem space. These methods include Breadth First Search [3] or
Depth First Search [4] although these could be seen closer to brute

https://doi.org/10.2991/ijcis.d.200313.001
https://www.atlantis-press.com/journals/ijcis/
http://creativecommons.org/licenses/by-nc/4.0/


L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365 353

Figure 1 Road routing example.

force solutions to this problem. There are methods of pruning the
search trees that could prove effective, such as Alpha-Beta Pruning
[5]. These pruning techniques don’t scale so well in large networks
when compared to other techniques for solving a problem of this
complexity, thus increasing the space and time complexity.

The power of the A* search comes from its heuristics as they allow
it to perform a shortest path search with a much smaller time com-
plexity than Dijkstra’s Algorithm, while still returning the same
result. This faster search time is dependent on the heuristic being
accurate. Other methods such as Genetic Algorithms (GA) or sim-
ulated annealing use heuristics for the search of the problem space.
In all these methods heuristics are used to guide the search through
the universe of discourse in an attempt to find a more optimal
solution to a problem. The increase in optimality could be a bet-
ter solution to the problem or just a reduction in space and time
complexity.

GAs [6] or Simulated Annealing [7] are evolutionary optimiza-
tion techniques. These techniques are better suited to optimization
problems than routing problems in general, but they have both had
successes in routing problems [8,9]. Due to the nature of the con-
straints upon this problem it is easy to see how an evolutionary algo-
rithm could perform well in this problem space.

This paper is organized as follows: in Section 2, we provide an
overview on the problem of Resilient Routing in telecommunica-
tion networks. Section 3 provides an overview on traditional Rout-
ingMethods. Sections 4 provide an overview onGAs and Simulated
Annealing. Section 5 presents the proposed NNIR algorithm while
Section 6 presents the experiments and results. Section 7 presents
the conclusions and future work.

2. AN OVERVIEW ON RESILIENT ROUTING
IN TELECOMMUNICATION NETWORKS

Network connectivity has become an essential part of modern
society, as the world continues to becomemore reliant on intercon-
nectivity. Telecommunications companies provide point to point

routing in complex and imperfect networks for a wide variety of
customers. These customers include households, businesses and
government entities. Some businesses and government entities
require dedicated high-quality uninterrupted connections between
multiple locations, these could be data centers, offices or ware-
houses. One way to help ensure an uninterrupted connection is to
provide multiple routes between these locations. This is to ensure
these routes don’t have a Single Point of Failure [10] (sPoF). A sPoF
is avoided by having a set of routes which do not share any com-
mon infrastructure (excluding the start and end locations). The first
route between these locations is known as the Primary Route and
all subsequent routes are known as Resilient Routes. Some previ-
ous research has been performed on data uncertainty in relation
to Resilient Routing [11]. Although this uses Resilient Routing as a
framework for its data uncertainty tests, it is not inherently about
the Resilient Routing issue.

Dijkstra’s Algorithm is known to produce the shortest path between
two locations as it has a characteristically greedy approach to path
finding. Due to this greedy approach all the resilient routes will take
the next best available routes, without using any of the same infras-
tructure. Figure 2 shows Dijkstra’s Algorithm between Node A and
Node I. The route between A-B-C-I indicates the Primary Route
and the route between A-F-G-H-I indicates one Resilient Route. In
this example the cost of the Primary Route is 29 and the cost of the
Resilient Route is 40, giving a total cost to both routes as 69.

Figure 3 shows the same network being evaluated by the proposed
system. The systemmakes a change to the Primary Route, now indi-
cated by the route A-B-D-E-I, with a cost of 32, the Resilient Route
now denoted by the route A-F-C-I with a cost of 34. The total cost is
now 66, which is an improvement of the total cost for the solution
presented by Dijkstra’s Algorithm.

An alternative undesirable situation is where Dijkstra’s Algorithm
prevents any Resilient Routes from being found. This is caused by
Dijkstra’s naturally greedy approach to routing where it takes all the
best infrastructure to acquire the shortest path. This approach is
perfect for a shortest path algorithm, but when it comes to Resilient
Routing it is important that key infrastructure is not shared between



354 L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365

Figure 2 Dijsktra cost reduction example.

Figure 3 Optimized cost reduction example.

the two routes. This can be seen in Figure 4, for the route A-B-D-F-
G, where the cost of the route is 27.

This situation would be objectionable as there is no Resilient Route.
However, with one simple change to the route in Figure 4, it can
become possible to acquire a Resilient Route. Figure 5 demonstrates
the simple change in the Primary Route which unblocks the way
for the Resilient Route. The route is now A-B-D-G as opposed to
A-B-D-F-G. This change increases the cost from 27 to 36 but this
allows for the Resilient Route A-C-E-F-G to exist with a cost of 57,
bring the total cost of both route to 93. Although this cost increase
is significant it does now satisfy the routing needs. Hence, the cost
of the solution shown in Figure 4 is irrelevant.

The Traveling Salesman Problem (TSP) is not to be confused with
the Resilient Routing problem. TSP is a theoretical problem that
can be applied to many different logistics situations. The basic
premise is that an agent must travel throughout a graph whilst vis-
iting every vertex at the lowest possible cost and then returning to
the starting location. There are many different ways this problem
can be solved including GAs [12], Simulated Annealing [13], Parti-
cle Swarm Optimization [14] to name but a few.

Another important area of routing that is also not to be confused
with Resilient Routing is Quality of Service (QoS) routing [15].
QoS has becomemore and more important with the growth of new
areas such as the Internet of things [16], voice over IP and video on



L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365 355

Figure 4 Dijkstra blocking example.

Figure 5 Optimized blocking example.

demand [17]. The basic principle of QoS routing is the identifica-
tion and usage of the fastest andmost consistence connection avail-
able to the client at the time. There has been much success using
Dijkstra to route for QoS [18] or as a part of a wider solution for the
routing constraints [19]

3. AN OVERVIEW OF TRADITIONAL
ROUTING METHODS

3.1. Dijkstra’s Algorithm

There are many different single shortest path routing algorithms
with two of the most popular ones being Dijkstra’s Algorithm and
A*. Dijkstra’s Algorithm [1] as proposed by Edsger W. Dijkstra in
1956 is known to produce the shortest path between two locations
on a directed or undirected graph with non-negative weights. The
computation time of the algorithm was improved in 1984 with the
addition of a priority queue. The algorithm has been used in many
different forms formany different problems from robotic path plan-
ning [20] to path passenger planning through a public transport
network [21].

The algorithm begins by setting the cost to all the nodes from a
start location as infinity, and creates three data structures: a graph
of edges, open edges list and closed edges list. The algorithm starts
at a designated start location and sets its cost from the start location
to 0. It puts all the connected edges into the open data structure and
selects the one with the smallest cost for exploration. If the cost of
the connected edge is less than its current cost back to the start, it
replaces the value with the cost the current edge andmakes a note of
which vertices the edge is connected to. Once a vertex’s cost to the
start is no longer infinity all its edges are added to the open list. Once
an edge has been explored it is added to the closed list, showing that
it has already been explored. This process continues until all edges
in the open list have been explored, at which point an end location
can be passed to the algorithm. From that end location a chain of
edges can be found with the cost at each stage back to that start
location.

3.2. A*

The A* (A-Star) algorithm was developed as an extension of Dijk-
stra’s Algorithm, with the goal of achieving better performance [22].



356 L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365

There are two major differences between A* and Dijkstra’s Algo-
rithm; A* knows its goal location from the offset, and utilizes this in
A*’s other major difference, the heuristic function. This better per-
formance is achieved through the use of a heuristic function which
passes additional information to the cost function. This additional
information is taken into account when choosing which node to
expand next. The heuristic function guides the search toward the
goal and can represent many different forms of information, this
information must always be related in some way to the weight of
the edges in the graph. The accuracy of the A* algorithm is heav-
ily dependent on the heuristic function being correct, even a slight
error can make the resulting path inaccurate. The A* algorithm has
found popularity in twomajor fields: video games [23] and robotics
[24,25].

4. AN OVERVIEW OPTIMIZATION FOR
ROUTING

4.1. Genetic Algorithm

GAs are inspired by the concepts of survival of the fittest and evolu-
tion, using the core philosophies of selection, mating and mutation
[14,26]. AGA consists of a population that adapts solutions to a spe-
cific problem over the course of several generations. The solutions
are ranked through an evaluation function in which only a specific
number of solutions survive from generation to generation mim-
icking the idea of survival of the fittest. A GA is comprised of four
main parts: Evaluate, Selection, Crossover and Mutation as seen in
Figure 6.

The solutions in the population are represented by chromosomes
which are in turn comprised from a set of genes. Each gene repre-
sents a specific segment of information regarding to the solution.
These genes can be represented as strings, binary values or real
numbers and are chosen according to the problem domain. The

information stored within the genes are passed on through the pro-
cess of crossover, similar to concept of mating in the animal king-
dom. When two chromosomes are selected to produce offspring,
they will produce two offspring which are comprised partially
from each of their parent’s genes. Once the crossover is completed,
the offspring chromosomes now represent new solutions to the
problem.

Pairs of chromosomes can be selected for crossover through sev-
eral different methods including a tournament or a roulette wheel.
Most selection methods take into account the fitness score of each
chromosome. Fitness scores are determined by some specific met-
ric, which is a value that needs to beminimized ormaximized. Each
evaluation method is created specifically for each problem. Just as
in nature mutation can occur during the crossover process, muta-
tion will randomly change some genes within a child chromosome.
The purpose of mutation is to provide solution diversity and to help
avoid a local minima situation.

Within GA’s there are usually four tunable parameters: Max Pop-
ulation, Number of Generations, Crossover Point and Mutation
chance. The Max Population parameter sets a limit to the number
of chromosomes allowed within the general populous. The Num-
ber of Generations parameter sets a limit to the number of times
the whole population will go through the selection, crossover and
mutation process. The Crossover Point parameter determines how
muchof each parentwill be passed onto the offspring. TheMutation
chance sets how likely it is for an offspring chromosome to mutate.

Through multiple generations of selection, crossover and mutation
the more familiar process of evolution will begin to occur. This will
allow for the best solutions to a problem to rise to the top of the
gene pool and become the most dominant solutions. After the pre-
designated number of generations, the process will stop returning
the solutions with the best fitness score. GA’s have had successes in
many different fields including antenna design [14], routing [6] and
workforce optimization [27] to name a few.

Figure 6 An overview on genetic algorithms.



L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365 357

4.2. Simulated Annealing

Simulated Annealing was designed by S. Kirkpatrick in 1985 [11].
The basis of Simulated Annealing comes from the statistical mod-
elling of annealing of solids such as iron in smiting or silicon in
semiconductormanufacturing. The roots of the algorithmare based
in the Metropolis Algorithm [28] using some of the same concepts.
The basic principle of annealing is by heating or introducing energy
to an object so it can be manipulated into a different shape. As
this object cools it slowly loses its ability to be changed, with larger
changes being more difficult to make over time. As the energy or
heat finally reduces to a low state it becomes impossible to make
changes to the object without compromising its integrity [29].

Simulated Annealing takes the cooling process of annealing and
turns it into an optimizsation strategy. The solution is represented
much in the same way as in GA’s, with a chromosome and genes.
Where the chromosome acts as the combination of genes, with the
genes encoding specific information about a solution to a problem.
The key point with Simulated Annealing is there is only one work-
ing solution that can be modified.

The solution changes over time through the use of two operators,
the first of these operators makes a change to the solution by chang-
ing one of the genes in the chromosome. The new solution is then
evaluated for fitness. The second operator chooses whether or not
this change is accepted. The acceptance criteria is based on the
Boltzmann probability factor [30].

The parameters set when the algorithm starts are Temperature
which tends to be a very high value, Cooling Rate which is a
value between but not including 0–1 and finally the Threshold is a
very small number. The two operators happen in an iterative pro-
cess, while the Temperature is above the Threshold, Temperature
is reduced by multiplying it by the Cooling Rate at the end of each
iteration.

Simulated Annealing has been used for a variety of different prob-
lems, but has had significant success in routing. With algorithms
being developed formultimedia communications [31], QoS routing
[32] and the more generic TSP [33,34]. They all have some opera-
tional parameters in common, by representing the route as a set of
nodes in sequence with their associated costs.

5. THE PROPOSED NNIR ALGORITHM

The algorithm, as shown in Figure 7, consists of two major com-
ponents: Dijkstra’s Algorithm and the GA. The algorithm starts
by passing a start and finish locations to Dijkstra’s Algorithm. If a
route cannot be found by Dijkstra’s Algorithm it determines there
is no possible route and the algorithm halts. If a route is found, it
is then stored for later use. All nodes from the Dijkstra route, with
the exception of the start and finish nodes stored for later use, are
disabled from the graph. By disabling them it allows for Dijkstra’s
Algorithm to find a new independent route if any are applicable.
This process is completed N times with N denoting the number of
total required routes. At the end of this process the stored routes are
passed into the GA.

In the proposed algorithm, the gene pool is comprised of solutions,
with each solution being comprised of one or more chromosomes.
The chromosomes are comprised of a set of nodes, or vertices,

which represent the steps in a route. A single chromosome can be
seen in Figure 8. These chromosomes are flexible and can vary in
length and change dynamically as the solution demands. The chro-
mosomes, in a single solution, representsN-1 routes as the last route
for every solution is found using Dijkstra’s Algorithm. Hence, we
don’t need to include this in the set of chromosomes.

Each route within a single solution has its own chromosome, so if
there are three desired routes there will be two chromosomes per
solution. The population process is vital to getting enough genetic
diversity within a set of valid solutions, to sufficiently explore the
solution space. The Population process uses the sorted routes as a
starting point, along with the route from Dijkstra’s Algorithm. A
portion of the nodes are removed at random from the graph. There
are three conditions to this occurring: on this removal process the
start and finish nodes can’t be removed. Secondly, at least 10% of
the nodes in the graph must be removed. Finally at least 10% of
removed nodes (1 node being a minimum) must come from the
shortest path. Dijkstra’s Algorithm is then used once a set of nodes
have been disabled. The resulting route is set as a member of the
population, if there is not an identical route already in the popula-
tion. This process continues to generate solutions until the required
members of the population have been generated for the initial
population.

The evaluation process uses the value of each connection or edge.
The evaluation equations (Equations 1 and 2) denote how the cost is
calculated. The total cost of a solution is comprised of two portions
which are the cumulative cost (CC) (the cost of all nodes within the
solution) and theRouteDiscount (RD). TheRD is equal theDesired
Number (N) of routes minus the number of routes in that solution
(SR). RD can be written as follows:

RD = N – SR (1)

The total cost is the CC to the power of the RD. The total cost can
be written as follows:

Total Cost = 1
CCRD

(2)

The RD is required to exponentially penalize solutions with less
than the desired number of routes. Finally, as most routing situa-
tions are inherently minimization problems, the total cost equation
results in a value in the interval [0, 1]. The selection process that
uses this evaluation method is a survival of the fittest tournament.
With the best scoring solutions being the highest ranked solutions.

The crossover operator is key to exploiting the best information
within the chromosomes. A Crossover Point is selected at random
within each chromosome. For example, if we have a solution with
two chromosomes C1 and C2, C1 in the first solution is crossed
with C1 in a second solution, and C2 in the first solution is crossed
with C2 in the second solution. C1and C2 are never crossed as they
are completely separate sub-solutions. Crossover of two chromo-
somes are shown in Figure 9 with Parent One and Parent Two cre-
ating two offspring.

Crossover is good for the exploitation of the current information
within the solution space. But there is a need for Mutation allow-
ing for the algorithm to explore new areas of the solutions space.



358 L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365

Figure 7 An overview on the proposed N-Non-Intersecting-Routing (NNIR).

Figure 8 An example of chromosome.

The Mutation operator is simple but effective. A node from a chro-
mosome is selected at random within the range of [2, length-1]
where length refers to the last gene within the chromosome. The
selected node is then removed from the list and replaced by a differ-
ent node. This new node is selected by looking at all the nodes con-
nected to the selected-1 node, or the node prior to the selected node
within the chromosome. If there are no nodes available to replace
the selected node, then a new node is picked to be the selected
node. This new node is again selected at random in the same way as
the method as the previous selected node, although any previously
select nodes are excluded from the selection process. If none of the
nodes within the chromosome can be replaced then no mutation is
possible and the operator exits.

5.1. Repair Operator

The repair operator is an integral part of the proposed algorithm.
Without it, the search times required are much larger. The primary
purpose of the repair algorithm is to reduce incorrect chromosomes
throughout the population. This is achieved in two ways which we
shall name loop removal and reconnection.

Loop removal is a very simple but effective way of reducing invalid
chromosomes or solutions. Figure 10 shows the loop removal repair
method. One of the key constraints upon the problem of Resilient
Routing is that no vertex or edge within a graph can be used more
than once. Due to the nature of crossover and mutation within the
system it is common for loops or cycles to occur within the graph,



L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365 359

Figure 9 Crossover visualization.

Figure 10 Loop removal visualization.

thus violating this constraint. The genes that make up the cycles
are removed from the chromosome, therefore potentially creating a
valid solution, but ultimately adhering to the constraint.

Reconnection is the more powerful of the two repair methods. The
method iterates through the genes within the chromosomes to find
if any gene is not connected to the next gene. If such a gene is found
then Dijkstra’s Algorithm is run between the disconnected genes,
in an attempt to reconnect them. These new genes are then inserted

into the chromosome in between the disconnected genes. The key
constraints of Resilient Routing still apply, and if a chromosome
uses the same edge or vertex more than once then the loop removal
method is run again.

Due to the constrained nature of the graphs the chromosomes are
extremely fragile and are prone to inaccurate solutions. The primary
reason for the repair operator is to reduce search times and increase
the number of valid chromosomes within the gene pool.



360 L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365

6. EXPERIMENTS AND RESULTS

NNIR has been compared to three other methods for two reasons,
the first is to have a baseline to compare NNIR against. This is to
help comprehend the possible improvements that NNIR can have
over traditional routingmethods for Resilient Routing. Secondly, to
see how the GA within NNIR compares against another evolution-
ary strategies.

The experiments consist of two core comparisons: firstly, a total
cost comparison and secondly the emergence of a Resilience Route
where one was not previously available. The baseline routing is
shown by two traditional routing algorithms: Dijkstra’s Algorithm
and the A* algorithm. Then the evolutionary methods are NNIR
and Simulated Annealing.

Simulated Annealing has had success in the other routing prob-
lems such as the Traveling Salesmen Problem [33,34] so it is a sensi-
ble choice for comparison. Simulated Annealing has been given the
same repair operator that is present within theNNIRGA. This gives
Simulated Annealing the same chance as NNIR to make changes to
its solution whilst also remaining valid. Simulated Annealing uses
the same process as theMutation process from theGA to change the
genes within its solution. This is so that the changes are, again, sim-
ilar to the way they are committed within NNIR, alongside helping
keep it as close to a valid solution as possible. Just as with NNIR the
final resilient route is found using Dijkstra’s Algorithm.

The experiments undertaken are for a two-route scenario (i.e. N
is 2) so there is a Primary Route and Resilient Route. During the
experiments three metrics are recorded: the cost of the Primary
Route, the cost of a single resilient route and the total cost. One
extra metric is recorded for Simulated Annealing where it counts
the number of discrete valid solutions.

The experiments are completed with the use of two data sets: a Tele-
comsData set, provided by British Telecom (BT). The other data set
is an open source data set provided by Ordinate Survey of the road
network from the town of Exeter, UK. The TelecomsData set are the
origins of the Resilient Routing problem and illuminated the need
for this type of routing algorithm. The Ordinate Survey data set is
used for two reasons: firstly, it shows that the algorithm is applica-
ble to many different domains, secondly the Ordinate Survey data
is available online for free, so anyone is capable of recreating these
experiments [35].

The routes have been picked at random and no route is duplicated,
giving us independent testing scenarios. There are a total of 250
discrete routing scenarios for the Telecoms Data set, and 500 dis-
crete routing scenarios for theOrdinate Survey data set. This section
is broken down into several sub areas, the first regard the situa-
tion where no resilience can be established using Dijkstra, this is
known as the blocking example. The second is concerning the situ-
ation where Dijkstra finds a sub-optimal solution, this is known as
the cost reduction example. The third is concerning the combined
results of both subsections and gives a total over view of the results.
The final area is a visualization of the problem and solution on the
Telecoms data set.

Table 1 shows that the NNIR algorithm has the largest number
of solutions with a Resilient Route in both data sets. NNIR has a
20% improvement over Dijkstra’s Algorithm on the telecoms data
set, and a 12.6% improvement on the road data set. Simulated

Annealing is capable of solving this problem on the telecoms data
set, but is unable to present any new solutions for the road data set. It
seems reasonable to hypothesize that Simulated Annealing doesn’t
perform as well on this problem when the chromosome becomes
much larger. Both Dijkstra’s Algorithm and the A* algorithm have
the same results on both data sets, this is due to similarity’s in the
algorithms. Due to the particular nature of the Road data set, many
roads within the UK are dead ends (dead ends are roads with the
same entrance and exit), therefore all algorithms perform worse
than on the telecoms data set, as they can’t find a Resilient Route on
these roads.

The blocking example is defined as the situation where Dijkstra’s
Algorithm can only find one route between two locations although
more than one is available. This is due to Dijkstra’s Algorithm using
all of the cheapest infrastructure between two points and blocking
the creation of any additional routes.

The blocking example is resolved by increasing the cost of the pri-
mary line, thus allowing a resilient line to be formed where applica-
ble. Figure 11 shows the distribution of primary route cost increases
in percentages. Both data sets are represented within the graph, the
first one (Blue) is the Telecoms dataset, the second (Orange) is the
Road dataset. The majority of cases in the Road data set are within
the 0–1% range, therefore in most cases by increasing the cost of
the primary line by a very small percentage it allows for a resilient
line to be found. In contrast the Telecoms data set is nowhere near
as clustered where most cases being distributed between the 2–3%
and the 10–11% range.

The Cost Reduction example is a scenario where the desired num-
ber of routes can be found by Dijkstra’s Algorithm although due to
the greedy nature of Dijkstra it is not the cheapest solution when
all routes are considered together. The following experiments com-
pare NNIR, A* and Simulated Annealing to a bassline result from
Dijkstra’s Algorithm.

Table 2 shows the total number of cases where the cost of each algo-
rithm is less thenDijkstra. NNIR has the best reduction in total cost
on both data sets, with 18.0% on the telecom dataset and 17.8% on
the road dataset. There is no improvement upon Dijkstra’s Algo-
rithm in regard to the A* algorithm on either data set. Simulated
Annealing on the other hand has an improvement on 0.6% of cases
on the Road dataset, although it didn’t find any improvements on
the Telecoms dataset.

Figure 12 shows the distribution of cases in which NNIR had a
reduction in cost when compared toDijkstra, therefore showing the
total decrease in cost across both the Primary and Resilient Routes.
Themajority of cases for the Telecoms data set are a small reduction

Table 1 The number of solutions where the given algorithm finds a
resilient route across both data set.

Percentage of Cases Where
Resilience Was Found

Telecoms Road

Dijkstra 50% (125/250) 24.2% (121/500)
N-Non-Intersecting-
Routing (NNIR)

70% (175/250) 36.8% (184/500)

A* 50% (125/250) 24.2% (121/500)
Simulated Annealing 64% (160/250) 24.2% (121/500)



L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365 361

Figure 11 Distribution of primary route cost increase as part of the blocking example solution (a scenario where Dijkstra can only
find one route between two locations).

Table 2 Percentage of cases with a reduction in the total cost when compared to
Dijkstra’s Algorithm in the cost reduction example [a scenario where more than
one route can be found by Dijkstra although N-Non-Intersecting-Routing
(NNIR) can reduce the total cost].

Percentage of Cases with a Reduction
in Total Cost vs Dijkstra

Data Set Telecoms Road

NNIR 18.0% (45/250) 17.8% (89/500)
A* 0.0% (0/250) 0.0% (0/500)
Simulated Annealing 0.0% (0/250) 0.6% (3/500)

of cost, reducing the total cost by 0–1%. Whereas the Road data set
is spread across the range, with some routes having a smaller total
cost reduction, and other having a much larger total cost reduction.

To reduce the total cost of a route the Primary Routes cost must
be increased to allow for other the Resilient Route to use cheaper
routes. Figure 13 shows the distribution of the percentage increases
of the Primary Route. The majority of the Road data increases the
cost of the Primary Route between 0% and 1% and it is mostly clus-
tered toward the lower end of the scale. Whereas the Telecoms data
set is spread across the scale with one case having an increase of
80–81%.

Table 3 demonstrates the improvement made by the combination
of both the blocking and cost reduction examples. By combining
both situations where NNIR outperforms Dijkstra the total output
of 38% on the Telecoms data set, and 30.4% on the Road data set.
NNIR was designed with the intention of being used on the Tele-
coms data set which shows in the results, although the Road data
set indicates that it is applicable in other domains that can be rep-
resented as a graph. Additionally, due to the highly constrained
nature of this problem, it seems reasonable to suggest that pop-
ulation base evolutionary algorithms perform much better. The

primary purpose of the NNIR algorithm was to reduce costs, but
these experiments show that it is also very capable at finding new
Resilient Routes where Dijkstra couldn’t (Blocking Example).

Figures 14a through 15b are all screenshots from a visualization
of the telecoms data set, they show the two examples where NNIR
excels and Dijkstra’s Algorithm struggles.

Figure 14a and 14b show the blocking example a scenario where
Dijkstra’s Algorithm can only find one route between the two loca-
tions. Figure 14a indicates that Dijkstra’s Algorithm is unable to
find more than one route between the start and finish locations.
Figure 14b is a visualization of the solution by the proposed NNIR
algorithm. NNIR is supplied the same start and finish locations as
Dijkstra’s Algorithm and finds two routes.

Figure 15a and 15b show the scenario where more than one route
can be found by Dijkstra allowing for cost reduction to occur (the
cost reduction example). Figure 15a supplies two routes this time,
but the shortest route is by far the primary route (indicated by
the color Black). Figure 15b shows the solution by the proposed
NNIR algorithm routes a longer Primary Route, and amuch shorter
Resilient Route, giving a total reduced cost.



362 L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365

Figure 12 Distribution of cases with a Reduction in Total Cost N-Non-Intersecting-Routing (NNIR) vs Dijkstra’s Algorithm for the
cost reduction example (a scenario where more than one route can be found by Dijkstra although NNIR can reduce the total cost).

Figure 13 Distribution of primary route cost increase as part of the solution to the cost reduction example [a scenario where more
than one route can be found by Dijkstra although N-Non-Intersecting-Routing (NNIR) can reduce the total cost].

Table 3 Total improvement of N-Non-Intersecting-Routing (NNIR) over
Dijkstra on resilient routing problem when a total improvement is defined
as a combination of the blocking example and the cost reduction example.

Telecom Road
Total Improvement 38% (95/250) 30.4% (152/500)

7. CONCLUSIONS AND FUTURE WORK

Network connectivity is an important part of everyday life. Within
a modern society people use a network connection for a wide
variety of tasks including work, leisure and financial transactions.

Corporate entities use network connections throughout their busi-
ness, these can be for connections between data centers, offices and
logistic centers. These corporate customers expect these connec-
tions to be of a high quality and uninterrupted. Although this sys-
tem can be used in many different domains not just networks, the
core of resilience can be applied to any system which can be repre-
sented as a graph. These other systems can include logistics, trans-
port and even embedded systems.

In this paper we have proposed a novel system to help prevent down
time and increase network resilience. This system is based upon the
combination of Dijkstra’s Algorithm and GAs, with the addition of
a new operator “The repair operator.” The core idea of NNIR is to



L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365 363

Figure 14 Shortest path available when using (a) Dijkstra’s algorithm (the blocking example) and (b) N-Non-Intersecting-Routing
(NNIR) (the blocking example).

Figure 15 Shortest path available when using (a) Dijkstra’s algorithm (the cost reduction example) and (b)
N-Non-Intersecting-Routing (NNIR) (the cost reduction example).

reduce the cost of multiple routing through a graph, by evaluating
all routes as a single solution.

In this paper we have presented a number of experiments com-
paring the proposed NNIR Algorithm to Dijkstra’s Algorithm, the
A* algorithm and Simulated Annealing. NNIR outperforms each
of these algorithms in the Resilient Routing problem. NNIR out
performs Dijkstra’s Algorithm by 38.0% on the Telecoms data set
and 30.4% on the Road data set giving an average improvement

of 34.2%. Additionally, NNIR outperforms the A* algorithm by
38.0% on the Telecoms data set and 30.4% on the Road data set giv-
ing an average improvement of 34.2%. Finally, NNIR outperforms
Simulated Annealing by 34% on the Telecoms data set and by 19.8%
on the Road data set giving an average improvement of 26.9%.

The proposed system can in the future be expanded by usingMulti-
Objective GAs such as NSGA-II. In addition, the system could be
expanded to look at data uncertainty using type 2 Fuzzy Logic.



364 L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365

CONFLICT OF INTEREST

The author declares no Conflicts of Interest.

AUTHORS’ CONTRIBUTIONS

Lewis Veryard—main author and creator of the proposed algo-
rithm. Hani Hagras—PhD Supervisor and without is guidance, this
couldn’t have been done. Andrew Starke—workflow supervisor at
British Telecom until he left. Anthony Conway—new Workflow
supervior at BT. Gilbert Owusu—BT PhD Supervisor.

Funding Statement

This work is funded by BT.

REFERENCES

[1] E. Dijkstra, Solution of a problem in concurrent programming
control, Commun. ACM. 8 (1956), 569.

[2] P. Hart, N. Nilsson, B. Raphael, A formal basis for the heuris-
tic determination of minimum cost paths, IEEE Trans. Syst. Man
Cybern. 4 (1968), 100–107.

[3] C. Zhang, S. Liu, Z. Sun, S. Sun, A breadth-first and disjointmulti-
path routing algorithm in wireless mesh networks, in Proceedings
of the 2013 15th IEEE International Conference on Communica-
tion Technology, Guilin, China, 2013, pp. 560–564.

[4] T. Cheocherngngarn, H. Jin, J. Andrian, D. Pan, J. Liu, Depth-first
worst-fit search basedmultipath routing for data center networks,
in 2012 IEEE Global Communications Conference (GLOBE-
COM), Anaheim, CA, USA, 2012, pp. 2821–2826.

[5] M. Knuth, An analysis of the alpha-beta pruning, Artif. Intell. 6
(1975), 293–326.

[6] C. Ahn, R.S. Ramakrishna, A genetic algorithm for shortest path
routing problem and the sizing of populations, IEEE Trans. Evol.
Comput. 6 (2002), 566–579.

[7] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simu-
lated annealing, Science. 220 (1983), 671–680.

[8] A. Barolli, M. Takizawa, F. Xhafa, L. Barolli, Application of genetic
algorithms for QoS routing in mobile ad hoc networks: a survey,
in Proceedings of the 2010 International Conference on Broad-
band, Wireless Computing, Communication and Applications,
Fukuoka, Japan, 2010, pp. 250–259.

[9] D. Zhai, F. Zhang, B. Gao, W. Han, T. Zhang, J. Zhang, Ant colony
algorithm and simulated annealing algorithm based process route
optimization, in Proceedings of the 2014 Enterprise Systems Con-
ference, Shanghai, China, 2014, pp. 102–107.

[10] R.A. Kirkman, Evaluating single point failures for safety & relia-
bility, IEEE Trans. Reliab. R-28 (1979), 259–263.

[11] L. Veryard, H. Hagras, A. Starkey, G. Owusu, A fuzzy genetic sys-
tem for resilient routing in uncertain & dynamic telecommuni-
cation networks, in Proceedings of the 2019 IEEE International
Conference on Fuzzy Systems, New Orleans, LA, USA, 2019, pp.
1302–1306.

[12] Y. Yu, Y. Chen, T. Li, A new design of genetic algorithm for solving
TSP, in Proceedings of the 2011 Fourth International Joint Con-
ference on Computational Sciences and Optimization, Yunnan,
China, 2011, pp. 309–313.

[13] G. Ye, X. Rui, An improved simulated annealing and genetic algo-
rithm for TSP, in Proceedings of the 2013 5th IEEE International
Conference on Broadband Network & Multimedia Technology,
Guilin, China, 2013, pp. 6–9.

[14] G. Hornby, A. Globus, D. Linden, J. Lohn, Automated antenna
design with evolutionary algorithms, in Proceedings of the AIAA
Space 2006, San Jose, CA, USA, 2006.

[15] T. Li, Z. Ge, A multiple QoS anycast routing algorithm based
adaptive genetic algorithm, in Proceedings of the 2009 Third
International Conference on Genetic and Evolutionary Comput-
ing, Guilin, China, 2009, pp. 89–92.

[16] L. Li, M. Rong, G. Zhang, An internet of things QoS estimate
approach based on multi-dimension QoS, in Proceedings of 2014
9th International Conference on Computer Science & Education,
Vancouver, BC, Canada, 2014, pp. 998–1002.

[17] G. Liu, Z. Zhu, Y. Li, D. Li, J. Cui, A new web service model based
on QoS, in Proceedings of the 2009 International Symposium
on Intelligent Ubiquitous Computing and Education, Chengdu,
China, 2009, pp. 395–399.

[18] B.R. Smith, Using Dijkstra to compute hop-by-hop QoS paths, in
Proceedings of 2011 20th International Conference on Computer
Communications and Networks (ICCCN), Maui, HI, USA, 2011,
pp. 1–6.

[19] Y.X. Zheng, J. Tian, Z.F. Liu, W.H. Dou, A limited path unicast
QoS routing algorithm, in Proceedings of the ISCC 2004. Ninth
International Symposium on Computers and Communications
(IEEE Cat. No.04TH8769), Alexandria, Egypt, 2004, vol. 2, pp.
870–875.

[20] S. Julius Fusic, P. Ramkumar, K. Hariharan, Path planning of
robot using modified Dijkstra algorithm, in Proceedings of the
2018 National Power Engineering Conference (NPEC), Madurai,
India, 2018, pp. 1–5.

[21] A. Bozyiğit, G.Alankuş, E.Nasiboğlu, Public transport route plan-
ning: modified dijkstra’s algorithm, in Proceedings of the 2017
International Conference on Computer Science and Engineering
(UBMK), Antalya, Turkey, 2017, pp. 502–505.

[22] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in
improved network optimization algorithms, in Proceedings of the
25th Annual Symposium on Foundations of Computer Science,
Singer Island, FL, USA, 1984, pp. 338–346.

[23] X. Cui, H. Shi, A*-based pathfinding in modern computer games,
IJCSNS Int. J. Comput. Sci. Netw. Secur. 11 (2011), 125–130.

[24] E. Fernandes, P. Costa, J. Lima, G. Veiga, Towards an orientation
enhanced astar algorithm for robotic navigation, in Proceedings
of the 2015 IEEE International Conference on Industrial Technol-
ogy (ICIT), Seville, Spain, 2015, pp. 3320–3325.

[25] Z. Wang, X. Xiang, Improved Astar algorithm for path
planning of marine robot, in Proceedings of the 2018 37th
Chinese Control Conference (CCC), Wuhan, China, 2018,
pp. 5410–5414.

[26] W.M. Spears, K.A. De Jong, T. Bäck, D.B. Fogel, H. de Garis,
An overview of evolutionary computation, in: P.B. Brazdil (Ed.),
Machine Learning: ECML-93, ECML 1993, Lecture Notes in
Computer Science (Lecture Notes in Artificial Intelligence), vol.
667, Springer, Berlin, Heidelberg, 1993.

[27] A. Starkey, H. Hagras, S. Shakya, G. Owusu, A genetic algo-
rithm based approach for the simultaneous optimisation of work-
force skill sets and team allocation, in: M. Bramer, M. Petridis
(Eds.), Research and Development in Intelligent Systems XXXIII,
Springer, Cham, Switzerland, 2016.

http://dx.doi.org/10.1145/365559.365617
http://dx.doi.org/10.1145/365559.365617
http://dx.doi.org/10.1109/tssc.1968.300136
http://dx.doi.org/10.1109/tssc.1968.300136
http://dx.doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/ICCT.2013.6820438
https://doi.org/10.1109/ICCT.2013.6820438
https://doi.org/10.1109/ICCT.2013.6820438
https://doi.org/10.1109/ICCT.2013.6820438
https://doi.org/10.1109/GLOCOM.2012.6503544
https://doi.org/10.1109/GLOCOM.2012.6503544
https://doi.org/10.1109/GLOCOM.2012.6503544
https://doi.org/10.1109/GLOCOM.2012.6503544
http://dx.doi.org/10.1016/0004-3702(75)90019-3
http://dx.doi.org/10.1016/0004-3702(75)90019-3
http://dx.doi.org/10.1109/tevc.2002.804323
http://dx.doi.org/10.1109/tevc.2002.804323
http://dx.doi.org/10.1109/tevc.2002.804323
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
https://doi.org/10.1109/BWCCA.2010.78
https://doi.org/10.1109/BWCCA.2010.78
https://doi.org/10.1109/BWCCA.2010.78
https://doi.org/10.1109/BWCCA.2010.78
https://doi.org/10.1109/BWCCA.2010.78
https://doi.org/10.1109/ES.2014.43
https://doi.org/10.1109/ES.2014.43
https://doi.org/10.1109/ES.2014.43
https://doi.org/10.1109/ES.2014.43
https://doi.org/10.1109/TR.1979.5220583
https://doi.org/10.1109/TR.1979.5220583
https://doi.org/10.1109/FUZZ-IEEE.2019.8858788
https://doi.org/10.1109/FUZZ-IEEE.2019.8858788
https://doi.org/10.1109/FUZZ-IEEE.2019.8858788
https://doi.org/10.1109/FUZZ-IEEE.2019.8858788
https://doi.org/10.1109/FUZZ-IEEE.2019.8858788
https://doi.org/10.1109/CSO.2011.46
https://doi.org/10.1109/CSO.2011.46
https://doi.org/10.1109/CSO.2011.46
https://doi.org/10.1109/CSO.2011.46
https://doi.org/10.1109/ICBNMT.2013.6823904
https://doi.org/10.1109/ICBNMT.2013.6823904
https://doi.org/10.1109/ICBNMT.2013.6823904
https://doi.org/10.1109/ICBNMT.2013.6823904
https://doi.org/10.2514/6.2006-7242
https://doi.org/10.2514/6.2006-7242
https://doi.org/10.2514/6.2006-7242
https://doi.org/10.1109/WGEC.2009.148
https://doi.org/10.1109/WGEC.2009.148
https://doi.org/10.1109/WGEC.2009.148
https://doi.org/10.1109/WGEC.2009.148
https://doi.org/10.1109/ICCSE.2014.6926613
https://doi.org/10.1109/ICCSE.2014.6926613
https://doi.org/10.1109/ICCSE.2014.6926613
https://doi.org/10.1109/ICCSE.2014.6926613
https://doi.org/10.1109/IUCE.2009.45
https://doi.org/10.1109/IUCE.2009.45
https://doi.org/10.1109/IUCE.2009.45
https://doi.org/10.1109/IUCE.2009.45
https://doi.org/10.1109/ICCCN.2011.6006055
https://doi.org/10.1109/ICCCN.2011.6006055
https://doi.org/10.1109/ICCCN.2011.6006055
https://doi.org/10.1109/ICCCN.2011.6006055
https://doi.org/10.1109/ISCC.2004.1358650 
https://doi.org/10.1109/ISCC.2004.1358650 
https://doi.org/10.1109/ISCC.2004.1358650 
https://doi.org/10.1109/ISCC.2004.1358650 
https://doi.org/10.1109/ISCC.2004.1358650 
https://doi.org/10.1109/NPEC.2018.8476787
https://doi.org/10.1109/NPEC.2018.8476787
https://doi.org/10.1109/NPEC.2018.8476787
https://doi.org/10.1109/NPEC.2018.8476787
https://doi.org/10.1109/UBMK.2017.8093444
https://doi.org/10.1109/UBMK.2017.8093444
https://doi.org/10.1109/UBMK.2017.8093444
https://doi.org/10.1109/UBMK.2017.8093444
https://doi.org/10.1109/SFCS.1984.715934
https://doi.org/10.1109/SFCS.1984.715934
https://doi.org/10.1109/SFCS.1984.715934
https://doi.org/10.1109/SFCS.1984.715934
https://doi.org/10.1109/ICIT.2015.7125590
https://doi.org/10.1109/ICIT.2015.7125590
https://doi.org/10.1109/ICIT.2015.7125590
https://doi.org/10.1109/ICIT.2015.7125590
https://doi.org/10.23919/ChiCC.2018.8483946
https://doi.org/10.23919/ChiCC.2018.8483946
https://doi.org/10.23919/ChiCC.2018.8483946
https://doi.org/10.23919/ChiCC.2018.8483946
https://doi.org/10.1007/3-540-56602-3_163
https://doi.org/10.1007/3-540-56602-3_163
https://doi.org/10.1007/3-540-56602-3_163
https://doi.org/10.1007/3-540-56602-3_163
https://doi.org/10.1007/3-540-56602-3_163
https://doi.org/10.1007/978-3-319-47175-4_19
https://doi.org/10.1007/978-3-319-47175-4_19
https://doi.org/10.1007/978-3-319-47175-4_19
https://doi.org/10.1007/978-3-319-47175-4_19
https://doi.org/10.1007/978-3-319-47175-4_19


L. Veryard et al. / International Journal of Computational Intelligence Systems 13(1) 352–365 365

[28] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller,
E. Teller, Equation of state calculations by fast computing
machines, J. Chem. Phys. 21 (1953), 1087–1092.

[29] R.A. Rutenbar, Simulated annealing algorithms: an overview,
IEEE Circ. Devices Mag. 5 (1989), 19–26.

[30] L. Boltzmann, On the relationship between the second funda-
mental theorem of the mechanical theory of heat and probabil-
ity calculations regarding the conditions for thermal equilibrium,
Entropy. 17 (2015), 1971–2009.

[31] K. Zhang, F. Liu, Y. Zhong, An efficient multicast routing
algorithm based on simulated annealing for multimedia com-
munications, in 2005 IEEE International Conference on Sys-
tems, Man and Cybernetics, Waikoloa, HI, USA, 2005, vol. 1,
pp. 369–374.

[32] Q. Xiong, T. Li, Z. Ge, A QoS anycast routing algortihm based on
genetic algorithm and particle swarm optimisation, in 2009 Third
International Conference on Genertic Evolutionary Computing,
Guilin, China, 2009, pp 125–128.

[33] W. Songquan, C. Jiaxing, Performance analysis on solving prob-
lem of TSP by genetic algorithm and simulated annealing, Com-
put. Technol. Dev. 19 (2009), 97–100.

[34] J.M. Zhou, Y.C. Deng, Y. Huang, A kind of simulated annealing
algorithm with memory solving traveling salesman problem, J.
Hunan Univ. Arts Sci. 22 (2010), 70–73.

[35] Open Source Road Data, MasterMap highways network -
roads, 2019. https://www.ordnancesurvey.co.uk/business-
and-government/products/os-mastermap-highways-
network.html#productQuoteTryTry.

http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1109/101.17235
http://dx.doi.org/10.1109/101.17235
http://dx.doi.org/10.3390/e17041971
http://dx.doi.org/10.3390/e17041971
http://dx.doi.org/10.3390/e17041971
http://dx.doi.org/10.3390/e17041971
https://doi.org/10.1109/ICSMC.2005.1571174
https://doi.org/10.1109/ICSMC.2005.1571174
https://doi.org/10.1109/ICSMC.2005.1571174
https://doi.org/10.1109/ICSMC.2005.1571174
https://doi.org/10.1109/ICSMC.2005.1571174
https://doi.org/10.1109/WGEC.2009.147
https://doi.org/10.1109/WGEC.2009.147
https://doi.org/10.1109/WGEC.2009.147
https://doi.org/10.1109/WGEC.2009.147

	NNIR: N-Non-Intersecting-Routing Algorithm for Multi-Path Resilient Routing in Telecommunications Applications
	1 INTRODUCTION
	2 AN OVERVIEW ON RESILIENT ROUTING IN TELECOMMUNICATION NETWORKS
	3 AN OVERVIEW OF TRADITIONAL ROUTING METHODS
	3.1 Dijkstra’s Algorithm
	3.2 A*

	4 AN OVERVIEW OPTIMIZATION FOR ROUTING
	4.1 Genetic Algorithm
	4.2 Simulated Annealing

	5 THE PROPOSED NNIR ALGORITHM
	5.1 Repair Operator

	6 EXPERIMENTS AND RESULTS
	7 CONCLUSIONS AND FUTURE WORK


