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Abstract — The work set its task to develop and verify a 

possibility to use in practice the method of remote analysis of 

phytocenoses based on tangential shooting in usual color format 

and as simple as possible transformation of the obtained digital 

information. We implemented this idea by developing a 

technique of shooting with the calculation of the index of 

phytocenosis diversity. The first step of algorithm consisted of 

obtaining tangential images of plant communities and its 

transformation into two original indexes. Then we compared 

these indexes with the results of real field observations and 

analysis of native and transformed hyperspectral space images 

on the same territories, including technogenic intrusions on the 

border with agro-ecosystem. As it turned out, although the 

method is somewhat inferior to NDVI mapping in its sensitivity, 

the use of simple equipment and ground-based nature of the 

photo shooting makes it prospective for express analysis of 

territories. This is useful for identifying ‘area of interest’ and 

‘risk territories’ in the analysis of various phytocenoses both in 

ecology and agriculture. 

Keywords: phytocenoses, agro-ecosystems, anthropogenic 

transformation, ecological monitoring, forecast model, remote 

sensing 

I. INTRODUCTION 

Intensive human economic activity is a serious challenge 
to nature; it is almost inevitably accompanied by a violation 
of the natural topography, vegetation and soil quality. This 
leads to partial deflation of soil coverage, flushing of 
vegetation-free soil areas, landscape degradation, pollution 
of adjacent soil areas and water bodies [1, 2]. Such 
anthropogenic transformation of territories is particularly 
dangerous in the arid zone, where the restorative forces of 
nature were not so great, and there are additional natural 
factors contributing to deflation [3, 4]. 

As a result, currently the vegetation in the arid 
agriculture zone looks like a steady alternation of agro-
ecosystems and natural phytocenoses with a significant level 
of anthropogenic transformation and the level of 
desertification up to 25-35% by area [5, 6]. 

From ecological point of view the events when sets of 
significantly transformed plant cover unrecoverable 

penetrated on the territory of controlled agro-ecosystems are 
of interest.  They can be defined as technogenic intrusions. 
It is shown for species composition of intrusions usually to 
be reduced and have a direct and indirect negative impact on 
the adjacent agro-ecosystem contributing to the violation of 
consort bonds in it [7, 8]. 

This situation requires scientifically proved 
rehabilitation programs and management decisions in 
agriculture, which creates a need for dynamic monitoring of 
landscapes and phytocenoses in the vast territories of the 
arid zone. This problem cannot be solved with the help of 
classical methods of field observations, including the 
assessment of soil and vegetation in situ in combination 
with subsequent laboratory research, due to the enormous 
complexity and economic costs of such technologies. 
Therefore, only automated remote sensing techniques are 
currently acceptable for obtaining comprehensive 
information about the state of arid phytocenoses. 

A comprehensive geoinformation assessment of the 
Earth's surface state based on data from multispectral space 
images became the main integrated approach to solving such 
problems. Successfully used to assess forest areas [9, 10], 
these methods were applied to assess the state and biomass 
of pastures and crops [11 – 13]. The normalized difference 
vegetation index (NDVI) became the most popular in the 
analysis of space images, although its informative 
limitations are well known due to problems with the 
transparency of the atmosphere, observation time, and 
resolution of the digitized image [14 – 16]. 

The use of low altitude unmanned aerial vehicles 
(UAVs) reduces most of the disadvantages of space sensing, 
although it is limited in research area and has several 
limitations related to weather and prohibitions of flight over 
certain territories. Nevertheless, the main progress in 
obtaining primary information for modeling and forecasting 
the behavior of phytocenoses is currently associated with the 
use of UAVs [17]. In particular, the level of resolution of 
images and dynamic video surveillance obtained using UAVs 
at various agro-ecosystems allows to calculate such an 
important indicator as the average height of plants [18-21], 
and this becomes the key to the most accurate calculation and 
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prediction of biomass. Several studies confirm that 
combining spectral information and averaged plant height 
information could significantly improve biomass estimates 
[22, 23]. These results have recently been supplemented by 
machine learning technologies [24-26]. 

The aim of the work was to test the possibility of assessing 
the actual state of agro-ecosystems and technogenic 
intrusions using tangential photo documentation to obtain 
informative characteristics enough to build a prognostic 
model of consort bonds in these systems. 

This model can be useful in making decisions on the 
introduction of certain agricultural and / or environmental 
technologies for the development of agricultural areas or 
individual farms. 

II. MATERIALS AND METHODS (MODEL) 

The total number of monitored intrusions is eighteen at 
six sites located in the Volgograd and Astrakhan regions of 
Russia. For each intrusion, the following key characteristics 
were determined by direct in situ survey: topography (1) and 
micro-relief of the surface (2), soil type (3) and depth of the 
humified layer (3), features of anthropogenic impact (4) and 
features of the adjacent territory in azimuth (5).  

Within the framework of the geobotanical description we 
separately noted the tiers, projective coverage (PP), the total 
number of species and their phenophases, the presence of 
dominants and subdominants, as well as the degree of 
negative impact of this intrusion on the adjacent agro-
ecosystem (high, moderate or low) [7]. The control (expert) 
assessment of the impact of intrusions on the agro-ecosystem 
was to determine the average height and phenological 
parameters of the cultivated crop, as well as the abundance of 
weeds in the field. We identified these features directly at the 
boundary with the intrusion and at a distance of 50 m deep 
into the field. Differences were expressed in score scale of 1 
to 10.  

All intrusions were subjected to serial tangential 
photography at an angle of 30-45 degrees to the horizon for 
at least 50 m, that is, with the capture of adjacent areas of 
agro-ecosystem. For further analysis, we used ImageJ 
(Wayne Rasband, USA) and Excel (Microsoft, USA). On 
tangential digital images, the ‘area of interest’ was expertly 
identified and formalized as a rectangular collection of pixels 
completely lying within the area expertly identified as 
‘plants’. Next, we converted the RGB (Red, Green, Blue) 
scale in the selected area of values into the HSL (Hue, 
Saturation, Lightness) scale. Only H and S indicators were 
used for further analysis, since the L values depended 
primarily on the lighting conditions at the time of shooting. 
These values were averaged in squares with a side length 
equal to 10% of the long side of the ‘zone of interest’ 
rectangle to smooth out small artifacts. 

Further, we subdivided all values taken separately for H 
and S into five corridors in ascending order of the value of 
the indicator from Min to Max. They corresponded to 
extremely low, low, medium, high and extremely high value 
of the indicators. Then the number of hits in each of the 25 
possible combinations of h and S values was calculated (Fig. 
1). 

The next step was to calculate two integral indicators 
according to the given data. The first of them is a weighted 
product of the values H and S, which we called the ‘green 
coefficient’ (GC) and use it as a potential analogue of the 
previously described NDVI index. GC was calculated by the 
following formula: 
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C 

   

 D E 

Fig. 1. Distribution of the main spectral characteristics of color 

reproduction in the isolation of plants in technogenic intrusion. A. The 
selected portion of the digital image. B. Averaged values of the color. C. 

Frequency distribution of the green ratio. D. Number of hits in combination 

H and S. E. Radial color palette H. 

  GC = {
0 : H ∈ [0, 60] ∪ [180, 360)

120S

|H — 120|
                                  

          (1)  

The second index, defined as the number of combinations 
of H and S with the number of hits greater than one, we call 
the ‘diversity index’ (DI). It is easy to see that when analyzing 
an image with a perfectly uniform fill, the DI will be equal to 
one. The maximum possible value is 25, and it corresponds 
to the case when the photo in question presents all 
combinations of green shades of and saturation in an amount 
greater than 1. Single hits can be caused by artifacts in the 
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image (buildings, agricultural machinery) and therefore must 
be discarded. 

In our opinion, these indicators allow us to dynamically 
assess the spread of shades of green in the selected area and, 
collectively, they reflect the diversity of plant species and 
phenophases in surveyed phytocenosis. 

Since the values of the indicators are calculated on each 
digitized image separately, an internal standard is set to avoid 
errors associated with variations in the lighting the object and 
the characteristics of plant communities in this area. The 
value of the indicator 17 or more reflected high diversity and, 
indirectly, the strength and stability of phytocenosis, and, 
respectively, a value of less than 8 was the sigh of 
impoverishment of phytocenosis and deflation, 

Multispectral high-resolution Landsat space images 
available on the USGS Earth Resources Observation and 
Science platform and processed using the ArcGISPro 
software package were used as comparison images to 
determine the capabilities of this method. We used 
normalized difference vegetation index NDVI and 
normalized difference moisture index NDMI as reference 
integral indicators. These indicators reflect the total amount 
of biomass and humidity of vegetation cover in the studied 
areas [14, 16]. 

III. RESULTS AND DISCUSSION 

A. Results of field observations 

All surveyed areas had similar landscape, 
geomorphological and soil characteristics. The terrain was 
flat, usually it had a slight slope towards natural depressions. 
The soils are light brown, the humus layer was scarce, it 
thickness was about 2-10 cm. Climatic and hydrological 
characteristics corresponded to regional ones. Table 1 
presents the main geobotanical characteristics and results of 
remote measurements depending on the degree of negative 
impact on the adjacent agro-ecosystem.  

The results of field observations well show for 
technogenic intrusion with significant impact on adjacent 
agricultural fields to have more relatively more variable tiers, 
greater PC value, and diversity of species. Their negative 
impact on the field is noticeable at a depth of at least 40-50 m 
from the intrusion boundary. Technogenic intrusions with a 
weak impact on the adjacent agro-ecosystems demonstrate 
the opposite of generalized characteristics. 

TABLE I.  MAIN GEOBOTANICAL CHARACTERISTICS OF INTRUSIONS 

Indicator 
Impact on the agro-ecosystem 

Low (n = 5) Moderate (n = 7) High (n = 6) 

Tiers, m 0.2 – 0.8 0.2 – 1.2 0.2 – 1.6 

Projective 

coverage, % 
20 – 45  35 – 70  60 – 80  

Total number of 
species 

5 – 8 6 – 12 8 – 15  

The number of 

dominants 
0 – 1 1 – 2 1 – 2  

The number of 
ubdominants 

0 – 1 0 – 2 1 – 3  

B. Results of remote sensing 

Preliminary analysis showed that the used color 
transformations quite objectively reflected the nature of PC 
in the territory of agro-ecosystems and technogenic 
intrusions. They are quite consistent with the NDVI analysis. 
The loss in quality, which is observed in analogical analysis 
of conventional space and aerial images, is fully compensated 
by the absence of the need to use expensive hyperspectral 
remote sensing equipment (Fig. 2). 

The results of remote sensing, presented in table 2, show 
that technogenic intrusions with a significant impact on the 
agro-ecosystem, had, other things being equal, relatively 
large values of NDVI, GC and DI by our original method. 

The obtained correspondences convince us that the 
developed and used technique correctly reflected the 
properties of technogenic intrusions with respect to the 
strength of their consort bonds and the ability to actively exist 
and develop in a competitive environment. 

 

 

 A B 

 

 

C 

Fig. 2. A. The zone of interest, including intrusions, on the space image 

demonstrates the heterogeneity of the plant cover both on the field and on 

the location of intrusions. B. The same area, visualized in DVI format, shows 

clearer differences in the magnitude of the projective coverage of the agro-

ecosystem and adjacent areas. C. Comparison of the frequency distribution 
of the green coefficient and NDVI shows a similar but not identical variation 

in the amplitudes of the values. 
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TABLE II.  MAIN CHARACTERISTICS OF INTRUSIONS BASED ON THE 

RESULTS OF REMOTE SENSING 

Indicator 

Impact on the agro-ecosystem 

Low 
(n = 5) 

Moderate 
(n = 7) 

High 
(n = 6) 

NDVI  0.12 – 0.24 0.18 – 0.52  0.30 – 0.62  

Green coefficient 
(median value) 

0.28 – 0.34 0.32 – 0.4 0.36 – 0.44 

Diversity index 6 – 10 8 – 20 15 – 22  

 

Figure 3 further demonstrates how NDVI and Green 
coefficient as indicators reflected in a similar but not identical 
manner the spatial biomass distribution in the certain agro-
ecosystem. In some cases we may consider, that our method 
allowed getting clearer results. 

 

 

A 

 

B 

Fig. 3. The spatial value of the Green coefficient and NDVI on the space 

image shows a similar, but not identical sensitivity of the indicators. 

Our observations testify that NDVI, median of green 
coefficient and diversity index are increasing simultaneously 
with the intrusion influence rate.  

However, the spatial distribution of NDVI and GC are 
significantly different. This fact makes us believe that the GC 
is not just substitute of NDVI but probably has its own value, 
making a researcher able to extract additional information 

from space or drone images. The additional advantage of the 
proposing method over NDVI is it uses conventional images 
instead of hyperspectral ones. So, one could use it with 
current monitoring infrastructure and observe changes in real 
time. 

According the results of comparative analysis the used 
remote methods in general adequately reflected the situation 
on the agricultural fields and technogenic intrusions. Both 
NDVI and GC or DI proposed by us allow to accurately 
identify spatial differences in the volume of plant biomass, as 
well as to be used for the integrated assessment of these plant 
communities. At the same time, an additional possibility 
arises in the case of the use GC and DI, when on the basis of 
spatial analysis we can establish the plant diversity, further 
forecasting its stability and potential invasiveness of 
intrusions in relation to the adjacent agro-ecosystem.  

We have already shown that the zone of contact between 
the intrusion and the agro-ecosystem could be characterized 
by a finite number of formalized indicators, so that on this 
basis it is possible to build a predictive model sufficient to 
test the potential effectiveness of management decisions [27]. 
A number of studies have demonstrated the effectiveness of 
such approaches in combination with machine learning 
algorithms to solve the problem of plant invasion on the 
territory of agricultural fields [28 – 30]. 

We hope that furthermore detailed and long-term studies 
will allow us to develop this express method of remote 
sensing into a technology ensuring the management of 
agricultural ecosystems. 

IV. CONCLUSION 

The method of ground remote photography of plant 
communities on the example of agricultural fields and 
technogenic intrusions in the arid zone allows for express 
analysis of their condition. The original indicators (Green 
Coefficient and Diversity Index'), which we proposed for the 
analysis of the obtained images, sufficiently reflect such 
important indicators of agro-ecosystem state as the biomass 
volume and resistance to surrounding actions. For 
technogenic intrusions, they can also be used as indicators of 
invasiveness against the adjacent agro-ecosystem, which is 
confirmed by parallel field studies. 

In terms of information content, the proposed indicators 
are not inferior to the classical estimates using NDVI, and do 
not require equipment to obtain spectral images. This method 
can be useful for identifying ‘area of interest’ and ‘risk 
territories’ in the analysis of various phytocenoses both in 
ecology and agriculture. 
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