

Implementation of Secure Software Development

Lifecycle in a Large Software Development

Organization

Lada Gonchar

Business Configuration Development

SAP SE

Walldorf, Germany
lada.gonchar@sap.com

Abstract—Secure Software Development Lifecycle is an

important part of developing secure software. On the one

hand, such process requires a significant effort related to

upskilling of developers, analysing of coding and security

testing, on the other hand, generates a large amount of data on

the process level (e.g. assets, dependencies, risks and

mitigations) as well as on the technical level (e.g. results of

static and dynamic code analysis tools). All this measure needs

to be integrated in the software development process. We

demonstrate how to handle this effectively by using threat

modelling methodology with two different variants and

generalized threat model for selected domains in the large

software development organization, where we have on the one

hand big variety of different application types on the other

hand standardized architecture for the application

development. Existing threat modelling approaches doesn’t fit

to SAP specific security requirements. Author proposes the

generalized threat model to speed up the risk assessments and

increase efficiency of security measures for ERP applications.

Keywords—Secure Software Development Lifecycle, threat

modelling, generalized threat model, penetration testing, security

validation.

I. INTRODUCTION

The large effort put into secure software development
immediately raises the question of whether this investment is
effective and if the effort can be invested more effectively
[1].

It is known fact, that the cost to fix a bug found during
test phase is costlier than one identified during
implementation (Fig.1). Furthermore, bugs found in post
release phase could more costly than during testing [4]. It is a
reason, why it is so important to identify possible security
threats in very early stage of development process.
Therefore, the process is required incorporate security
measures in the development lifecycle [5]. In addition, in
large software development organizations such process needs
to support a wide range of application types with different
shipment models.

In this paper I will share my own experience in
implementation of secure software development lifecycle at
SAP SE, the largest European software vendor [2]. Based on
this, we derive an actionable recommendation for improving
secure software development.

Fig. 1. Difference of costs to fix defects at each phase of software

development

II. SECURE SOFTWARE DEVELOPMENT LIFECYCLE

To ensure a secure software development, SAP follows
the SAP Secure Software Development Lifecycle (SSDL)
[2], which is inspired by Microsoft’s Security Development
Lifecycle [3]. Fig. 2 shows the main steps in SSDL, which is
split into four phases: preparation, development, transition
and utilization.

A. Preparation

The preparation phase comprises all activities that take
place before the actual development start. There activities
can be independent of the actual product being developed
(e.g. general security awareness and regular role-specific
trainings, which are mandatory for all roles contributing to
the creation and maintenance of software products) or
product specific (e.g. risk identification for specific product).

At the beginning of a new software development cycle,
product teams conduct a security risk assessment in from of
threat modelling, during which they analyse and evaluate
identified risks. Threat modeling is a systematic approach to
uncover security threats at design time and to support
reaching a secure design [2]. It is one of the methods
proposed in the Secure Software Development Lifecycle
step: Security Risk Assessment. It fosters collaboration
between the security expert and the architects of the scenario
to drives a “think like hacker” behavior expected when

21st International Scientific Workshop on Computer Science and Information Technologies (CSIT 2019)

Copyright © 2019, the Authors. Published by Atlantis Press SARL.
This is an open access article under the CC BY-NC license 4.0 (http://creativecommons.org/licenses/by-nc/4.0/).

Atlantis Highlights in Computer Sciences, volume 3

137

https://wiki.wdf.sap.corp/wiki/display/PSSEC/S2DL

striving towards a secure architecture. The security activities
that the teams plan and execute later in the development
lifecycle follow the results and decisions from the security
risk assessment.

Fig. 2. SAP Secure Software Development Lifecycle (SSDL) SSDL

Developers use threat modelling in two different variants.

 Product-level threat modelling applies to the full
product scope and architecture, comprising all parts
and components, including self-developed but also
open-source, third-party, freeware, outsourced, and
acquired components.

 Scenario-level threat modelling, which is closer to
the traditionally known threat-modelling approach.
Product teams apply this variant for “in-depth”
analysis of a particular product’s components and
supported scenarios. Typically, the in-depth threat
modelling of selected critical scenarios often is an
outcome of the in-breadth threat-modelling approach.

Challenges in the large software development
organization are related to necessity to choose the right type
of threat modeling and optimal number of workshops. On the
one hand, it is required to have a good coverage on risk
assessment across the entire organization, on the other hand,
we want to avoid duplicate work in components, which can
happen due to standardized development process.

From the organizational point of view especially in large
development organization we can recommend following set
up:

 dedicated central security team, which drives security
measures and consolidates the results across the entire
organization,

 security coordinators in each development area
responsible for all security-relevant aspects of the
product,

 security experts in each development teams
supporting all security relevant activities from risk
assessment to code analysis.

Recommended approach is to start with product-level
threat modeling for the whole area, for example Finance and
continue with scenario-level threat modelling workshops for
most critical applications or scenarios, identified in step 1.
Very good results were shown by involving in the threat
modeling workshops cross-application experts and
developers from underlying framework, for example from

SAP Netweaver, to clarify and analyze dependencies.
Another positive aspect was increasing security awareness in
the development teams after performing threat modeling
workshops, which leads to early and continuously integration
of security measures in the development process.

Big number of conducted threat modeling workshops
with continuous consolidation and analysis of results by
central security team allows us to build Generalized Threat
Model (GTM) for selected development domains.
Preconditions are

comprehensive classical threat modelling workshops and
several penetration tests for those domains [6].

Usually Generalized Threat Model consists of:

 assets, which should be protect,

 dependencies, which are security features provided by
a component not developed by the team who build the
assessed application,

 risks and corresponding mitigations.

GTM allows extremely efficient filtering for critical
domains by ruling out less critical ones. By using GTM
development teams can concentrate on really critical aspect
of application and so speed up and increase the quality of the
risk assessment process.

B. Development

This phase comprises the steps from planning a new
product to the actual development. In particular, it covers:

 The Planning of Security measures, which describes
the mitigation of the previously identified security
risks,

 The Secure Development using defensive
implementation strategies,

 The Security Testing that ensures that the planned
security measures are implemented and are effective
in preventing security threats.

The security test plan of a product typically contains a
combination of SAST, DAST, and manual testing activities
[7].

Manual testing activities are often performed by external
security researchers. Here is the challenge to prepare optimal
scope for testing. Our approach is to identify potential
critical applications based on following criteria:

 Critical finding from threat modelling, where
penetration test was recommended,

 New feature from framework implemented in the
dedicated applications,

Atlantis Highlights in Computer Sciences, volume 3

138

 Deviations from standard architecture.

Additional criteria is good coverage across different
components, which allow us to have applications from
different development units in the test.

Further improvement in the security testing will be
adopting DAST tools for specific protocols used by SAP.

C. Transition

Security validation checks the mandatory security report
against the product team’s original security plan as well as
against the product’s security risk assessment report. In
addition, security validation checks the security response
plan available for the product. The security validation team
also runs its own security tests.

D. Utilization

After the release of a product, or any extension or
modification of it, the product team needs to be prepared for
vulnerability reports received during use. In such a case, we
must have contacts and technical skills available immediately
to triage and investigate vulnerability reports and either
confirm or reject the vulnerability. For a confirmed
vulnerability, we must provide a security correction in time.

III. CONCLUSION

We have shared our experience with implementing of
secure software development lifecycle and our challenges
with risk assessment for complex products with different
development cycles and by organizing penetration testing.

Still ongoing is the research on how to improve general
threat model by analysing different access paths and offering
DAST tools for increasing security test coverage and better
integrating in the development process.

REFERENCES

[1] Empirical Research for Software Security: Foundation and

Experience, 1498776418, 2017.

[2] The Secure Sofware Development Lifecycle at SAP
https://www.sap.com/documents/2016/03/a248a699-627c-0010-82c7-
eda71af511fa.html

[3] Microsoft’s Security Development Lifecycle,
https://www.microsoft.com/en-us/securityengineering/sdl

[4] Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd
edition 2008; ISBN 978=0- 07-150244-3.

[5] Achim D. Brucker. Bringing Security Testing To Development: How
To Enable Developers To Act As Security Experts, OWASP
AppSecEU 2015. https://youtu.be/LZoz4cv0MAg,
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-
sectest-2015.en.html

[6] Lotfi Ben Othmane, Golriz Chehrazi, Eric Bodden, Petar
Tsalovski, Achim D. Brucker:
Time for Addressing Software Security Issues: Prediction Models and
Impacting Factors. Data Science and Engineering 2(2): 107-
124 (2017)

[7] Michael Felderer, Matthias Büchler, Martin Johns, Achim D.
Brucker, Ruth Breu, Alexander Pretschner: Security Testing: A
Survey. Advances in Computers 101: 1-51 (2016)

Atlantis Highlights in Computer Sciences, volume 3

139

https://www.sap.com/documents/2016/03/a248a699-627c-0010-82c7-eda71af511fa.html
https://www.sap.com/documents/2016/03/a248a699-627c-0010-82c7-eda71af511fa.html
https://www.microsoft.com/en-us/securityengineering/sdl
https://youtu.be/LZoz4cv0MAg
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html
https://dblp.uni-trier.de/pers/hd/c/Chehrazi:Golriz
https://dblp.uni-trier.de/pers/hd/b/Bodden:Eric
https://dblp.uni-trier.de/pers/hd/t/Tsalovski:Petar
https://dblp.uni-trier.de/pers/hd/t/Tsalovski:Petar
https://dblp.uni-trier.de/db/journals/dase/dase2.html#OthmaneCBTB17
https://dblp.uni-trier.de/pers/hd/b/B=uuml=chler:Matthias
https://dblp.uni-trier.de/pers/hd/j/Johns:Martin
https://dblp.uni-trier.de/pers/hd/b/Breu:Ruth
https://dblp.uni-trier.de/pers/hd/p/Pretschner:Alexander
https://dblp.uni-trier.de/db/journals/ac/ac101.html#FeldererBJBBP16

