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Abstract- The problem of parameter estimation of rough 

surface contact interaction due to 3D modelling of fractal model 

contact interaction, when they are satisfactory to initial surfaces, is 

solved. This approach takes into account surface contour basic 

parameters that are essentially relevant to the results and accuracy 

of the calculation. 
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I.  INTRODUCTION 

Machine part surfaces have a number of properties that 
characterize their quality. These include topography (macro-
declines, surface undulation and surface contour), physical, 
mechanical and chemical features of the surface coating and 
afterstrains in the near-surface zones. The contact between two 
rough surfaces consists of a microcontact set reacting the load 
and specifying the actual contact area of physical bodies 
mating. Actual contact area is usually significantly less than 
the nominal (geometric) contact area, and it is the actual area 
that determines these important mating parameters: contact 
stiffness, electrical and thermal conductivity, etc. Therefore, 
from the point of view of abut operating condition ensuring, it 
is especially important to specify the contact interaction 
parameters. 

To describe the quality of behavior of surface contour 
contact in some cases statistical models, the parameters of 
which depend on the scale [1, 2] are used. The model of 
surface contour with the parameters being invariant to the 
scale is presented in works [3, 4]. These works are based on 
fractal properties; the surface contour (profile) model is 
described by the Weierstrass – Mandelbrot equation. 
Majumdar – Bhushan (M-B) model considering the 
elastoplastic contact, suggests that in the process of contact 
load increase there should be a plastic contact, which with a 
further growth in the load, changes into an elastic state and it 
contradicts the classical approach of Hertz theory. 

The authors of the M-B model believe that small 
inequalities covering the protrusion are deformed plastically 
and in the process of coalesce with each other form a larger 
contact patch being in an elastic state. If the protrusion in the 
M-B model is thought of as a smooth spherical segment in its 
upper part then the use of Hertz theory for a specific 
protrusion and transition condition from the elastic state to the 
elastoplastic is appropriate. 

 

II. MODELS OF FRACTAL SURFACES 

To describe fractal models of surface contour we use 3-D 
Weierstrass - Mandelbrot function: 

(𝑥, 𝑦) = 𝐿 (
𝐺

𝐿
)

(𝐷𝑆−2)

(
𝑙𝑛𝛾

𝑀
)
1/2

∑ ∑ 𝛾(3−𝐷𝑆)𝑛

𝑛𝑚𝑎𝑥

𝑛=𝑛1

𝑀

𝑚=1

{cos ∅𝑚,𝑛 − 

−𝑐𝑜𝑠 [
2𝜋𝛾𝑛(𝑥2 + 𝑦2)1/2

𝐿
] cos ( 𝑎𝑟𝑐𝑡𝑔 (

𝑦

𝑥
) −

𝜋𝑚

𝑀
) + ∅𝑚,𝑛} 

Here 2<DS<3 is the fractal dimension of the surface; G is 
the fractal roughness; γ =1.5; L=1/γ n1 is the length of the 
profile under consideration; ∅𝑚,𝑛  is a random variable 

distributed equally on the interval [0, 2π]; nmax= 
int [lg(L/LS) / lgγ]  is the integral of the upper limit of the sum; 
LS is the length fitting the size of the gage rod. 

Fig. 1 shows models of fractal surfaces: a) – with fractal 
dimension D = 2.2, b) – D = 2.5, c) – D = 2.8. Model of a 
protrusion (Fig. 2) is presented in the form of a cosine curve. 
When interacting with a smooth die block, the upper part in 
the form of a spherical segment is deformed, while the area of 
the real contact has a radius r < r'. 

We assume that for an isotropic surface it is the profile 
described by the following expression (for y=0) that is 
informative:  

𝑧(𝑥 = 0) = 𝐺(𝐷𝑆−2)(𝑙𝑛𝛾)1/2𝑙(3−𝐷𝑆) [cos ∅𝑚,𝑛

− 𝑐𝑜𝑠 (
2𝜋𝑥

𝑙
− ∅𝑚,𝑛)]. 

The height of the protrusion, represented as a fractal 
object, is equal to: 

𝛿 = 𝐺(𝐷𝑆−2)(𝑙𝑛𝛾)1/2𝑙(3−𝐷𝑆). 

The radius of the protrusion upper part curvature is 
determined by the formula (Majumdar – Bhushan model): 

𝑅′ =
1

|
𝑑2𝑧(𝑥 = 0)

𝑑𝑥2
|
=

𝑙(𝐷𝑆−1)

4𝜋2𝐺(𝐷𝑆−2)(𝑙𝑛𝛾)
1
2

 .             (1)  
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Fig. 1. Models of fractal surfaces with different fractal dimensions:                                                                                                            

а) D = 2.2, b) D = 2.5, c) D = 2.8 

 

In this case, the rough surface model is represented as a set 
of spherical segments located on the middle plane and having 
statistically distributed heights. Provided that the radii of the 
protrusion upper parts are of equivalent grade the rough 
surface is described within the Greenwood-Williamson model. 
In actuality the problems of friction and wear take into 
consideration the protrusion upper part deformation, for which 
the radius of curvature will be different in contrast to the 

model M-B (Fig. 2).  

Imagine a protrusion in the form of a cone and we’ll have:  

4𝜋𝑟′2

𝜋𝑙2
=
𝜔

𝛿
 .                                      (2) 

After deformation of the upper part of the protrusion, the 

actual contact area a at the elastic state of the contact is equal 
to: 

𝜋𝑟′2 = 2𝑎.                                    (3) 

 

 

Fig. 2. Model of protrusion 

 

Inserting the expression (3) into equation (2), we will 
have: 

8𝑎

𝜋𝑙2
=
𝜔

𝛿
 . 

At the same time  𝜔 ≅ 𝑟′𝑡𝑔Ɵ;   𝛿 = (𝑙 2⁄ )𝑡𝑔Ɵ. Further: 

𝜔

𝛿
=
2𝑟′

𝑙
=
8𝑎

𝑙2
  

or: 

4𝑎

𝜋𝑙
= 𝑟′.                                         (4) 

We’ll change the equation (4) as follows: 

(
4𝑎

𝜋𝑙
)
2

= 𝑟′2 ∙
𝜋

𝜋
 .    

From which: 

𝑙 = (
8𝑎

𝜋
)
1/2

.                                     (5) 

Inserting the expression (5) into equation (1), we’ll have:  

𝑅 =
(8𝑎)(𝐷𝑆−1)/2

4𝜋(3+𝐷𝑆)/2𝐺(𝐷𝑆−2)(𝑙𝑛𝛾)
1
2

.                    (6) 

 

III. THE MODEL OF CONTACT INTERACTION 

Unlike the M-B model, the protrusion shown in Fig. 2 and 
having a certain radius of curvature in the upper part, it is 
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deformed first elastically, and then with an increase in the load 
it is distorted plastically. The Majumdar – Bhushan (M-B) 
model assumes that contact patches, having an area that is 
greater than some critical value of a > ac, are in an elastic state 
from the beginning of deformation δ <δc. Contact patches with 
an area of a < ac are plastically distorted by deformation δ>δc. 
In the process of spreading, they approach each other and it 
results in both: a growth of contact patches and a transition 
from plastic to elastic contact. Majumdar and Bhushan believe 
that “due to the fact that smaller contact patches have smaller 
curve radius, so they will more likely undergo plastic 
deformation”. This result contradicts classical contact 
mechanics, that is either Hertz theory or the Greenwood – 
Williamson model (G-W). The reason for this discrepancy lies 
in the assumption, that patch area a≡l 2 and ω ≡δ in the model 
M-B [5]. Protrusion model (Fig. 2) implies the presence of a 
smooth spherical segment at the top in deformation of 
unevenness being 0 ≤ 𝜔 ≤ 𝛿. Radius of the upper part of the 
protrusion R differs from either M-B or G-W models. We 
believe that, unlike M-B model, the elastic contact fulfils the 
condition ω<ωc and a<ac, while the plastic contact obeys the 
condition of ω>ωc and a>ac and that is in agreement with 
classical mechanical principles of contact interaction. With an 
increase in the load on the flat die we have the following 
stages of the protrusion deformation: elastic, elastoplastic - 1, 
elastic-plastic - 2 and plastic. We believe that in order to 
simplify the problem there are only two types of the state: 
elastic and plastic. 

The relation between the load and the contact patch area is 
as follows: 

• for elastic contact 

𝐹0𝑒 =
4

3
𝐸𝑅

1
2𝜔

3
2 =

4

3
𝐸𝑅

1
2 (

𝑎

𝜋𝑅
)

3
2
=
4𝐸𝑎

3
2

3𝜋
3
2𝑅
;  
1

𝐸

=
1 − 𝜇1

2

𝐸1
+
1 − 𝜇2

2

𝐸2
;   

• for plastic contact 

𝐹𝑝 = 𝐻𝑎;     𝐻 = 𝑚𝑖𝑛{𝐻1, 𝐻2}. 

Here: 𝐸1, 𝐸2, 𝜇1, 𝜇2 are elastic moduli, Poisson's ratios of 
physical agents’ tying-in; H – hardness. 

Inserting the radius expressed by the equation (6) into the 
ratio for the elastic contact, we have: 

𝐹0𝑒 =
2(11−3𝐷𝑆)/2

3
𝐸𝜋(𝐷𝑆 2⁄ )𝐺(𝐷𝑆−2)(𝑙𝑛𝛾)1/2𝑎(4−𝐷𝑆) 2⁄

= 𝑄 𝑎(4−𝐷𝑆) 2⁄ . 

Here: 

𝑄 =
2(11−3𝐷𝑆)/2

3
𝐸𝜋(𝐷𝑆 2⁄ )𝐺(𝐷𝑆−2)(𝑙𝑛𝛾)1/2.   

The transition criterion is determined on the basis of 
equality 𝐹𝑒 = 𝐹𝑝. Setting equal load of both elastic and plastic 

states, we will have the following expression after the 
transformation of the critical value of the contact patch area: 

𝑎𝑐 = [
9

256𝜋
(
𝐻

𝐸
)
2 8(𝐷𝑆−1)

𝐺2(𝐷𝑆−2)𝑙𝑛(𝛾)
]

1 (2−𝐷𝑆)⁄

. 

Multiple contact. Figure 3 shows milling and abrasive 
surface matching (top) and two abrasive surfaces (bottom), as 
well as contact areas mating them. The actual contact area is 
the product of the number of actual spots and the average 
contact patch area: 

𝐴𝑟 = 𝑁(𝑎 > 𝑎𝑚𝑖𝑛)〈𝑎〉. 

 

  

 

  

Fig. 3. Rough surfaces matching and their contact patches: milling and 

abrasive (above), and two abrasive (below) 

 

The number of spots being greater than the minimum value 
is estimated by [3] 

𝑁(𝑎 > 𝑎𝑚𝑖𝑛) = (
𝑎𝑚𝑎𝑥
𝑎𝑚𝑖𝑛

)
(𝐷𝑆−1) 2⁄

= (
𝑎𝑚𝑎𝑥
𝑎𝑚𝑖𝑛

)
𝐷 2⁄

,   𝐷 = 𝐷𝑆 − 1. 

We shall find the average area of the contact patches, denoting a 

dimensionless area expressed in terms of  𝑎∗ =
𝑎

𝑎𝑚𝑎𝑥
 : 

〈𝑎〉 = 𝑎𝑚𝑎𝑥∫ 𝑎∗′𝑓(𝑎∗′)𝑑𝑎∗′ .
1

0

                  (7) 

Taking the differential distribution function of the relative 
contact areas [6] as: 

𝑓(𝑎∗) = (1 − 𝛼)𝑎∗(−𝛼)  

inserting it in equation (7), we shall write: 

〈𝑎〉 = 𝑎𝑚𝑎𝑥
1 − 𝛼

2 − 𝛼
 . 

The exponent α is defined as follows. We simulate mating 
fractal surfaces (Fig. 1) and the get contact patch. We find the 
areas of contact patches and construct an empirical 
distribution function, the approximation of which is written as: 
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𝐹(𝑎∗) = 𝑎∗(1−𝛼) .  

Finally, we shall write the expression for the actual contact 
area: 

𝐴𝑟 =
𝑎𝑚𝑎𝑥
(1+𝐷/2)

𝑎𝑚𝑖𝑛
𝐷/2

1 − 𝛼

2 − 𝛼
. 

The elastic and plastic parts of the actual contact area are 
measured by the following functional connections: 

𝐴𝑟𝑒 =
𝑎𝑚𝑎𝑥
(1+

𝐷
2
)

𝑎
𝑚𝑖𝑛

𝐷
2

1 − 𝛼

2 − 𝛼
 (𝑎𝑐

∗)(2−𝛼) , 

  𝐴𝑟𝑝 =
𝑎𝑚𝑎𝑥
(1+𝐷/2)

𝑎𝑚𝑖𝑛
𝐷/2

1 − 𝛼

2 − 𝛼
 [1 − (𝑎𝑐

∗)(2−𝛼)] . 

Now:  𝑎𝑐
∗ = 𝑎𝑐 𝑎𝑚𝑎𝑥  .   ⁄  

 

IV. THE RESULT OF COMPUTER SIMULATION OF CONTACT 

INTERACTION OF SURFACES 

The elastic contact is determined by the expression: 

𝐹𝑒 = (
𝑎𝑚𝑎𝑥
𝑎𝑚𝑖𝑛

)

𝐷
2
∫ 𝑄𝑎

∗′(3−𝐷)

2

𝑎∗

0

𝑎𝑚𝑎𝑥

(3−𝐷)
2 (1 − 𝛼)𝑎∗

′(−𝛼)
𝑑𝑎∗

′

=
𝑎𝑚𝑎𝑥

3
2

𝑎
𝑚𝑖𝑛

𝐷
2

𝑄
2(1 − 𝛼)

(5 − 𝐷 − 2𝛼)
𝑎∗
(5−𝐷−2𝛼)

2 ;      (8) 

0 ≤ 𝑎∗ ≤ 𝑎𝑐
∗ = 1. 

Functional connection 𝐹𝑒 (𝑎
∗) presented in fig. 4 is 

deduced in the following way: Ra = 1,2 mym; G = 6·10-6 mm; 
𝐷 = 1,5;  𝐷𝑆 = 2,5;  𝛼 = 0,5;  Q = 731,42 mm1/2; Е = 105 

МPа; Н = 2000 МPа; amax = ac =5,769 ·10-4mm2; amin = 10-3 
amax; 𝑎∗ = 𝑎/𝑎𝑐. 

Plastic contact takes place at 𝑎 ≥  𝑎𝑐 . The expression for 
the patches in the plastic state we present in the form: 

𝐹𝑝 = (
𝑎𝑚𝑎𝑥
𝑎𝑚𝑖𝑛

)

𝐷
2
𝐻∫ 𝑎∗

′
𝑎𝑚𝑎𝑥(1 − 𝛼)𝑎

∗′(−𝛼)
𝑎∗

𝑎𝑐
∗

𝑑𝑎∗
′
= 

=
𝑎𝑚𝑎𝑥
(1+

𝐷
2
)

𝑎
𝑚𝑖𝑛

𝐷
2

𝐻
1 − 𝛼

2 − 𝛼
[𝑎∗(2−𝛼) − 𝑎𝑐

∗(2−𝛼)], 𝑎𝑐
∗ ≤ 𝑎∗ ≤ 1. 

Besides using previously taken initial data we shall assume 
𝑎𝑚𝑎𝑥  = [50;75;100] 𝑎𝑐 , we shall find: 𝑎𝑚𝑎𝑥𝑖= 50⸱5,769⸱10-4; 
75⸱5,769⸱10-4; 100⸱5,769⸱10-4. 

The dimensionless critical area of the patch will be equal 
to: 

𝑎𝑐𝑖
∗ = 1/50; 1/75 и 1/100.   

Evaluation of the nominal area. The dependence of the 
relative area (bearing area) Ar/Aa on the contingence is 
determined by the expression: 

𝐴𝑟
𝐴𝑎 

= 0,5𝑒𝑟𝑓𝑐 (
𝑌

√2𝑅𝑞
),   

where: 𝐴𝑟 - the actual contact area; 𝐴𝑎 - nominal (geometric) 

area; 𝑒𝑟𝑓𝑐(… ) - error function; Y - the distance between the 

mean plane of datum rough surface and a flat die; 𝑅𝑞 − 

average quadratic deviation of outline ordinates. 
 

 

Fig. 4. Load behavior assimilated by elastically deformed contact patches 

depending on the dimensionless area 

 

As the distance Y is reduced (while convergence 
increases), the bearing area grows. At Y = 0 the function 
𝑒𝑟𝑓𝑐(0) = 1 и 𝐴𝑎 = 2𝐴𝑟 . the Actual area, consisting of 
individual patches is determined by the expression quoted 
above: 

𝐴𝑟 =
𝑎𝑚𝑎𝑥
(1+𝐷/2)

𝑎𝑚𝑖𝑛
𝐷/2

(
1 − 𝛼

2 − 𝛼
) , 1 < 𝐷 < 2.  

The maximum area of the contact patch in accordance with 
Fig. 2 when z(x) = 0 is equal to: 

𝑎𝑚𝑎𝑥 = 𝜋(𝑅𝑝𝑡𝑔𝜃)
2
.  

Here:  𝑅𝑝  is the smoothing height;  𝑡𝑔𝜃 = ∆𝑞  𝑖𝑠 the slope 

of the unevenness with towards the midline.  

At the same time: 

𝑎𝑚𝑎𝑥 = 𝜋 (
𝑆𝑚
4
)
2

,  

where 𝑆𝑚 - is statistical estimate of roughness width along the 
midline. 

Fig. 5 shows special intersection points (zeros) of the 
section-gage log with the midline. The roughness width along 
the midline is defined directly by the number of zeros n (0) 
designated as the selected length of the profile line: 

𝑆𝑚 =
2

𝑛(0)
.  
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The average values of number of zeros (mm-1) fitting in 
any given processing type (tbl. 1) are provided below [7]. 

 
Fig. 5. Special points of section-gage log 

TABLE I.  THE AVERAGE VALUES OF THE NUMBER OF ZEROS AND THE 

AVERAGE PITCH 

Type of 

processing 
Rq, µm  Ra, µm 

Rmax, 

µm  

n(0), 

mm-1 Sm, µm  

Flat grinding 

3,25 

1,70 

1,19 

0,73 

2,51 

1,37 

0,89 

0,56 

11,19 

4,25 

2,42 

1,66 

15 

27 

34 

51 

133,32 

74,08 

58,82 

39,22 

Circular 

grinding 

0,29 

0,14 

0,23 

0,11 

0,79 

0,34 

140 

163 

14,28 

12,26 

Reseat 

(fitting) 

0,13 0,11 0,38 183 10,92 

 

Functional connections (according to J. A. Rudzit) for the 
average pitch have the form: 

𝑆𝑚 =

{
 

 
2

200 − 278𝑅𝑎
,   𝑅𝑎 ≤ 0,63 , µ𝐦;

2

43 − 11𝑅𝑎
,   𝑅𝑎 > 0,63 µ𝐦 .

 

Taking up 𝑎𝑚𝑖𝑛 = 10−3𝑎𝑚𝑎𝑥 ;  𝛼 = 0,5; 𝐷 = 1,5 we obtain 
the following ratio making possible to tie together both:  
relative area and type of processing (tbl. 2): 

𝐴𝑟
 𝐴𝑎

= 103𝐷/2
𝑎𝑚𝑎𝑥
3
. 

TABLE II.  THE NOMINAL CONTACT AREA FOR THE FRACTAL MODEL 

Type of 

processing 
Ra, µm Sm, µm  𝒂𝒎𝒂𝒙,𝒎𝒎

𝟐  𝑨𝒂,𝒎𝒎
𝟐 

Flat grinding 

2,51 

1,37 

0,89 

0,56 

133,32 

74,08 

58,82 

39,22 

3,49·10-3 

1,07·10-3 

6,79·10-4 

3,13·10-4 

0,414 

0,126 

0,080 

0,040 
 

Fig. 6 presents a dependency graph showing how 
relative area depends on maximum contact patch area (for 
the surface with Ra = 1.37 µm 𝛼 = 0,5)  

Normal contact stiffness. Analyze the elastic contact. The 
load taken up by the rough surface is determined through the 
previously obtained dependence (8): 

𝐹𝑒 =
𝑎𝑚𝑎𝑥
3/2

𝑎𝑚𝑖𝑛
𝐷/2

𝑄
2(1 − 𝛼)

(5 − 𝐷 − 2𝛼)
𝑎∗(5−𝐷−2𝛼)/2,   0 ≤ 𝑎∗ ≤ 𝑎𝑐

∗ = 1, 

where 𝑎∗ = 𝑎 𝑎𝑚𝑎𝑥 .  ⁄  

 

Fig. 6. The dependence of the relative area on the maximum area of the 

contact patch under different fractal dimension conditions 

Making the census of this expression as: 

𝐹𝑒 =
𝑎𝑚𝑎𝑥
(
𝐷
2
+𝛼−1)

𝑎𝑚𝑖𝑛
𝐷/2

𝑄
2(1 − 𝛼)

(5 − 𝐷 − 2𝛼)
𝑎(5−𝐷−2𝛼)/2.      (9) 

Taking the contact stiffness equal to: 

𝐾𝑁 =  
𝑑𝐹𝑒
𝑑𝜔

. 

Factoring the relationship between the area of the contact 
patch а and deformation 𝜔 that is written as: 

𝑎 = 𝜋𝑅𝜔.  

Inserting the value of the radius of the fractal protrusion 
and modifying the deduced expression with respect to the area 
of the contact patch, we obtain: 

𝑎 =
23𝐷𝑆−7

[𝜋𝐷𝑆+1𝐺2(𝐷𝑆−2)(𝑙𝑛𝛾)]1 (3−𝐷𝑆)⁄
𝜔2 (3−𝐷𝑆)⁄ .      (10) 

where DS = 2,5 we have: 

𝑎 =
√2

[𝜋3,5𝐺(𝑙𝑛𝛾)]2
𝜔4. 

Inserting the expression (10) into the equation (9) and 
making the following development of it taking into account 
that DS=D+1, we obtain: 

𝐹𝑒 =
𝑎𝑐
(𝐷+2𝛼−2) 2⁄

𝑎𝑚𝑖𝑛
𝐷/2

𝑄
2(1 − 𝛼)

(5 − 𝐷 − 2𝛼)
∙ 

∙ {
23𝐷𝑆−7𝜔2 (3−𝐷𝑆)⁄

[𝜋3,5𝐺2(𝐷𝑆−2)(𝑙𝑛𝛾)]1 (3−𝐷𝑆)⁄
}

(5−𝐷−2𝛼)/2
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where D = 1,5 (DS = 2,5) we get 

𝐹𝑒 =
𝑎𝑐
0,25

𝑎𝑚𝑖𝑛
0,75 𝑄 ∙ 0,4 {

√2 𝜔4

[𝜋𝐷𝑆+1𝐺(𝑙𝑛𝛾)2]2
}

1,25

. 

We obtain best possible: 

𝐹𝑒 = 𝑄
∗𝜔5.                               (11) 

At this time: 

𝑄∗ = 2,632 ∙ 10−4
𝑎𝑐
0,25

𝑎𝑚𝑖𝑛
0,75

𝑄

𝐺2,5
∙ 

The normal contact stiffness is: 

𝐾𝑁 = 5𝑄
∗𝜔4. 

As an illustration and putting the results obtained earlier by 
other researchers into perspective we give a numerical 
example. Let us take the following initial data: Ra = 2.95 µm; 
α = 0.5; D = 1.5. For grinding finish we estimate the fractal 
roughness parameter approximately: 

𝐺 = 10−5,26/𝑅𝑎
0,042

= 10
−

5,26
2,650,042 = 9,411 ∙ 10−6 𝑚𝑚. 

Let’s define other parameters: 

• the maximum area of elastic contact (according to the 
formula 10 when hardness of H = 2000 MPa and E = 
105 MPa) - 𝑎𝑐 = 1,419 ∙ 10

−3 𝑚𝑚2; 

• Q = 916,037 (Н/𝑚𝑚)𝑚𝑚0,5;   

• 𝑄∗ = 4,219 ∙ 1015  (
Н

𝑚𝑚5). 

Then the contact stiffness is determined by the 
dependence: 

𝐾𝑁 = 21,095 ∙ 1015𝜔4. 

Fig. 7 presents a dependency graph showing how contact 
stiffness depends upon approaching. 

Using the expression (11), we find the following 
dependence of the load upon the approaching for the elastic 
contact when the following initial data: 

DS =1,585; G = 10-9 mm; 𝑎𝑐 =  6,956 ∙ 10−12 𝑚𝑚2 . 

𝐹𝑒 = 5,59 ∙ 1019𝜔5,819. 

The relationship between approaching and load is: 

𝜔 = 0.4045𝐹𝑒
0,172. 

 
Fig. 7. Dependence of contact stiffness on approaching 

Fig. 8 presents the dependences of the approaching upon 
the load. Comparison of these dependencies is made 
considering sufficiently similar values of the topographic 
parameters of the flat joint steel face.  

 
Fig. 8. The dependence of the approaching on the load: full line graph is the 

fractal model; dashed line is readings of the work [7] 

 

V. CONCLUSION 

Thus, the proposed fractal model of contact interaction of 
the flat joint takes into account those parameters of rough 
surfaces, which have a significant importance for the result 
and accuracy of the calculation. These parameters include 
fractal dimension D and fractal roughness G, which are 
associated with the roughness parameters according to GOST 
2789-73. 

References 

[1] H. Yang, “Modeling and Analysis of Normal Contact Stiffness of 
Machined Joint Surfaces,” International Journal of Control and 
Automation, 2014, vol.7, No.6, pp. 21-32. 

[2] M. Ciavarella, V. Delfine, G. A. Demelio, “Re-vitalized Greenwood and 
Williamson model of elastic contact between fractal surfaces”, Journal 
of the Mechanics and Physics of Solids, 2006, Vol. 54(12), pp. 2569–
2591.  

Advances in Engineering Research, volume 188

349



[3] D. Pavelescu, A. Tudor, “On the roughness fractal character, the 
tribological parameters and the error factors”, [Proc. of the Romanian 
Academy. Ser. A.],  2004, Vol. 5, №2.  

[4] B. M. Yu, P. Cheng, “A fractal permeability model for bi-dispersed 
porous media”, In. Journal of Heat and Mass Transfer, 2002, vol. 45, pp. 
2983 - 2993. 

[5] Cuicui Ji, Wei Jiang,” Revising Elastic-Plastic Contact Models of 
Fractal Surfaces”, [Proc 5th int. conf. “Measurement, Instrumentation 
and Automation”].  ICMIA, 2016, pp. 123-129. 

[6] V.P. Tikhomirov, M.A. Izmerov, “Distribution of contact patch sizes on 
rough surfaces”, 2015 [Proc.int. conf. “Mechanical Engineering, 
Automation and Control Systems”], MEACS, 2015, pp. 1-4. 

[7] V.V. Izmailov, D.A. Levyikin, “Normal and shear stiffness of a flat joint 
of rough surfaces “, Mechanics and physics of the processes on the 
surface and in contact of solids, parts of processing and power 
engineering equipment, issue. 5, Tver: TvSTU, 2012, pp. 4 -11. 

 

 

Advances in Engineering Research, volume 188

350




