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1. INTRODUCTION

A random variable X is said to have exponentiated Rayleigh distribution [1] if its probability density function ( pdf) is of the form
N
f(x)=2aﬁx<l—e_ﬁ") e B* x>0, a, >0 (1)
with distribution function (df)

F(x)=<1—e_ﬁ"2>a,x>0, @, B> 0. 2)

The exponentiated Rayleigh distribution has many characteristics which are quite common to gamma, Weibull and exponentiated exponen-
tial distributions. The exponentiated Rayleigh distribution for the distribution function and the density function are found to have closed
forms. Consequently, it can be applied very compatibly even on censored data.

The concept of lower generalized order statistics (lg os) was first introduced by Pawlas and Syznal [2] to enable a common approach to
descending ordered random variables like reverse order statistics and lower record values. Further, the concept of lower (dual) generalized
order statistics (dgos) was extensively studied by Burkschat et al. [3].

Let X* (1, n, m, k), r = 1, 2, ..., n, be the r—th dgos and their joint pdfis of the from

n—1 n—1
k <Hy,— (H [FG)I™ f(x) ) [F @)1 flx,) 3)
j=1

i=1

for FF1(1) > x; > x, > ... > x, > F71(0).
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For the case m; = m, i = 1, 2, ..., n — 1, the pdf of r—th dgos X* (r, n, m, k) is given

G- e
fX*(r,n,m,k) (x) = (Y’— 11)| [F(x)]yr lf(x)gm I(F(X)) (4)

and the joint pdf of X* (r, n, m, k) and X* (s, n, m, k), is
Cs—l

fX*(r,n,m,k),X*(s,n,m,k) (X,y) = (7’ _ 1) ! (S —r— 1) ] [F(x)]mf(x)grrn_l (F(x))
X [l (F (7)) = B E] ™ FO) [FG)] T x> (5)
where
_ 1 m+1 _
h G0 = o 1x , m#-—1
— log x, m=—1
and

Several authors utilized the concept of dgos in their work. References may be made to Pawlas and Szynal [2], Khan et al. [4], Ahsanullah
[5,6], Mbah and Ahsanullah [7], Khan et al. [8], Khan and Kumar [9,10] and Khan and Khan [11] among others. In this paper, we mainly
focus on the study of dgos arising from the exponentiated Rayleigh distribution.

2. RELATIONS FOR SINGLE MOMENTS
Note that for exponentiated Rayleigh distribution f(x) and F (x) satisfy the relation
208 F(x) = x~! (eﬁxz - l)f(x). 6)

The relation in (6) will be used to derive some simple recurrence relations for the moments of dgos from the exponentiated Rayleigh distri-
bution.

We shall first establish the exact expression for E [X*j (r,n,m, k)]. Using (4), we have, when m # —1

B o] = 5 [ W IFN ™ 00 gi (PG
“Jo
— Cr—l
—mf(%—l,r—l), 7)
where
Ii(a,b) = J x/ [F(x)]° f(x) gb (F(x)) dx. (8)
0

b
On expanding gﬁ, (F(x)) = (ﬁ {1 —(F (x))mﬂ}) binomially in (8), we get

b

I (a, b)=( il)h Z(—l)“(i)[ X [F@] " f(x) dx. )
m u=0 0

Making the substitution t = [F (x)]l/ % in (9), we find that

b 1
a u b i/2 _
I(ab) = —— -1 —1n(1 = 1/? ¢ alatuGn+D+11-1 34 10
 (a, b) Bj/z(mﬂ)bu}:o)( ><M)L[ n(l-n" t (10)

On using the logarithmic expansion

[-ln(1-p} = (2 %) =Yz, (j) U, |1 <1, (11)
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o j
. P
where z, (]) is the coefficient of #/*? in the expansion of <Z t—> (see Balakrishnan and Cohen [12], p. 44), we get
p=1
1
I.(a,b) = (=1)* ( > z, (j/2 J patlatulm+D)+11+(ii2)+p—1 34
’ B (m +1)b§6;} P0RY ),

ZZ( 1y <b>[ 5 (/%) ' )

=5J/2( m+ 1) 520420 a+u(m+1)+1+((j/2) +p) /a]

When m = —1, we have
b
0 wf bY _
I(a,b) =g, as ;)(—1) (u> =

0
Since (12) is of the form o at m # 1, therefore, we have

[afa+u(m+1)+ 1} + (j/2 +p]
Ii(a,b) = AZ< 1) < ) Gr2) , (13)
u=0 (Wl + 1)
where
1 <« /.
A= g5 2,5 (il2).
p=0
Differentiating numerator and denominator of (13) b times with respect to m, we get
b b
Ij(a,b)=AZ(—1)“+b(b> = —, b>0.
u=0 “la+um+1)+1+((j/2) +p) /o]
On applying L Hospital rule, we have
b
Tim I;(a,b) = AZ( 1)+t <b> - —. (14)
u=0 U [a+1+((j/2) +p) /a]

But for all integers n > 0 and for all real numbers x, we have Ruiz [13]

D=1y < 7) x—D"=n!. (15)
i=0

Therefore,

< b
PN CR Vi <u> ub =bl. (16)
u=0
On substituting (16) in (14), we find that

I.(a,b) = bt % (/2) m=—1. (17)

B2 2 [a+ 1+ ((if2) +p) fa]™*"

Now substituting for L(p,—1,r=1) from (12) in (7) and simplifying, we obtain when m # —1

E[X¥ (r,n,m, k)] = G HZi( D" < 1>

)‘/31/2( +1) " ;S0u=o
% % (j/2)
[V + ((i/2) +p) /a]

(18)
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and when m = —1, in view of (17) and (7), we have

, Nk z, (j/2)
B0 1wl = [ (20| = g % e B )

where Z,(k) denote the k—th lower record value.

Identity 2.1.Fory, > 1,k > 1,1 <r<nandm # —1

<« r—1\ 1 _ (=D!m+1)""
_lu _—= . 20
;)< >< L )n ; (20)

—u Hyt
t=1

Proof. At j = 0in (18), we have

co r—1 Z(O)
P
= PPN D(”)[Vr_u '

(r—l)'(m+1)f‘ =5 + (p/a)]

Note that, if j = 0, then
z,(0)=1p=0 and z,(0)=0,p>0 (see Shawky and Bakoban [14]) and hence the result given in (20).

2.1. Special Cases

i. Puttingm = 0, k = 1 in (18), the explicit formula for single moments of order statistics of the exponentiated Rayleigh distribution can
be obtained as

E(Xi .y n) ,61/2 ii( )" < ){n_ 7 (j/2)

r+ 14+ u+{(j/2) +p}la]

zz
That is
B() =Sy e () et
zZz e ut (072) +p) /el
where
Con = =BG

ii. Putting k = 1 in (19), we deduce the explicit expression for the moments of lower record values from the exponentiated Rayleigh
distribution as

()

iy_ 1 % (i/2)
E(XL(r)) - 51’/2; [ {(]/2) +P}/O‘] :

Now we obtain the recurrence relations for single moments of exponentiated Rayleigh distribution in the following theorem.
Theorem 2.1. For the distribution as givenin (2) for2 <r<mn,n>2andk=1,2,...
E[X¥ (r,n,m, k)| = E[XY (r— 1,n,m, k)]

j
" 2apy,

{E[X=2(r,n,m, k)| — E[@ (X* (r,n,m, k))]} (21)

where

@ (x) = xi 2 eP¥
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Proof. In view of Khan et al. [15], note that

E [X*j (r,n, m, k)] —E [X*j (r—1,n,m, k)]

iC,—
= —MJ HTHFEOI" go! (F () dx. (22)
On using (6) in (22), we get
B[ (v, m ] = E[X = 1mom ] = 2 iac_"f)! J 2 [FV T £ g (F ) d
Cf—l j—2 ﬁx yr —1 d
=Dl xI2eF [F ()] f(x) gim (F(x)) dx

and hence the result given in (21).

Remark 2.1. Putting m = 0, k = 1, in (21), we obtain a recurrence relation for single moments of order statistics of the exponentiated
Rayleigh distribution in the form

E(Xari) =E(Xorian) + 55 £ (67 0) = E (0 (i)

Replacing (n — r 4+ 1) by (r — 1), we have

j j J j=2
(3] =50 s (7)ot
Remark 2.2. Settingm = —land k > 1in (21), we get a recurrence relation for single moments of lower k record values from exponentiated

Rayleigh distribution in the form
E [(z,“‘) )J] —E [(sz)l )]] + #ﬁk {E [(zf’d )H] _E [<p (z}“)]} .

3. RELATIONS FOR PRODUCT MOMENTS
The explicit expressions for the product moments of dgos X* i(r,n,m,k)and X* (s,n,m, k), 1 <r < s < n,can be obtained when m # —1 as

E[X* (rn,m, k) X (s,m, m, b)]

C (o] X
B (r—l)'(;_—lr—l)'J J”J F@I" fedgn™ FE
. il

X [ (F (7)) = B D] ™ [F ()7 £ () .

(23)

On expanding g/7! (F (x)) = < {1 —(F (x))m+1}> binomially in (23), we get

Cs—l
r=D!G—r=D!m+1)""

r—1 0o rX
x Z (_Du <T; 1> J J Xi)/j [F(x)]m+u(m+l)f(x)
u=0 0

0

E[X* (r,n,m, k) X9 (s,n,m, k)| =

X [ (F () = b F)] ™ [F(5)]"7" f(y) dydx

e Eer(7)

(r—l)'(s—r—l)'(m+1)

XLijm+um+1),s—r—1%—1), (24)
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where
I;(a, b, c) = J J XY [F@I f&) [y (F(y)) = b (F(x))]b
0 0
x [F(y)] f(y) dydx. (25)

Expanding [h,, (F(y)) — h,, (F (x))]b binomially in (25) after noting that h,, (F (y)) — h,,, (F(x)) = g, (F (y)) — gm (F (x)), we get

b

i@ b0 = g 2, = ( f) J X [F@I O™ £(x) 1(x) d, (26)
m v=0 0
where
I(x) _ J yj [F (y)]c+v(m+1)f(y) d)/- (27)
0

By setting t = [F(y)]"/% in (27) and simplifying on the lines of (12), we find that
o ]/2 [F (x )]c+v(m+1)+l+((]/2)+p)/oc
ﬁJ/Z Z [c+v(m+1)+1+{(j/2) +p}/a]

On substituting the expression of I (x) in (26), we have

1@ b o) = ———— Z Z(— Y < ) [ 7 (i/2)

51/2( + 1) b c+vim+1)+1+{(j/2) + p}/a]

y Joo y [F(x)]a+c+b(m+1)+1+{(j/2)+p}/ocf(x) dx. (28)
0

Again by setting w = [F(x)] Ve

Lij(a, b, c) = —bZZZ( 1’ (v) [ 7 (j/2)

6(:+])/2(m+1) p=04=07=0 C+V(m+1)+1+{(j/2) +P}/a]

2, (i/2)

in (28) and simplifying the resulting expression, we obtain

X 29
[a+c+bm+1D)+2+{G/2)+ (j/2) +p + g} /«] 29
and when m = —1 that
b
0 v b\ _
Ij(a,b,c)= 5, as ;0(—1) <V> =
Therefore, on applying L' Hospital rule and using (16), we find that
hm I,J(a b,c) = 5— 2 Z Z(j —
p=0 q=0 [c+ 1 +{(]/2)+p}/oc]
i/2
X % (12) ) (30)
[a+c+2+{G/2)+ (j/2) +p + g} /a]
Now on substituting for Liijm+um+1),s—r—1y%-1) from (29) in (24) and simplifying, we obtain when m # —1
E[X* (r,n,m, k) X (s,n,m, k)| = Gt
(r=1!(s—r—1)1 B2 (m 4 1)2
o oo r—1s—r—1 it _ —r—1 ZP(J/Z)
SIS ()T
IPIPIP) o) b
2
7, (i/2) (31)

y .
[Voeu + {G/2) + (j/2) + p + g} /a]
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and when m = —1, in view of (30) and (25), we have

E[X* (r,n, —1, KX (5,1, 1, K)] = E[(Zr(k))i<zs(k))j]

(a k) Z Z Zp(i)zq(i) . (32)
COE S0 lak+ G2 +p]  ak+ (/2 + (/2) + p+ ql
Identity 3.1.Fory,, ), > k> 1,1 <r<s<mandm # —1
s—r—1 s—r—1
Z (_l)v<s—vr—l>L=(s—r—l)!s(m+1) . (33)
- Yo—v
11 »
t=r+1

Proof. Ati = j = 0in (31), we have

:(r—l)!(s—r—l)!(m+1) p=0g=0u=0 v=0
o ZP(O)Zq(O) .
[Voer + (p/2) ] [1r—u + (p + q) /2]

In view of Shawky and Bakoban [14], for i = j = 0, note that

ocp(O)=1, ocq(O):l, p» q=0andocp(0)=0, aq(0)=0, p, 9> 0.

Therefore,

Si( v < r_1>LZ(r_l)'(s_r‘l)'(mﬂ)s_z.

Yoy
5—12( 1) ( u >}/y—u

Now on using (20), we get the result given in (33).
At r = 0, (33) reduce to (20).
Remark 3.1. Atj = 0in (31), we have

A C o r—1 ZP (1/2)
E [x+ 1, ,k = 1
[X* (r,n,m, k)| = Y ﬁl/z( T ;;)1;)( )" < > [v,— +{G/2) + p} /]

which is the exact expression for single moment as given in (18).

3.1. Special Cases

i.  Puttingm = 0,k = 1in (31), the explicit formula for the product moments of order statistics of the exponentiated Rayleigh distribution
is obtained as

c© oo r—1s—r—1

i j rySin u+v - —r—1
E(‘X-ln—r+1:nX£t—s+1:n> ﬁ(l+j)/2222 Z ( 1) " ( ><S Vr >

p=0g=0u=0 v=0

z, (j/2) 2, (i/2)
[n—s+1+v+{(j/2) +p}/a] [n—r+1+u+{G/2)+ (j/2) +p+q}/a]

X

That is

X ; rsnoooonssr_ urv - —r=1
E<X1r:nXs]:n) = ‘8(z+])/2222 Z ( 1)+ ( )(S Vr >

p=0g=0u=0 v=0
y 2, (i/2) z, (j/2)
[r=1+v+{(j/2) +p}/a] [s =1+ u+{G/2)+ (j/2) +p+ g} /o]’
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where

n!

Cr,s:n= (r_l)l (5—7‘—1) | (n—S)'

ii. Putting k = 11in (32), the explicit formula for the product moments of lower record values for the exponentiated Rayleigh distribution
can be obtained as

2, (j) 2, ()
E[x = V) % .
X, Lo ”S)] 5(t+1)/2 ,,zng{) [o+ (i/2) +p] ™ [a + G/2) + (j/2) + p+ 4]

Theorem 3.1. For the distribution as givenin (2),for1 <r<s<n,n>2andk =1, 2, ...

E[X* (r,n,m,k) X (s,n,m, k)| — E[X* (r,n,m, k) X*I (s = 1,n,m, k)]

- Zocjﬁys {E[X*1 (r, n, m, k) X972 (5, 1, m, k)| 60
Elp (X (r,n,m, k) X* (s,n,m, k))]},
where
P (xy) =x'y 2
Proof. In view of Khan et al. [15], note that
E[X* (r,n,m, k) X (s,n,m,k)| — E[X* (r,n,m, k) X9 (s — 1, n,m, k)]

= —ys(r_lfﬁ;”_r_l)!m XY HF@L" fG0 g (F(0) .
35

X [l (F(3)) = b F)] ™ [F(y)] dydx.

On using relation (6) in (35), we get

E [X*i (r,n,m, k) X (s, n, m, k)] —E [X"’ (r,n,m, k) X (s —1,n,m, k)]

— st—l e i 5"
= 2a[3;/5(r—1)!(s—r—1)!{L J xy 2P [F(0)]" f(x) g ' (F(x))

X [ (F(y)) = b F)] ™ [F ()] f(y) dydx

—Jwrxy’ 2FI" £ g (F ) I (F(9)) = b EC)] ™ [F ()7 () dydx

0

and hence the result given in (34).

Remark 3.2. Putting m = 0, k = 1 in (34), we obtain recurrence relations for product moments of order statistics of the exponentiated
Rayleigh distribution in the form

i j ~ j _ J
E<Xln r+1: an s+1: n) _E<Xln—r+l:an—s+2:n> - m
X {E (‘Xln r+1: nXi_i_H n) —E(q0 (Xn—r+1:an—s+1:n))}'
That is

E(x0 ) B (3,0 = S [ () - B ().
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Remark 3.3. Setting m = —1 and k > 1, in (34), we obtain the recurrence relations for product moments of lower k record values from
exponentiated Rayleigh distribution in the form

) ) -ol e 2]
= sagr E[(#) ()] =ele (2) ()]}
Remark 3.4. Ati =0, Theorem 3.1 reduces to Theorem 2.1.

4. CHARACTERIZATION BY CONDITIONAL EXPECTATION AND RECURRENCE RELATION

Let X* (r,n,m, k), r =1, 2, ..., nbe dgos from a continuous population with df F (x) and pdff(x), then the conditional pdf of X* (s, n, m, k)
given X* (r, n, m, k) = x,1 < r < s < n, in view of (4) and (5), is

fX*(s,n,m,k)|X*(r,n,m,k) (y|x) = m [F(x)]m_y’-H

X [ (F (7)) = s ™ [FO)7 (), y <% m#-1 (36)
ks—r s—r—1
Fy 100 Olx) = G=r=D1 [In Fx) —InF (y)]
k—1
Fiy) f0)
X (F(x)) mdy, y<x, m=-—Ll. (37)

Theorem 4.1. Let X be a non-negative random variable having an absolutely continuous df F (x) with F(0) = 0 and 0 < F(x) < 1 for all
x> 0, then

1 0 <1 - e‘ﬁ" )P s—1 yr+]
E[EX* (s, n,m, I} X" (Ln,m, k) = x] = = ) H(y +(P/a)),
r+j

l=r, r+1, m#—1. (38)

E[§ <Zs(k)) 1Z® = x] _ % i

S \k+ (pla)
Il=r, r+1, m=-—1, (39)
where
§0)=»
if and only if

[e4
F(x) = (1—e‘ﬁ"2) , x>0, a, B>0.

Proof. When m # —1, we have from (36) fors > r+1

Cs—l
(s—r—=1D!C_y(m+1)"""

- FONT (FO) N )
XLy[l_<W> ] <F(x>) Foo (40

E[&{X (s,n,m, k)}|X (r,n,m, k) = x] =
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[«4
F(}’) 1—e B
By setting u = = from (2) in (40), we obtain
y g o) (1—e—ﬁx2 (2) in (40)

Cs—l
(s—r—=1D!C_y(m+1)F"""

X /lg Jl [_ln{l - (1 - e—ﬁ’x2> ul/a}] W (1 - um+1)5_"1 5
0

P
C > (1 _e_ﬁxz)
s—1

(s—r=D!C_,(m+1)"'8 pgl p

E[&{X (s,n,m, k)}|X (r,n,m, k) = x]

1
X J ulpla)+y—1 (1 - u’”“)s_r_l du. (41)
0
Again by setting t = u™*! in (41), we get
E[£{X (s,n,m, )} | X (r,n,m, k) = x] = o
P T T == Gy (m+ 1B
2\P
e (1 - e_ﬁx > 1 —P+ak +n—s—1
X Z -~ 7 J' t alm+1) 1- t)s_’_l dt
p=1 p 0
p
— e B¥ FACLIN
- Ci §: (1 ¢ ) 1ﬂ(oz(m+1) tn S)
Coy(m+ 17" B ;2 p F(M +n—r>
, a(m+1)
_ B¢
Cs—l © <1 e )
- B Cr—l pgl = ’
pIl (7/r+j + (P/O‘))
j=1
where
Cs_l s—r
I = H Ve+j
r—1 j=1
and hence the result given in (38).
To prove sufficient part, we have from (36) and (38)
Cs—l J'x m+1 m+1715—7—1
(F@)™ = (F
(s—r=DIC (m+ 1y Oy[ (FO) ]
s—1 L
X[F()]"7 f(y) dy = [F™ H, (), (42)

where

2\ P
w (1—e B> s—r )
Hr(x)=12< > H( Tty >
p=1 p yr+]

=1 + (p/a)

I

Differentiating (42) both sides with respect to x, we get

Cs— [F (x)]mf(x) x m m s—r—=2 -
ey R GO IR OO
s r—1

= H, (%) [F]"™ + ¥4 H, (0) [F)] 7 f(x)
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or
Y Hogr 0 [F @727 f(x)
= Hy ) [FOI™ + 441 H, () [F Q™7 f(x).
Therefore,
fo H, ()
F(X) Yr+1 [Hr+1 (X) - Hr (x)]
2aB xe P~
_ af xe _ (43)
1—e B>
where
) [+ N s—r yr+]
H. (x) = 2xe B~ 1—eBx —_— |,
pZ=:1< ) g Vs + (Pt)
1 oo L p ST yr+]
H,y () — H, (x) = 1— e P* — ).
: A2 - T ()
Integrating both the sides of (43) with respect to x between (O, y), the sufficiency part is proved.
P 24
. . F(y) 1—e A .
For the case when m = —1, from (37) on using the transformation u = = - | , we find that
F(x) 1—eBx
1
E[g (Zs(k)> |Z](k) — X] — A*J (=In u)s—r—l uk+(P/“)_1du, (44)
0
where
k= - 2\F
o r _ B«
iy pe— !,8}2(1 ¢ ) Ip-
We have Gradshteyn and Ryzhik ([16], p. 551)
: M=l v—1 Tu
(—Inx) X dx=v—ﬂ, u>0,v>0. (45)
0

On using (45) in (44), we have the result given in (39).

Sufficiency part can be proved on the lines of case m # —1.

Theorem 4.2. Let X be a non-negative random variable having an absolutely continuous df F (x) with F(0) = 0 and 0 < F(x) < 1 for all
x> 0, then

E[XY (r,n,m, k)| = E[XY (r—1,n,m, k)| — 20‘2}/ E[p (X* (r,n,m, k))]
+ #ﬁ%E [X972 (r,n,m, k)] (46)

if and only if

[e4
F(x)=<1—e‘ﬁ"z> , x>0, a>0,3>0.
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Proof. The necessary part follows immediately from (21). On the other hand if the recurrence relation in (46) is satisfied, then on using (4),
we have

Cr—l
(r—1n!

J X [F@) ™" fx) gi (F(x)) dx
0

- (:/(r—ll)'1 J A F@I" f(x) g (F (x)) dx
r . 0

jCrmi J X2 [F @] () gir! (F () dx

2aBy,(r—=D! ), (47)

jc‘;l . i—2 ¥,—1 —1
+ 2aBy, (r—1)! L T2 [F@) ™ f(x) gt (F(x)) dx.

Integrating the first integral on the right hand side in (47) by parts and simplifying the resulting expression, we get

o )
ﬁj T FOP T gh ! (F () dx
r * 0

1
2af x

X {F (x) — P xzf(x) + 20(15 Xf(x)} dx =0. (48)

Now applying a generalization of the Miintz-Szasz Theorem [17] to (48), we get

]ﬁ_ 2af x
Fx) (eﬁ"z—l)’

which proves that

N4
F(x)=(1—e_'3"> , x>0, a, >0.

5. CHARACTERIZATION BY TRUNCATED MOMENT

Theorem 5.1. Suppose an absolutely continuous (with respect to Lebesgue measure) random variable X has the df F (x) and pdf f(x) for
0 < x < oo, such that f' (x) and E (X|X < x) exist for all x, 0 < x < oo, then

E(XIX<x) =g®)n ), (49)

where

(x)

nx) = %

and

X ) a

5 J <1 —ehRu ) du
1— e‘ﬁ * 0
gx) = e o ,
2afxe P agBx (1—e B )T ep

if and only if

a—1
fx) = 2ap x <1—e‘ﬁ"z) e B x>0, a, f>0.

Proof. In view of Ahsanullah et al. [18] and (1), we have

E(X)X<x)= % JO u? (1 —e P “2>a_1 eB¥ dy. (50)
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2\ a1 2
Integrating (50) by parts treating 'u (1 —e B ) e~Bx" for integration and rest of the integrant for differentiation, we get

E(X|X§x):$1x (1—e-ﬁx2>—r<1—e-ﬁuz>adul. (51)
0

After multiplying and dividing by f(x) in (51), we have the result given (49).

To prove sufficient part, we have from (49)

I _gf®
RBL”@m“ F)
or J uf(u) du = gx)f(x). (52)
0

Differentiating (52) on both the sides with respect to x, we find that

xf(x) =g (0 f(0)+g)f (x).

Therefore,
[0 _x=gw
fx) g
_2(a— DBx e B 1
B 1—e B2 + x 2B, (53)
where

_ -Bx
gﬂﬁ%wm<%Lﬁ&1— L )

-2
e + p B x
Integrating both the sides in (53) with respect to x, we get

fx) =cx (1 —eF "Z)a_l e BY

It is known that
J f(x) dx = 1.
0
Thus,
oo a—1

l:J x(l—e‘ﬁ"z) e‘ﬁ"zdx:L,

c 0 2a3
which proved that

a1
f(x) =2afx (l—e_ﬁ"z) e‘ﬁxz, x>0, o, §>0.
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