International Journal of Computational Intelligence Systems

ATLANTIS Vol. 12(2), 2019, pp. 1270-1281
PRESS DO hitps://doi.org/10.2991/ijcis.d.191101.004; ISSN: 1875-6891; eISSN: 1875-6883 Gae
https://www.atlantis-press.com/journals/ijcis/ $ystims

.

A Hybrid Global Optimization Algorithm Based on Particle
Swarm Optimization and Gaussian Process

Yan Zhang!2, Hongyu Li'>", Enhe Bao!, Lu Zhang!#, Aiping Yu!

" College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China
? Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, Guilin 541004, China
* Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin University of

Technology, Guilin 541004, China

 Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA

ARTICLE INFO

Article History

ABSTRACT

Received 22 Apr 2019
Accepted 28 Oct 2019

Keywords

Swarm optimization
Gaussian process
Global optimization
Surrogate approach

1. INTRODUCTION

Swarm intelligence [1-4] was identified as a promising new opti-
mization technique over the past decade. It is an attempt to develop
algorithms inspired by the collective behavior of social insects
and other animal societies. There are many swarm intelligence
approaches designed for algorithmic optimization, such as cuckoo
search algorithm [5-6], bat algorithm [7-8], artificial bee colony
algorithm [9], fish school algorithm [10], ant colony optimization
algorithms [11] and particle swarm optimization (PSO) algorithms
[12-14]. Though most of swarm intelligence share the similar con-
cept on collective behavior of decentralized, self-organized systems,
natural or artificial, each swarm intelligence-based algorithm has
its characteristic. Therefore, the different swarm intelligence algo-
rithm could be assigned in different application to maximize the
performance. For example, Cuckoo search idealized such breeding
behavior, and thus can be applied for series system in hardware
design [15]. Bat algorithm mimics a frequency-tuning method to
control the dynamic behavior thus can be used to design the trans-
port network [16]. Herein, the PSO as a more general approach
developed by Eberhart and Kennedy in 1995 has better applicability
over the others. The PSO is a metaheuristic as it requires few or no
assumptions about the problems; therefore, it can search very large
space of candidate solutions [17]. In the search space, the position

) Corresponding author. E-mail: lihongyu@glut.edu.cn

The optimization problems and algorithms are the basics subfield in artificial intelligence, which is booming in the almost any
industrial field. However, the computational cost is always the issue which hinders its applicability. This paper proposes a novel
hybrid optimization algorithm for solving expensive optimizing problems, which is based on particle swarm optimization (PSO)
combined with Gaussian process (GP). In this algorithm, the GP is used as an inexpensive fitness function surrogate and a
powerful tool to predict the global optimum solution for accelerating the local search of PSO. In order to improve the predictive
capacity of GP, the training datasets are dynamically updated through sorting and replacing the worst fitness function solution
with the better solution during the iterative process. A numerical study is carried out using twelve different benchmark functions
with 10, 20 and 30 dimensions, respectively. Regarding solving of the ill-conditioned computationally expensive optimization
problems, results show that the proposed algorithm is much more efficient and suitable than the standard PSO alone.

© 2019 The Authors. Published by Atlantis Press SARL.

This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

and velocity of particle motion will be equated by simple mathe-
matical expression. Specifically, the form of path is relinked among
optimal position (pbest). In this sense, PSO shares many similari-
ties with evolutionary computation techniques such as genetic algo-
rithms (GAs) [18]. Compared to GA, PSO has fewer parameters to
adjust and better convergence capability for the complex optimiza-
tion problems [19]. However, like other population-based algo-
rithms, PSO has some inevitable disadvantages, for example, it is
difficult in defining initial parameters; this method is not applica-
ble for the problems of scattering and it can be trapped into a local
minimum especially with complex problems. More important, PSO
requires a large number of fitness function evaluations. Moreover,
aiming to practical engineering problems, the real function is usu-
ally missing. Therefore, the numerical simulation is introduced to
build the explicit relationship between variable and fitness [20,21].
But it is often infeasible to apply the process to fitness evaluation due
to its high computational cost. Examples of such problems include
large-scale finite element method analysis or computational fluid
dynamics simulations [22]. In such problems, a single exact fitness
function evaluation (involving the analysis of a complex engineer-
ing system based on high fidelity simulation codes) often consumes
massive CPU time. Therefore, the high computational cost involved
posing a serious impediment to PSO’s successful application.

In order to reduce the computational cost of PSO, many meth-
ods have been considered and implemented. GA can be used to

https://doi.org/10.2991/ijcis.d.191101.004
https://www.atlantis-press.com/journals/ijcis/
http://creativecommons.org/licenses/by-nc/4.0/

Y. Zhang et al. / International Journal of Computational Intelligence Systems 12(2) 1270-1281 1271

modify the decision vector to speed up the procedure [23,24]. By
applying the binary variables, the PSO can be adapted to consume
less computational cost [25]. However, more promising way to
significantly reduce the computational cost of PSO is to employ
computationally cheap surrogate model or metamodel in place of
computationally expensive exact fitness evaluations. The meta-
model as a surrogate model is constructed by generating a set of
data points in the design space and evaluating the cost function.
This method relies on establishing the accurate metamodel. For
example, Praveen and Duvigneau [26] developed a low cost PSO
by using metamodels to simulate the aerodynamic shape. Selleri
et al. [27] try to optimize the array in the design of antennas and
microwave by introducing metamodel to PSO. Besides metamod-
els, research on surrogate-assisted evolutionary computation began
over a decade ago and had received considerably more interest in
recent years [28—32]. In the surrogate approach, a surrogate model
is trained on existing evaluated individuals (fitness cases) in order to
guide the search for promising solutions. Biswas et al. [33] coupled
the Bacterial Foraging Optimization Algorithm (BFOA) with PSO
for optimizing multimodal and high-dimensional functions. Zhang
et al. [34] employed the artificial immune system (AIS) and chaos
operator as a surrogate to lower the computational cost in PSO.
By leveraging surrogate models, the number of expensive fitness
evaluations decreases, which result in significant decrease in com-
putational cost [35-37]. Though currently a variety of empirical
models can be used to construct the approximation (e.g., polyno-
mial models (PMs), artificial neural networks (ANNs) and radial
basis function networks (RBFNs)), there are still limitations which
are difficult to be overcome (i) for the surrogate models, PM can’t
cope with large dimensional multimodal problems since they gen-
erally carry out approximation using simple quadratic models;
ANN always has difficulty in finding an appropriate network topol-
ogy and the optimum hyperparameter; a major difficulty in RBFN
is to set the optimum decay parameter. Therefore, there is an urgent
need to develop a novel framework to solve those problems. (ii) In
respect to the strategies of algorithms, the performance of the algo-
rithms is highly dependent on the quality of training data. Generally
speaking, to achieve a valid surrogate model, the data for training
must be “representative” of the overall design space and the global
optimum solution should be included in the interval of training
data. Nevertheless, the training dataset for training surrogate mod-
els remain unchanged during the whole searching process. To this
end, the conventional strategy does not guarantee that the selected
training dataset covers the entire design space or the global opti-
mum solution locates in the interval of training data, especially for
the scenarios with large variables but with limited training datasets.
So, the surrogate models are very easy to be trapped by the local
optimum solution if the training datasets are not selected properly.

Gaussian process (GP) can directly capture the model uncertainty;
and also, it is be able to add prior knowledge and specifications
about the shape of the model by selecting different kernel func-
tions. Therefore, it is suitable to introduce the Gaussian mutation
to PSO to improve the efficiency. Higashi and Iba [38] demonstrate
a way to combine PSO with GP. The proposed strategy achieves
better performance than PSO itself. Krohling [39] developed a
Gaussian PSO algorithm to solve the multimodal optimization
problems. But the PSO still can be stuck in local minima when opti-
mizing functions. The key to adapt GP in PSO is to find the proper
optimal combination strategy. In this process, for most of current

methods, it excessively relies on the sample if the approximate
model is directly replaced with the fitness function. In particular,
the accuracy of regression is determined by the sample. If the rep-
resentation of learning sample is either poor or off from the global
trend, the corresponding accuracy of prediction will be low, leading
failed in search optimal value.

In order to overcome the problems described above, a novel hybrid
GP surrogate-assisted PSO optimization algorithm is proposed in
this paper. Comparing with the conventional surrogate models, the
proposed algorithm has merits in the following aspects: (i) train-
ing datasets are generated randomly; (ii) the local search is accel-
erated; (iii) the training datasets can be dynamically updated. To
sum up, the proposed algorithm can guarantee the accuracy and
efficiency for solving computationally expensive global optimiza-
tion problems. For convenience, the proposed algorithm will be
named as GP-PSO. The remainder of this paper is structured as
follows: Section 2 gives a brief introduction of the related method-
ology including PSO and GP; Section 3 presents the proposed GP-
PSO algorithm; Section 4 demonstrates the validity and efficiency
of the proposed algorithm by experiments. Finally, the conclusions
and future works are presented in Section 5.

2. REVIEW OF RELATED METHODOLOGY

2.1. Particle Swam Optimization

PSO is initialized with a population of random solutions and
searches for optima by updating generations. In PSO, the poten-
tial solutions, called particles, fly through the problem space by fol-
lowing the current “optimum” particles. There are two “optimum”
particles: one keeps track of its coordinates associated with the best
solution in current stage. The best solution is defined as pbest. The
other “best” tracked by the particle swarm optimizer is obtained so
far by any particle in the neighbors of the particle. When a particle
takes all the population as its topological neighbors, this global best
denoted as gbest. With the help of the two best values, the particle
updates its velocity and positions with following equation:

Via = wvig + cir1 (Pig - %i) + 272 (P — Xia) } (1)
Xig = Xig + Vig

where vy is a velocity vector, x;q is a position vector. p;q represents
the best ever position of particle , its fitness is pbest. p,q corresponds
to the global best position in the process of particle iteration on the
d-th dimension, its fitness is gbest. The parameters | and r, are two
random values, uniformly distributed in [0, 1] [40]. ¢, and c, are
acceleration constants, usually ¢; = ¢, =[1.8, 2.0] [41]. The parame-
ter w is the inertia weight, which controls the influence of previous
velocity on the new velocity. Inertia weight w can be determined by
equation:

Wmax = Wmin
W= Wmax ~ ¢ 4)
max

where ¢ is the current iteration step, f,,,, is the maximum iteration
step, W is the maximum inertia weight, w,;, is the minimum
inertia weight. Usually, w,,, = 0.9, wp;, = 0.4 [42].

1272

2.2. Gaussian Process

For the approximation of the fitness function we chose GP,
which is a newly developed machine learning technology based
on strict theoretical fundamentals and Bayesian theory [43]. In
recent years, GP has attracted much attention in the machine learn-
ing community [44-46]. Like ANNs, which are the most promi-
nent surrogate models, GP can approximate any function. During
searching the optimum solution by PSO, a GP model is used to
approximate the real function, so that the number of evaluations
of real functions can be dramatically reduced. Compared to ANN,
GP’s main advantage is the simplicity: no need to choose network
size or topology. Besides, GP can automatically choose the opti-
mum hyper-parameters. More details about GP can be seen in the
work by Rasmussen and Williams [47].

A GP is a collection of random variables, any finite set of which
have a joint Gaussian distribution. A GP is completely specified by
its mean function m(x) and the covariance function k (x, x') as

f(x) ~ GP (m(x),k (x,x")). ©)

There is a training set D of m observations, D =
{(xi,:) li=1,..m}, where x denotes an input vector with n
dimension, y denotes a scalar output or target. The goal of the
Bayesian forecasting is to compute the distribution p (y.|x.,D) of
output y. given a test input x» and a set of training points D [48].
Using the Bayesian rule, the posterior distribution for the GP out-
puts y. can be obtained. By conditioning on the observed targets in
the training set, the predictive distribution is Gaussian:

Yo% X,y ~N(y(x,),0(x,)), (4)

where the mean and variance are given by

) =k (K+a31) " y, (5)

7 (x,) = k(x,,x,) - k' (K +02I) 'k, (6)

where a compact form of the notation setting for matrix of the
covariance functions are k, = K (X,x,), K = K(X,X), o2 is the
unknown variance of the Gaussian noise.

GP procedure can handle interesting models by simply using a
covariance function with an exponential term:

2 %, - 11> 2
k (xp,xq) = 0f exp _T + 0,76, (7)
where I is the length-scale vector, ofz is the signal variance, &, is a

Kronecker delta. This function expresses the idea that nearby inputs
have highly correlated outputs. The GP employs a set of hyper-
parameters € including the length-scale I, the signal variance 0}2, the
noise variance ;2. The hyper-parameters 6 can be optimized based
on log-likelihood framework:

L=logp(y|X,0) = —%yTC_ly— %log det C- glog 2. (8)

Y. Zhang et al. / International Journal of Computational Intelligence Systems 12(2) 1270-1281

The log-likelihood and its derivative with respect to € can be
expressed as

0L _ 1, (19C\ 1 1018C .
ae——ztr<C 69>+2yc 56C »)

where C = K + o21.

Hyper-parameters @ are initialized to random values in a reasonable
range, and then the algorithm searches for the optimal values by
using an iterative method such as conjugate gradient.

3. THE PROPOSED GP-PSO ALGORITHM

In this paper, in order to improve the PSO’s efficiency for com-
putationally expensive optimization problem, a GP-based PSO
algorithm is developed. In GP-PSO algorithm, GP is applied to
approximate the real function. Once the approximation function is
found, we can directly use the approximation function instead of
real function to evaluate the fitness of the particles. Hence, the num-
ber of real function evaluations can be reduced greatly by using PSO
to solve the optimization problem. Key points of GP-PSO algorithm
are the following:

1. Accelerate searching based on approximating real function by
GP
In order to accelerate the local search of PSO, once the pbest
particle and gbest particle in each iterative step are found, some
new particles are generated using Eq. (1) and their fitness are
estimated by trained GP. Then the best one with the minimum
fitness is selected. To eliminate the predictive error of fitness
evaluated by GP approximation, the fitness of the best particle
is evaluated again using the real function. If the real fitness of
the best one is less than gbest, it becomes the global best in cur-
rent iterative step and gbest is replaced by its fitness. Thus, the
number of real function evaluations in exploration process is
only one because the fitness of the new particles with the excep-
tion of the best one is evaluated by trained GP rather than real
function. So the computational cost of the process of acceler-
ating search is low.

2. Dynamically update the training datasets to improve approxi-

mation quality of GP model
The accuracy of GP-PSO algorithm depends on the appropri-
ateness of the GP model generated, while in aspect of pre-
diction, the accuracy of the GP model in interpolation and
validity highly depend on the quality of training datasets. To
avoid excessively relying on the initial training datasets and to
improve the quality of training datasets gradually in the explo-
ration process, the training datasets for training GP is updated
dynamically in GP-PSO algorithm. The strategies can be real-
ized through the following two ways:

* In each iterative step of PSO, particles of all generation are
ranked from small fitness to large fitness, the top 2xN
particles and their real fitness are selected as training
datasets by multiple try-and-error, where N is the
population size. In this case, the Rastrigin function was
selected as benchmark due to its high complexity. Through
comparison of different dimension of particles (from N to

Y. Zhang et al. / International Journal of Computational Intelligence Systems 12(2) 1270-1281 1273

3xN), 2xN was used because it resulted in lowest
computational cost on condition of the required accuracy.

* In each iterative step of PSO, the best particle and its fitness
is found by local search, which is based on evaluation of
the function generated by the GP model, the worst particle
in training datasets is replaced with the best one.

Thus the training datasets are always consistent with the elite group
of the particles, the quality of general approximation of GP model
can be enhanced in the optimization process. Specifically speak-
ing, the implementation procedure is presented in this section

associated with the flow chart, see in Figure 1. Its framework mainly
consists of two cycles. The cycle depending on “p” is defined as
outer loop and the cycle depending on “k” is defined as inner loop.
Meanwhile, the initial values for both p and k are zero.

Specific implementation steps of GP-PSO are shown as follows:

1. Generate N particles in the 1st generation, in which the par-
ticles are randomly distributed throughout the design space,
which is bounded by specified limits. N is the population size
of PSO, it is usually determined by the dimension of optimiza-
tion problem.

I PSO generates the 157 generation particles |

the requirement of accuracy,

e
v —
- - function
4" PSO generates the (2+p)th generation particles fitness
I evaluation
The minimum fitness meets Yes

0]

1

A4

Establish new
training datasets

Establish the
original training datasets

Dynamically
update the
training
datasets

Dynamically
update the
i
datasets

v

The particle of the minimum
fitness is regarded as global
optimum particle p.;

Loop
p times

Loop
k times

v

Substructure PSO generates
the k th generation particles

| GP train |
GP model

v

< fitness
v evaluation

The particle of minimum fitness Real
for k times :
function

Ta

v fitness

Compare the real fitness with the

evaluation

ghest

The minimum fitness meets
the requirement of accuracy,

Yes

©

Figure 1 The flow chart of Gaussian process-particle swarm optimization (GP-PSO).

1274

Evaluate the fitness of particles of 1st generation by objective
function, i.e., real function. Find the optimum particle p;; and
global optimum particle p .

Generate N particles of (2+p)th generation using Eq. (1). Eval-
uate the fitness of these particles using real function.

The (2+p)xN particles are sorted from small fitness to large
fitness, and the upper limit 2xN particles and their fitness are
selected to establish training datasets.

Train GP by the training datasets. Use GP approximate the real
function according to Eq. (5).

Update the optimum particle p;; and global optimum particle
Pga at current iteration.

Generate kxN particles using Eq. (1) and evaluate the fitness
of N particles using trained GP. Find the best particle with
the minimum fitness in k generation, where k can make the

Y. Zhang et al. / International Journal of Computational Intelligence Systems 12(2) 1270-1281

best particle more optimizing, k is determined by the complex-
ity of the real function. The more complex the real function
is, the greater the value of k will be. Evaluate its fitness using
real function and replace its fitness evaluated using trained GP.
Compare its fitness to gbest, select the smaller one as global
optimum particle p,; and update gbest.

8. Replace the worst particle with the maximum fitness in train-
ing datasets by the global optimum particle and its fitness
gbest.

9. Repeat steps 3-8 until the stopping criteria is met. For the
current implementation the stopping criteria is defined based
on the maximum number of iterations reached or accuracy
satisfied.

The pseudo code of GP-PSO is given in Figure 2. A MATLAB based
program was developed.

Begin

p=0;
While stopping criteria is not met

Train GP by the training datasets

For i=1, k

Generate N particles using Eq. (1)

End For

ghest

its fitness

p :p+1
End While
End

Randomly generate the N particles of 1s¢ generation
Evaluate particles’ fitness using the real function
Find the optimum particle pisand global optimum particle pgs

Generate N particles of (2+p) th generation using Eq. (1)
Evaluate these particles’ fitness using real function
The (2+p)*N particles are sorted from small fitness to large fitness

The top 2xN particles and their fitness are selected for establishing training datasets

Update the optimum particle pisand global optimum particle p.q at current iteration

Evaluate the fitness of N particles using trained GP

Find the best particle with the minimum fitness in £ generation
Evaluate its fitness using real function and replace its fitness evaluated using trained GP
Compare its fitness to ghest, select the smaller one as global optimum particle pgq and update

Replace the worst particle with the maximum fitness in training datasets by this particle and

Figure 2 Pseudo code of Gaussian process-particle swarm optimization (GP-PSO).

Y. Zhang et al. / International Journal of Computational Intelligence Systems 12(2) 1270-1281 1275

4. EXPERIMENTS

4.1. Benchmark Functions

The performance of the GP-PSO algorithm was compared to the
conventional PSO algorithm by evaluating convergence velocity
and efficiency for benchmark optimization problems. 12 popular
benchmark functions are selected in Table 1. It includes 8 unimodal
benchmark functions and 4 multimodal benchmark functions. For
all functions in Table 1, the minimal function value is f = 0 and
search space is confined to [-2, 2]4, here d denotes the dimension
of the functions.

The Sphere, Ellipsoid, Step and Sumsquares functions are uni-
modal, convex and differentiable without flat regions. The Cigar,
Tablet and Rosen functions have a single global minimum located
in a long narrow parabolic shaped flat valley, what’s more, it is very
hard to find global optimum. Quartic function is unimodal with
random noise. Noisy functions are widespread in real-world prob-
lems, and every evaluation for the function is disturbed by noise, so
the particles’ information is inherited and diffused noisily, which
makes the problem hard for optimization [49].

Multimodal functions evoke hills and valleys, which are mislead-
ing local optima. Schwefel and Ackley have large amount of local
minima causing difficulties in finding the global optimum. The
Griewangk and Rastrigin are highly multimodal test functions,
which are usually used to evaluate the efficiency of optimization
algorithm.

For the benchmark functions, we measure the number of the real
function evaluation which is required to achieve expected accuracy.
4.2. Parameter Setting

The parameters for PSO include population size (N), lower (Ib) and
upper (ub) bounds of the search space, maximum number of iter-
ations (t,,,,), inertia parameter (w), maximum velocity of particle

Table 1 Parameter settings of the benchmark functions.

(V,nax) and acceleration constants (¢; and c,). For different dimen-
sion problem, some parameters remain unchanged: Ib = -2, ub = 2,
Viax = 1, €1 = ¢, = 2. The values of N and ¢,,,, are listed in Table 2.
The maximum number of circular for accelerating local search
k=10.

To be fair, for different functions, all algorithms are forced to use
the same accuracy of stopping criteria; for different functions, there
is different accuracy for stopping criteria which is listed in Table 2.
The program for all experiments runs over 30 times independently
then the number of function evaluation are averaged finally.

In order to validate the scalability of our algorithm, all functions are
tested on 10, 20 and 30 dimensions, respectively [50].

4.3. Parameter Selection

In the optimization, the selection of parameters can significantly
influence on the performance of the proposed algorithm. In this
section, some essential parameters are discussed, and how they
impact on the optimization results are forecasted. Afterward, the
recommendations are provided accordingly.

Ib and ub are the lower and upper bounds of the search space,
respectively. They are distributed symmetrically about the search-
ing value. In this paper the minimal function value is 0, so the search
space is confined to [-2, 2]. The computational cost will increase
with the interval between Ib and ub; specifically speaking, if it is too
small (i.e., [-0.1, 0.1]), any optimization method can easily find the
optimal results, that can’t be used for evaluating the performance
differences between different methods. In this paper, the aim for
this benchmark optimization problem is to compare the perfor-
mance of the GP-PSO algorithm and PSO algorithm. As long as
the performance of the two algorithms can be compared under the
same condition, the smaller interval is used to save the computa-
tional time. Therefore, the bound of [-2, 2] is big enough to com-
pare the performance of the GP-PSO algorithm and PSO algorithm.

Function Formulation Trait Search Range
Sphere = 2; 1 xl2 Unimodal [-2,2]4
Ellipsoid Hx) = Z?zl zxi2 Unimodal [-2,2] d
Step f3 () = E? 1 (i + 0.5)2 Unimodal [-2,2]¢4
Sumsquares fz (x) = Zl"_ zxiz Unimodal (2,24
Cigar fs(x) = x1 + 10 E?:z xi2 Unimodal [-2,2] ¢
Tablet fo () = 1083 + 31, Unimodal [-2,2] ¢
2
Rosen fr0) = Z (100 (xi+1 - x12> + (% - 1)2> Unimodal [-2,2] 4
Quartic fg () = Z?zl ixl. + random (0, 1) Unimodal [-2,2] d
Ackley fo(x) =20 4+ e-20 exp <—0 24/ - Zln_l x12> - exp (l Z?—l cos (27‘[x,~)> Multimodal (2,24
= o Li=
Schwefel f10 (x) = 418.9829n - Z:’zl x; sin <\ / |x,~|> Multimodal (2,24
. % . _ d
Griewank fi1) = 4000 Zl 1% H —1 €08 < \/_l> +1 Multimodal [-2,2]
Rastrigin fi12 (x) = Ei=1 (xi -10cos (27Tx,») + 10) Multimodal [-2,2]4

1276

Table 2 Parameter settings of GP-PSO and PSO.

Y. Zhang et al. / International Journal of Computational Intelligence Systems 12(2) 1270-1281

10 Dimensions

20 Dimensions

30 Dimensions

Function
N tnax Accuracy N tax Accuracy N tax Accuracy
Sphere 30 2000 1.00E-03 30 8000 1.00E-03 50 20000 1.00E-03
Ellipsoid 30 2000 1.00E-03 30 8000 1.00E-03 50 20000 1.00E-03
Step 30 2000 1.00E-03 30 8000 1.00E-03 50 20000 1.00E-03
Sumsquares 30 2000 1.00E-03 30 8000 1.00E-03 50 20000 1.00E-03
Cigar 30 2000 1.00E-03 30 8000 1.00E-03 50 20000 1.00E-03
Tablet 30 2000 1.00E-03 30 8000 1.00E-03 50 20000 1.00E-03
Rosen 30 10000 3.00E+01 30 20000 3.00E+01 50 50000 3.00E+01
Quartic 30 10000 1.00E-01 30 20000 1.00E-01 50 50000 1.00E-01
Ackley 30 2000 1.00E-03 30 8000 1.00E-03 50 20000 1.00E-03
Schwefel 30 2000 1.00E-03 30 8000 1.00E-03 50 20000 1.00E-03
Griewank 30 2000 1.00E-03 30 8000 1.00E-03 50 20000 1.00E-03
Rastrigin 30 10000 3.00E+01 30 20000 3.00E+01 50 50000 3.00E+01
GP, Gaussian process; PSO, particle swarm optimization.
Vinax i @ parameter specified by the user, then the velocity on that ~ Table3 The summation of parameter selection.
dimension' is limited to v,,,y. Vnax determines the re.s.olution of the Parameter Influence Recommendation
search regions between the present and target position. The PSO
works well if v, is set to the value of the dynamic range of each Ib Computational cost -2
variable (on each dimension). The dynamic range is [-2, 2] in this ub Computational cost 2
paper, so we choose the v, = 1. Vmax Convergence . 1
¢ Accuracy, computational cost 2
cl and c2 are acceleration constants usually defined as c1 =2 =[1.8, and convergence
2.0], that can be found in literature [41]. Any value in this interval €2 Accuracy, computational cost 2
could be chosen. In this paper, we choose c1 = c2 = 2.0. and convergence)
N Accuracy, computational cost 30 or 50
N is usually determined by the difficulty of the optimization prob- and convergence
lem. Small population size results in unreliable results, while the Enax Convergence 200050000
large size will increase computational cost and may cause slow k Computational cost and 10
convergence

convergence. The population size should be selected with the con-
sideration of the tradeoff between the solution quality and the com-
putation time. It is always determined by the experience. In this
paper, we choose the N based on the following reference [51]. In
this reference, 10, 30, 50, 80 and 100 population sizes are used to
solve the optimization problem, respectively. In our work, the pur-
pose is to evaluate the performance of two algorithms. Therefore, in
order to find a balance between accuracy and computational cost,
the value is selected as 30 and 50 depending on the complexity of
the optimization problem.

t,nax determines the maximum run times of algorithm. Because all
the different algorithms are forced to use the same accuracy as the
termination criterion, the t,,,, should be big enough to make the
algorithms meet the termination criterion. There is no certain limit
of this parameter. For example, the Sphere function is relatively sim-
ple, so 2000 is sufficient; meanwhile, the Rastrigin function is more
complex, 50000 is adapted.

k represents the increment of loop as substructure of PSO algo-
rithm. In GP-PSO, the GP is used as an inexpensive fitness function
surrogate and a powerful tool to predict the global optimum solu-
tion for accelerating the local search of PSO. The fitness of total k
generations doesn’t need to be calculated; instead, it is predicted by
GP model. Usually, the prediction of GP approximates to the opti-
mal solution by using larger k. However, larger k also causes high

computational cost. Therefore, k = 10 in our paper is determined,
which can satisfy our optimal requirement. In conclusion, all of the
parameters mentioned are summarized in Table 3.

4.4. Results Analysis

The total number of the real function evaluation using GP-PSO
and PSO are shown in Table 4, respectively. It can be seen from
Table 4, total number of real function evaluation in GP-PSO is much
less than that PSO requires.

For 10-, 20-, 30-dimensional benchmark functions, the average
multiple of the real function evaluation is about 12, 24, 18 times,
respectively, the minimum multiple of it is 3 times (Rastrigin
function with 10 dimension), and the maximum multiple of the
real function evaluation is 132 times (Rastrigin function with
20 dimension).

In order to evaluate the performance of the proposed algorithm, the
Rastrigin and Rosen function with 30 dimensions was used due to
their high difficulty in searching optimal value. Usually, the mean
value and corresponding standard deviation are two important fea-
tures to evaluate the accuracy and robustness of algorithm. The GP-
PSO was compared with PSO, PSO-w-local [52] and PSO-cf-local
[53], respectively. The results are summarized in the Table 5. Except

Y. Zhang et al. / International Journal of Computational Intelligence Systems 12(2) 1270-1281 1277

Table4 Comparison of the number of function evaluation between GP-PSO and PSO.

10 Dimensions 20 Dimensions 30 Dimensions

Function

PSO GP-PSO Multiple PSO GP-PSO Multiple PSO GP-PSO Multiple
Sphere 22230 1549 14 92550 9299 10 427400 32129 13
Ellipsoid 25140 2572 10 106440 12306 9 435100 48704 9
Step 24360 2014 12 94800 7439 13 388900 33659 12
Sumsquares 24180 2200 11 95280 8524 11 440750 52733 8
Cigar 29610 4680 6 118650 16398 7 476850 65075 7
Tablet 24180 2076 12 98130 8276 12 426250 41462 10
Rosen 1260 154 8 110880 2975 37 816150 41819 20
Quartic 20070 743 27 139050 4370 32 847100 28610 30
Ackley 29580 4215 7 112470 14817 470900 56609 8
Schwefel 23520 4184 101610 17886 471850 62474 8
Griewank 16950 774 22 73620 4711 16 343900 19175 18
Rastrigin 810 278 3 114780 867 132 802050 10862 74
GP, Gaussian process; PSO, particle swarm optimization.
Table 5 Comparison results of GP-PSO with other algorithms for 30-dimensional problems.
Algorithm Rastrigin Rosen

Best Worst Mean Std Best Worst Mean Std

PSO 2.97E+01 3.00E+01 2.99E+01 1.90E-01 2.93E+01 3.00E+01 2.96E+01 3.10E-01
PSO-w-local [52] 2.09E+01 3.38E+01 2.64E+01 4.08E+00 2.41E+01 2.94E+01 2.60E+01 2.26E+00
PSO-cf-local [53] 2.89E+01 6.17E+01 4.03E+01 1.20E+01 1.77E+01 2.32E+01 1.95E+01 2.44E+00
GP-PSO 2.94E+00 3.00E+01 2.97E+01 8.00E-02 2.91E+01 3.00E+01 2.95E+01 2.80E-01

GP, Gaussian process; PSO, particle swarm optimization.

for PSO-cf-local, the mean value calculated from the other three
algorithms approach to the actual value of 30 for both Rastrigin
and Rosen function. The PSO-cf-local has the lowest accuracy in
our case. The proposed GP-PSO can achieve the same accuracy of
PSO and PSO-w-local. However, it has the lowest standard devia-
tion. That means the proposed GP-PSO algorithm has better per-
formance in robustness in the premise of sufficient accuracy.

In order to give a visualized and straightforward comparison
between the proposed GP-PSO and PSO, the comparison of the
performances of GP-PSO and PSO for 30-dimensional benchmark
functions are shown in Figure 3. In the figures, the convergence
trends of variants of PSO and GP-PSO in a random run can be iden-
tified. These figures show that how GP-PSO converged toward the
optimal solution faster than PSO algorithm. It indicates that the
proposed GP-PSO is much more efficient than PSO to achieve iden-
tical accuracy.

In addition, both GP-PSO and PSO can achieve expected accuracy
(see Table 2) after over 30 times runs for all experiments. It demon-
strates that the robustness of GP-PSO is the same as PSO. The
robustness of two algorithms is comparable, because the GP-PSO
does not change the principle rule of evolution; in our algorithm,
we just take advantage of GP to estimate the most potential solution
then improve the searching speed of PSO. GP-PSO and PSO have

the ability of searching the global optimum, but GP-PSO is more
efficient than PSO.

As shown in Figure 3, the converge of GP-PSO is the fastest within
iteration of 1000. Therefore, the converge of PSO and GP-PSO with
iteration of 300/600/900 in the different 30-dimensional functions
were compared in Table 6. The PSO and GP-PSO start to show
distinct performance in optimization from iteration of 300. With
the increase of iteration, the optimal value decreases for both
methods. For iteration of 900, PSO can’t meet the requirement of
accuracy for all of the functions. GP-PSO associated with Rastri-
gin function will achieve the accuracy with iteration of 300; for
Griewank and Sphere, Step, Tablet, Quartic function, iteration of
600 and 900 are sufficient, respectively. The iteration of residual
function is over 900 for both methods.

5. CONCLUSIONS AND FUTURE STUDY

It is important to reduce the number of function evaluations when
optimizing expensive fitness functions. This can be achieved by
exploiting knowledge of past evaluated points to train an empir-
ical model, which can be used as inexpensive surrogate of the
fitness function. This paper has shown that the combination of
PSO and GP can be used as fitness function surrogates to solve

1278 Y. Zhang et al. / International Journal of Computational Intelligence Systems 12(2) 1270-1281

the complex problems of function global optimization. In the pro-
posed algorithm, the GP dramatically reduces the number of func-
tion evaluation and provides accurate estimation of the global
optimum solution; in addition, the dynamically update training
datasets for training GP improves the approximation accuracy of
the GP. The results have clearly demonstrated that the proposed
algorithm is superior to PSO, which is widely accepted as an effi-
cient tool to solve the very ill-conditioned problems of global
optimization. Excellent performance and easy implementation of
GP-PSO shows a good potential in computationally expensive opti-
mization problems.

6 T T T T
——PSO
—5—PSO-GP ||
H
£
= i
3
m
0 “)«' r L _ -~
0 2000 4000 6000 8000 10000
Iteration
(a) Sphere function
10 : : \
——PSO
—©—PSO-GP
% 4
£
=
3 1
m
0 e = r P = 2
0 2000 4000 6000 8000
Tteration
(c) Step function
5E 10° \ \ \ :
——PSO
—©—PSO-GP
% 4
£
3]
3 J
m
0 A ¢ r r 2 2 e 2
0 2000 4000 6000 8000 10000

Iteration

(e) Cigar function

The proposed algorithm is specified for the complex and non-
linear optimization problem in many engineering fields, such as
mechanical, civil and aerospace engineering. In most of the cases,
the computational cost is extremely high, which can’'t be afforded
by means of conventional algorithm; especially for large-scale finite
element analysis or computational fluid dynamics simulations.
Furthermore, from the aspect of complexity, it is challenging
because many global optimization cases involve objective functions
of multimodal, highly nonlinear, with steep and flat regions and
irregularities. In this work, though the applicability can’t be fully
verified, the superiority of proposed algorithm has been proved by

3000 : : :

——PSO
—5~PSO-GP |

2500

[N}
(=3
(=3
=3

1500

Best fitness

1000

5001

0 2000 4000 6000 8000 10000

Iteration

(b) Ellipsoid function

—<—PSO
—5-PSO-GP H

Best fitness

4000 6000 8000
Iteration

(d) Sumsquares function

0 2000 10000

50 T T T

—<—PSO
—©-PSO-GP

40

30

Best fitness

20

0 2000 4000 6000 8000
Iteration

(f) Tablet function

10000

Y. Zhang et al. / International Journal of Computational Intelligence Systems 12(2) 1270-1281 1279

800 T T

—=—PSO
700 I —©—PSO-GP|

Best fitness
B Wi N
(=) (=) [
o (=) o
=
. . :

W

(=3

=]
1

200

P E———

100

r 2

0 0.5 1 15 2
Iteration X 104

(g) Rosen function

Best fitness
— 1N
wn [\] wn

0.5
0 2s. . . . i
0 2000 4000 6000 8000 10000
Iteration
(i) Ackley function
0.35 . . : . . ‘
—=—PSO
~6- PSO-GP]
2 |
£
=
5 i
m
0 %’i r I r r . fiaa 3
0 1000 2000 3000 4000 5000 6000 7000
Iteration

(k) Griewank function

2500, : \ \
' ——PSO
~&-PSO-GP
2000 g
§ 1500 1
=
& 1000 .
500 .
1.5 2
I_teration) x 10*
(h) Quartic function
40 . . ‘ ‘
—+—PSO
—5-PSO-GP
301 1

Best fitness
(=)
=)
T

2000 4000 6000 8000

10000
Iteration
(j) Schwefel function
250 : \ .
‘ ——PSO
& PSO-GP

2001 ,

£ 150]
=
S
m

100 1

sop i

2

Iteration X 104

(I) Rastrigin function

Figure 3 Convergence of the Gaussian process-particle swarm optimization (GP-PSO) algorithm for 30-dimensional benchmark

functions.

comparing with variety of typical standard benchmarks. Moreover,
the GP in this algorithm is only based on exponential covariance
function. In the future, more covariance functions will be tested;
such as Matern covariance function and linear covariance func-
tion. Additionally, the performance of the proposed algorithm is
only tested with the typical benchmark functions in this work. The
expansibility and applicability will be validated by introducing the
data from the practical cases. And also, the proposed strategy will
be extended in terms of more combinations to form up the new
algorithm.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHORS’ CONTRIBUTIONS

Yan Zhang and Hongyu Li proposed the main idea of the paper,
developed and validated the algorithm, and analyzed the results.
Enhe Bao and Aiping Yu contributed with the idea to provide the

1280

Y. Zhang et al. / International Journal of Computational Intelligence Systems 12(2) 1270-1281

Table 6 Comparison of the fitness evaluation between GP-PSO and PSO.

300 600 900

Function

PSO GP-PSO PSO GP-PSO PSO GP-PSO
Sphere 2.198442 0.087529 2.175041 0.001023 1.911124 0.000913
Ellipsoid 594.628497 2.414306 493.550394 0.156631 493.550394 0.002018
Step 2.155441 0.176797 1.557810 0.009128 1.523526 0.000709
Sumsquares 28.746118 0.587226 28.746118 0.098386 25.947067 0.003208
Cigar 19763.982314 247.688017 18366.828056 5.043769 18366.828056 0.251856
Tablet 6.823563 0.071880 3.118476 0.006294 3.118476 0.000822
Rosen 317.017070 69.640895 295.183256 35.633361 266.358637 30.845138
Quartic 651.919176 0.174035 651.919176 0.086739 651.919176 0.000736
Ackley 2.473627 0.149701 2.381386 0.032678 2.165373 0.006058
Schwefel 12.146868 0.414506 10.484639 0.076709 8.918804 0.009359
Griewank 0.107419 0.002093 0.087207 0.000665 0.069805 0.000665
Rastrigin 182.095993 29.991134 164.769693 29.991134 164.769693 29.991134

GP, Gaussian process; PSO, particle swarm optimization.

benchmark of the algorithm. Lu Zhang conducted the literature sur-
vey and contributed to the introduction section and polished the
paper. Yan Zhang, Hongyu Li and Lu Zhang wrote the manuscripts
with the support from other co-authors.

ACKNOWLEDGMENT

The present work was supported by the National Natural Science
Foundation of China (Grant Nos. 51708147, 51409051 and 51568014), the
Natural Science Foundation of Guangxi (Grant Nos. 2017GXNSFBA198184
and 2014GXNSFBA118256), Guangxi Science and Technology Base and
Special Fund for Talents Program (Grant No. Guike AD19110044) and
Guangxi Innovation Driven Development Project (Science and Technology
Major Project, Grant No. Guike AA18118008). The authors also would like
to thank the partial support from Guangxi Key Laboratory of Geomechan-
ics and Geotechnical Engineering (Grant Nos. 14-B-01 and 2015-A-01-05).

REFERENCES

[1] A.R.M. Rao, K. Sivasubramanian, Multi-objective optimal design
of fuzzy logic controller using a self configurable swarm intelli-
gence algorithm, Comput. Struct. 86 (2008), 2141-2154.

[2] A.H. Gandomi, A.R. Kashani, D.A. Roke, M. Mousavi, Optimiza-
tion of retaining wall design using recent swarm intelligence tech-
niques, Eng. Struct. 103 (2015), 72—-84.

[3] E.Bonabeau, D.D.R.D.E Marco, M. Dorigo, G. Theraulaz, Swarm
Intelligence: From Natural to Artificial Systems, 1999.

[4]]. Liao, L. Tang, G. Shao, Q. Qiu, C. Wang, S. Zheng, X. Su,
A neighbor decay cellular automata approach for simulating
urban expansion based on particle swarm intelligence, Int.
J. Geogr. Inf. Sci. 28 (2014), 720-738.

[5] Z.Cui, B. Sun, G. Wang, Y. Xue, J. Chen, A novel oriented cuckoo
search algorithm to improve DV-Hop performance for cyber-
physical systems, J. Parallel Distr. Com. 103 (2017), 42-52.

[6] M. Zhang, H. Wang, Z. Cui, J. Chen, Hybrid multi-objective
cuckoo search with dynamical local search, Memet. Comput. 10
(2018), 199-208.

[7] X. Cai, X. Gao, Y. Xue, Improved bat algorithm with opti-
mal forage strategy and random disturbance strategy, Int.
J. Bio-Inspir. Com. 8 (2016), 205-214.

[8] X. Cai, H. Wang, Z. Cui, J. Cai, Y. Xue, L. Wang, Bat algorithm
with triangle-flipping strategy for numerical optimization, Int. J.
Mach. Learn. Cyb. 9 (2018), 199-215.

[9] M. Celik, F. Koylu, D. Karaboga, CoABCMiner: an algorithm
for cooperative rule classification system based on artificial bee
colony, Int. J. Artif. Intell. T. 25 (2016), 1550028.

[10] H.M. Jiang, K. Xie, Y.F. Wang, Optimization of pump parameters
for gain flattened Raman fiber amplifiers based on artificial fish
school algorithm, Opt. Commun. 284 (2011), 5480-5483.

[11] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by
a colony of cooperating agents, IEEE Trans. Syst. Man. Cybern.
Part B-Cybern. 26 (1996), 29-41.

[12] R. Eberhart, J. Kennedy, New optimizer using particle swarm
theory, in MHS95. Proceedings of the Sixth International Sym-
posium on Micro Machine and Human Science, Nagoya, Japan,
1995, pp. 39-43.

[13] M.M. Alj, P. Kaelo, Improved particle swarm algorithms for global
optimization, Appl. Math. Comput. 196 (2008), 578-593.

[14] M.M. Noel, A new gradient based particle swarm optimization
algorithm for accurate computation of global minimum, Appl.
Soft Comput. 12 (2012), 353-359.

[15] M. Sopa, N. Angkawisittpan, An application of cuckoo search
algorithm for series system with cost and multiple choices con-
straints, Procedia Comput. Sci. 86 (2016), 453-456.

[16] T. Gaber, S. Abdelwahab, M. Elhoseny, A.E. Hassanien, Trust-
based secure clustering in WSN-based intelligent transportation
systems. Comput. Netw. 146 (2018), 151-158.

[17] J. Kennedy, R. Eberhart, Particle swarm optimization (PSO), in
Proceedings of IEEE International Conference on Neural Net-
works, Piscataway, NJ, 1995, pp. 1942-1948.

[18] D.E. Goldberg, GA in Search, Optimization, and Machine Learn-
ing, Addison-Wesley, Boston, MA, 1989.

[19] R. Hassan, B. Cohanim, O. De Weck, G. Venter, A comparison
of particle swarm optimization and the genetic algorithm, in 46th
ATAA/ASME/ASCE/AHS/ASC structures, structural dynamics
and materials conference, Austin, TX, 2005, pp. 1897.

https://doi.org/10.1016/j.compstruc.2008.06.005
https://doi.org/10.1016/j.compstruc.2008.06.005
https://doi.org/10.1016/j.compstruc.2008.06.005
https://doi.org/10.1016/j.engstruct.2015.08.034
https://doi.org/10.1016/j.engstruct.2015.08.034
https://doi.org/10.1016/j.engstruct.2015.08.034
https://doi.org/10.1080/13658816.2013.869820
https://doi.org/10.1080/13658816.2013.869820
https://doi.org/10.1080/13658816.2013.869820
https://doi.org/10.1080/13658816.2013.869820
https://doi.org/10.1016/j.jpdc.2016.10.011
https://doi.org/10.1016/j.jpdc.2016.10.011
https://doi.org/10.1016/j.jpdc.2016.10.011
https://doi.org/10.1007/s12293-017-0237-2
https://doi.org/10.1007/s12293-017-0237-2
https://doi.org/10.1007/s12293-017-0237-2
https://doi.org/10.1504/IJBIC.2016.078666
https://doi.org/10.1504/IJBIC.2016.078666
https://doi.org/10.1504/IJBIC.2016.078666
https://doi.org/10.1007/s13042-017-0739-8
https://doi.org/10.1007/s13042-017-0739-8
https://doi.org/10.1007/s13042-017-0739-8
https://doi.org/10.1142/S0218213015500281
https://doi.org/10.1142/S0218213015500281
https://doi.org/10.1142/S0218213015500281
https://doi.org/10.1016/j.optcom.2011.07.074
https://doi.org/10.1016/j.optcom.2011.07.074
https://doi.org/10.1016/j.optcom.2011.07.074
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1016/j.amc.2007.06.020
https://doi.org/10.1016/j.amc.2007.06.020
https://doi.org/10.1016/j.asoc.2011.08.037
https://doi.org/10.1016/j.asoc.2011.08.037
https://doi.org/10.1016/j.asoc.2011.08.037
https://doi.org/10.1016/j.procs.2016.05.079
https://doi.org/10.1016/j.procs.2016.05.079
https://doi.org/10.1016/j.procs.2016.05.079
https://doi.org/10.1016/j.comnet.2018.09.015
https://doi.org/10.1016/j.comnet.2018.09.015
https://doi.org/10.1016/j.comnet.2018.09.015
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.2514/6.2005-1897
https://doi.org/10.2514/6.2005-1897
https://doi.org/10.2514/6.2005-1897
https://doi.org/10.2514/6.2005-1897

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]
(34]

(35]

(36]

Y. Zhang et al. / International Journal of Computational Intelligence Systems 12(2) 1270-1281

D. Wang, Z. Wu, Y. Fei, W. Zhang, Structural design employ-
ing a sequential approximation optimization approach, Comput.
Struct. 134 (2014), 75-87.

N.H. Awad, M.Z. Ali, R. Mallipeddi, P.N. Suganthan, An
improved differential evolution algorithm using efficient adapted
surrogate model for numerical optimization, Inf. Sci. 451 (2018),
326-347.

G. Su, Q. Jiang, A cooperative optimization algorithm based on
gaussian process and particle swarm optimization for optimizing
expensive problems, in 2009 International Joint Conference on
Computational Sciences and Optimization, IEEE, Hainan, Sanya,
China, 2009, Vol. 2, pp. 929-933.

K. Mistry, L. Zhang, S.C. Neoh, C.P. Lim, B. Fielding, A micro-
GA embedded PSO feature selection approach to intelligent facial
emotion recognition, IEEE Trans. Cybern. 47 (2016), 1496-1509.
H. Garg, A hybrid GSA-GA algorithm for constrained optimiza-
tion problems, Inf. Sci. 478 (2019), 499-523.

L.Y. Chuang, H-W. Chang, C.J. Tu, C.H. Yang, Improved binary
PSO for feature selection using gene expression data, Comput.
Biol. Chem. 32, (2008), 29-38.

C. Praveen, R. Duvigneau, Low cost PSO using metamodels and
inexact pre-evaluation: application to aerodynamic shape design,
Comput. Methods Appl. Mech. Eng. 198 (2009), 1087-1096.

S. Selleri, M. Mussetta, P. Pirinoli, R.E. Zichm, L. Matekovits,
Differentiated meta-PSO methods for array optimization, IEEE
Trans. Antennas Propag. 56 (2008), 67-75.

M.V]J. Suresh, K.S. Reddy, A.K. Kolar, ANN-GA based opti-
mization of a high ash coal-fired supercritical power plant, Appl.
Energ. 88 (2011), 4867-4873.

A. Ratle, Accelerating the convergence of evolutionary algorithms
by fitness landscape approximation, in International Conference
on Parallel Problem Solving from Nature, Springer, Berlin, Ger-
many, 1998, pp. 87-96.

K.C. Giannakoglou, Optimization and inverse design in aero-
nautics: how to couple genetic algorithms with radial basis func-
tion networks, in: J. Periaux, P. Joly, O. Pironneau, E. Onate
(Eds.), Innovative Tools for Scientific Computation in Aeronau-
tical Engineering, CIMNE, Barcelona, Spain, 2001.

Y. Jin, A comprehensive survey of fitness approximation in evolu-
tionary computation, Soft Comput. 9 (2005), 3-12.

Y. Jin, Surrogate-assisted evolutionary computation: recent
advances and future challenges, Swarm Evol. Comput. 1 (2011),
61-70.

J. Kacprzyk, Advances in Soft Computing, Heidelberg, 2001.

Y. Zhang, Y. Jun, G. Wei, L. Wu, Find multi-objective paths in
stochastic networks via chaotic immune PSO, Expert Syst. Appl.
37 (2010), 1911-1919.

M.T.M. Emmerich, K.C. Giannakoglou, B. Naujoks, Single-and
multiobjective evolutionary optimization assisted by Gaussian
random field metamodels, IEEE Trans. Evol. Comput. 10 (2006),
421-439.

J. Knowles, ParEGO: a hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization prob-
lems, IEEE Trans. Evolut. Comput. 10 (2006), 50-66.

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]
(47]

(48]

(49]

(50]

(51]

(52]

(53]

1281

Q. Zhang, W. Liu, E. Tsang, B. Virginas, Expensive multiobjective
optimization by MOEA/D with Gaussian process model, IEEE
Trans. Evol. Comput. 14 (2009), 456-474.

N. Higashi, H. Iba, Particle swarm optimization with Gaussian
mutation, in Proceedings of the 2003 IEEE Swarm Intelligence
Symposium. SIS'03 (Cat. No.03EX706), Indianapolis, IN, 2003,
pp. 72-79.

R.A. Krohling, Gaussian Particle Swarm with jumps, in 2005 IEEE
Congress on Evolutionary Computation, Edinburgh, Scotland,
UK, 2005, pp. 1226-1231.

Y. Zhang, B. Liu, Y. Hou, Z. Zeng, An intelligent back analysis
optimization method of constitutive parameters for surrounding
rock, Unsaturated soil mechanics - from theory to practice, in Pro-
ceedings of the 6th Asia Pacific Conference on Unsaturated Soils,
Guilin, China, 2015, pp. 601-605.

G. Wang, Z. Ma, Hybrid particle swarm optimization for first-
order reliability method, Comput. Geotech. 81 (2017), 49-58.

J. Kennedy, The behavior of particles, in: V.W. Porto,
N. Saravanan, D. Waagen, A.E. Eiben (Eds.), Evolutionary Pro-
gramming VII, Springer, Berlin, Heidelberg, 1998, pp. 581-589.
D.J.C. MacKay, Introduction to Gaussian processes, in: C.M.
Bishop (Ed.), Neural Networks and Machine Learning, NATO ASI
Series, Springer, Berlin, Germany, 1998, pp. 133-166.

G. Su, L. Yan, Y. Song, Gaussian process for non-linear displace-
ment time series prediction of landslide, J. China Univ. Geosci. 18
(2007), 219-221.

J. Hensman, R. Mills, S.G. Pierce, K. Worden, M. Eaton, Locating
acoustic emission sources in complex structures using Gaussian
processes, Mech. Syst. Signal Proc. 24 (2010), 211-223.

M. Pal, S. Deswal, Modelling pile capacity using Gaussian process
regression, Comput. Geotech. 37 (2010), 942-947.

C.K.I Williams, C.E. Rasmussen, Gaussian Processes for Machine
Learning, Cambridge, MA, 2006.

G. Su, Gaussian process assisted differential evolution algorithm
for computationally expensive optimization problems, in 2008
IEEE Pacific-Asia Workshop on Computational Intelligence and
Industrial Application, Wuhan, China, 2008, pp. 272-276.

Y. Shi, H. Liu, L. Gao, G. Zhang, Cellular particle swarm optimiza-
tion, Inf. Sci. 181 (2011), 4460-4493.

Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, Q. Tian, Self-adaptive
learning based particle swarm optimization, Inf. Sci. 181 (2011),
4515-4538.

W. Zhang, Y. Liu, Reactive power optimization based on PSO in a
practical power system, in IEEE Power Engineering Society Gen-
eral Meeting, Denver, CO, 2004, pp. 239-243.

Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in
Proceedings IEEE Conference on Evolutionary Computation,
Anchorage, AK, 1998.

J. Kennedy, R. Mendes, Population structure and particle swarm
performance, in Proceedings of the 2002 Congress on Evolution-
ary Computation. CEC’02 (Cat. No.02TH8600), Honolulu, HI,
2002, pp.1671-1676.

https://doi.org/10.1016/j.compstruc.2013.12.004
https://doi.org/10.1016/j.compstruc.2013.12.004
https://doi.org/10.1016/j.compstruc.2013.12.004
https://doi.org/10.1016/j.ins.2018.04.024
https://doi.org/10.1016/j.ins.2018.04.024
https://doi.org/10.1016/j.ins.2018.04.024
https://doi.org/10.1016/j.ins.2018.04.024
https://doi.org/10.1109/CSO.2009.263
https://doi.org/10.1109/CSO.2009.263
https://doi.org/10.1109/CSO.2009.263
https://doi.org/10.1109/CSO.2009.263
https://doi.org/10.1109/CSO.2009.263
https://doi.org/10.1109/TCYB.2016.2549639
https://doi.org/10.1109/TCYB.2016.2549639
https://doi.org/10.1109/TCYB.2016.2549639
https://doi.org/10.1016/j.ins.2018.11.041
https://doi.org/10.1016/j.ins.2018.11.041
https://doi.org/10.1016/j.compbiolchem.2007.09.005
https://doi.org/10.1016/j.compbiolchem.2007.09.005
https://doi.org/10.1016/j.compbiolchem.2007.09.005
https://doi.org/10.1016/j.cma.2008.11.019
https://doi.org/10.1016/j.cma.2008.11.019
https://doi.org/10.1016/j.cma.2008.11.019
https://doi.org/10.1109/TAP.2007.912942
https://doi.org/10.1109/TAP.2007.912942
https://doi.org/10.1109/TAP.2007.912942
https://doi.org/10.1016/j.apenergy.2011.06.029
https://doi.org/10.1016/j.apenergy.2011.06.029
https://doi.org/10.1016/j.apenergy.2011.06.029
https://doi.org/10.1007/BFb0056852
https://doi.org/10.1007/BFb0056852
https://doi.org/10.1007/BFb0056852
https://doi.org/10.1007/BFb0056852
https://doi.org/10.1007/s00500-003-0328-5
https://doi.org/10.1007/s00500-003-0328-5
https://doi.org/10.1016/j.swevo.2011.05.001
https://doi.org/10.1016/j.swevo.2011.05.001
https://doi.org/10.1016/j.swevo.2011.05.001
https://doi.org/10.1016/j.eswa.2009.07.025
https://doi.org/10.1016/j.eswa.2009.07.025
https://doi.org/10.1016/j.eswa.2009.07.025
https://doi.org/10.1109/TEVC.2005.859463
https://doi.org/10.1109/TEVC.2005.859463
https://doi.org/10.1109/TEVC.2005.859463
https://doi.org/10.1109/TEVC.2005.859463
https://doi.org/10.1109/TEVC.2005.851274
https://doi.org/10.1109/TEVC.2005.851274
https://doi.org/10.1109/TEVC.2005.851274
https://doi.org/10.1109/TEVC.2009.2033671
https://doi.org/10.1109/TEVC.2009.2033671
https://doi.org/10.1109/TEVC.2009.2033671
https://doi.org/10.1109/sis.2003.1202250
https://doi.org/10.1109/sis.2003.1202250
https://doi.org/10.1109/sis.2003.1202250
https://doi.org/10.1109/sis.2003.1202250
https://doi.org/10.1109/cec.2005.1554830
https://doi.org/10.1109/cec.2005.1554830
https://doi.org/10.1109/cec.2005.1554830
https://doi.org/10.1016/j.compgeo.2016.07.013
https://doi.org/10.1016/j.compgeo.2016.07.013
https://doi.org/10.1007/bfb0040809
https://doi.org/10.1007/bfb0040809
https://doi.org/10.1007/bfb0040809
https://doi.org/10.1016/j.ymssp.2009.05.018
https://doi.org/10.1016/j.ymssp.2009.05.018
https://doi.org/10.1016/j.ymssp.2009.05.018
https://doi.org/10.1016/j.compgeo.2010.07.012
https://doi.org/10.1016/j.compgeo.2010.07.012
https://doi.org/10.1109/PACIIA.2008.184
https://doi.org/10.1109/PACIIA.2008.184
https://doi.org/10.1109/PACIIA.2008.184
https://doi.org/10.1109/PACIIA.2008.184
https://doi.org/10.1016/j.ins.2010.05.025
https://doi.org/10.1016/j.ins.2010.05.025
https://doi.org/10.1016/j.ins.2010.07.013
https://doi.org/10.1016/j.ins.2010.07.013
https://doi.org/10.1016/j.ins.2010.07.013
https://doi.org/10.1109/pes.2004.1372792
https://doi.org/10.1109/pes.2004.1372792
https://doi.org/10.1109/pes.2004.1372792
https://doi.org/10.1109/icec.1998.699146
https://doi.org/10.1109/icec.1998.699146
https://doi.org/10.1109/icec.1998.699146
https://doi.org/10.1109/cec.2002.1004493
https://doi.org/10.1109/cec.2002.1004493
https://doi.org/10.1109/cec.2002.1004493
https://doi.org/10.1109/cec.2002.1004493

	A Hybrid Global Optimization Algorithm Based on Particle Swarm Optimization and Gaussian Process
	1 INTRODUCTION
	2 REVIEW OF RELATED METHODOLOGY
	2.1 Particle Swam Optimization
	2.2 Gaussian Process

	3 THE PROPOSED GP-PSO ALGORITHM
	4 EXPERIMENTS
	4.1 Benchmark Functions
	4.2 Parameter Setting
	4.3 Parameter Selection
	4.4 Results Analysis

	5 CONCLUSIONS AND FUTURE STUDY

