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1. INTRODUCTION

The goal of face inpainting, also known as face completion, is to
produce a more legible and visually realistic face image from an
image with a masked region or that has missing content. As faces
play the most substantial role in depicting human characters [1],
face inpainting becomes the basis of face verification and identi-
fication when an occlusion or damage exists in the facial part of
an image. These applications make face completion very impor-
tant in today’s computer vision. Face images have obvious high-level
semantics that include many special objects. For face images miss-
ing unique pattern objects, the original images may not be restored
successfully using traditional inpainting methods. Figure 1 shows
how the traditional popular TV [2] and PatchMatch [3] methods
fail at face inpainting. The TV method is a total variation-based
approach, while PatchMatch is a content aware fill method imple-
mented in Adobe Photoshop.

Recently, deep learning neural networks have been extensively stud-
ied and have demonstrated their capability to capture abstract
information contained in images at high resolution [4]. One of
the feedforward neural networks, the convolutional neural net-
work (CNN) [5], is effective because each of its artificial neurons
responds only to some of the neurons connected to it, making the
application of deep learning neural networks in large-scale image
processing possible by avoiding the over-fitting phenomenon. On
the other hand, extensive research [6-10] on generative adversar-
ial networks (GANs) [11] has shown that the visual effect of gener-
ated images can be enhanced by adversarial training. Based on this
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Semantic face inpainting from corrupted images is a challenging problem in computer vision and has many practical applications.
Different from well-studied nature image inpainting, the face inpainting task often needs to fill pixels semantically into a missing
region based on the available visual data. In this paper, we propose a new face inpainting algorithm based on deep generative
models, which increases the structural loss constraint in the image generation model to ensure that the generated image has a
structure as similar as possible to the face image to be repaired. At the same time, different weights are calculated in the corrupted
image to enforce edge consistency at the repair boundary. Experiments on different face data sets and qualitative and quantitative
analyses demonstrate that our algorithm is capable of generating visually pleasing face completions.
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research background, CNN-based image completion methods with
adversarial training strategies have already significantly improved
image completion performance [12-14].

The early proposed deep learning-based semantic image restora-
tion methods were implemented by training an encoder-decoder
CNN (a context encoder) [12] which is closely related to the self-
encoder [15-17], to predict the unavailable content in an inpainting
image. That is, the network is trained to fill in an image’s unknown
content based on the known content. However, the context encoder
considers the structure of missing regions only during training but
not during inference, which will inevitably cause ambiguity and
error in the results. Based on the context encoder network, the
authors in [18] added alocal adversarial loss and a semantic parsing
loss to train the model to ensure pixel faithfulness and local content
consistency, but ambiguity is still present in the results when miss-
ing regions have arbitrary shapes [13].

When considering GANs, if some constraints can be provided in
the generating process, such as forcing the generated image to be
similar enough to the corresponding part of the known region of
the inpainting image, then we can find the best matching latent
space representation closest to the natural image manifold with-
out specifying any explicit distance based loss. Then, the image
can be restored by fusing the image generated by the GAN and
the known region of the inpainting image. In other words, the
image can be completed by blending the image generated by the
GAN and the known regions of the inpainting image [13] (known
as “DIP”, Image Inpainting with Deep Generative Models). In
spite of this success, some challenges still exist in face inpainting.
Firstly, human faces have a definite geometric distribution, and
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Figure 1 Face inpainting results obtained by TV, PatchMatch, DIP and the proposed method.

hence any face inpainting method based on deep learning must
consider the geometric structure loss in the process of restoration.
Secondly, coherence is very important in face inpainting and must
be considered in the process of face image completion.

To address these two concerns, this study develops a face inpaint-
ing network that promotes content continuity and structural con-
sistency. On the one hand, we apply the experience gained from
traditional image inpainting methods in our method. That is, more
attention should be paid to the continuity of the inpainted region
boundary, so we increase the weights for content loss and struc-
tural loss at the boundary portions of the region to be repaired,
which can ensure the continuity of content in the repair results. On
the other hand, for the face completion problem, the rationality of
the overall structure of the repair results is very important. Accord-
ingly, we add the structural loss in the generation process to ensure
that the generated image has a structure that is as similar as possi-
ble to the face image to be repaired. The procedure of the proposed
method is as follows. In the first stage, a deep generative model is
trained using face samples. In the second stage, a face image is iter-
atively generated that is “closest” to the input face image. For the
iteratively generated image with a combination of adversarial loss,
content loss and structural loss, the loss weights near the repair

border regions are increased. In the last stage, the image blending
method is used to fuse the known region content of the corrupted
image and the corresponding generated content to the unavailable
region in the original damaged face image. We evaluate our method
on the CelebA and SiblingsDB datasets with different shapes of the
missing area in an image. Results demonstrate that compared to the
traditional methods, our method can implement semantic restora-
tion, and compared to the benchmark DIP method, our method
can obtain more realistic and reasonable results (as shown in
Figure 1).

The main technical contributions of the proposed method are sum-
marized as follows:

* A novel network is developed to complete semantic face image
inpainting from masked face images. This method generates
samples that are more similar to the inpainting face image by
adding structural loss and applying an adaptive weight strategy
to the face generation model.

e A novel structural loss measurement method based on
structural similarity index (SSIM) values is introduced, which
includes the SSIM value calculation method for the image to be
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repaired and the generated image, and a normalization method
of these SSIM values is used to define the structural loss.

*  Our method guarantees the consistency of the repaired
boundary in the repaired result by implementing an adaptive
weight strategy, that is, larger weight values are applied to the
structure and content loss of pixels closer to the repair
boundary.

2. RELATED WORK

2.1. Image Generation

Owing to the good high-level semantic capture capabilities of
the variational auto-encoder (VAE) [19] and GAN, a large num-
ber of image generation methods [12,20,21] have been proposed
recently. The VAE methods usually use the pixel-wise L2 distance
(Euclidean) loss between the generated image and original image
to train the network. However, because the Euclidean distance is
used to minimize the average value of the difference between all
input and output pixels, it will inevitably cause ambiguity. By con-
trast, GANs are known to generate sharper images compared to
VAE. Especially for a particular type of image, GANs can generate
samples that are difficult to distinguish between true and false [7].
The DIP method [13] is a semantic face inpainting algorithm based
on this idea. In the DIP method, image inpainting is performed by
adding the content loss between the image’s available information
and the corresponding generative samples to constrain the itera-
tive generation of the GAN; specifically, the L1-norm is used to
define the content loss. Owing to its very good repair results, the
DIP method has become a contemporary benchmark method. In
[21], the authors proposed an improved DIP method. They present
a semantically conditioned GAN, which increases the conditional
information to constrain the GAN, to map a latent representation
to a point in the image manifold based on the underlying pose and
semantics of the scene. This method has been successfully applied
to face restoration in video sequences.

Our method also represents an improvement to the DIP method.
Unlike [21], we do not use the facial semantic map as a condition for
the face generation network and instead emphasize the importance
of the facial structure for face completion by increasing the struc-
ture loss weight in the face generation network directly. In addition,
we focus on the repair of a single image, while the method in [21]
extracts the facial semantic map based on a video sequence. How-
ever, because these methods are based on image generation, they
are all based on deep convolutional GAN (DCGAN), which is a
network that adds a deep convolutional network structure to GAN.
Technical details follow.

GANSs consist of two separate neural networks, where one of the
neural networks is referred to as “G”, which stands for the Gen-
erator, and the other neural network is called “D”, which is a
Discriminator. The objective function of GAN is a zero-sum or
minimax two-player game, where the players are G and D. Numer-
ous recent studies have proposed improvements to the original
GAN for image generation, for example, DCGAN [7], Improved
GAN [22], Conditional GAN [6], LAPGAN [23], iGAN/GVM
[24], pix2pix GAN [25], StackGAN [26,27], PPGN [28] and so on.
These different methods mainly focus on adjusting the network
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architecture and the loss function used to train the network, and
make the final result satisfy the corresponding application.

DCGAN [7] is widely used in image generation applications
because it can generate much sharper images. We use a pre-trained
DCGAN, which greatly improves the stability of GAN training,
to generate the face in our proposed face inpainting network. The
DCGAN architecture is described in Figure 2, where the discrimi-
nator network D takes in both the prediction of G and ground truth
samples and attempts to distinguish between true and false sam-
ples, while G attempts to mislead the discriminator D to the great-
est extent possible. This goal can be represented mathematically as
follows:

mGin max V(D,G), (1)
V(D,G) = Eyp, (o [log(Dx))]
+E., (- [log(1-D(G2))]

where py.;, (x) and p, (z) represent the distributions of real data x
and noise variables z.

2.2. Image Loss Measurement

Although DCGAN can generate a sample image that appears to
be a real image, DCGAN cannot be directly applied to the image
inpainting task. This is mainly because of the fact that the image
generated by DCGAN may not be related at all to the provided cor-
rupted image. Therefore, an effective method for applying DCGAN
to image inpainting is to constrain the image generation of DCGAN
through the information in the image to be repaired, so that the
generated image is sufficiently similar to the image to be repaired.
To accomplish this, the measurement of the similarity between the
generated image and the provided corrupted image must be con-
sidered.

Image similarity measurement methods include image content-
based methods (e.g. sum of squared differences (SSD)), image
pixel statistics-based methods (e.g. variation of square error (VSE)),
image structure-based methods (e.g. the SSIM [29]), and informa-
tion theory-based methods, such as normalized cross-correlation,
Kullback-Leibler(K-L) divergence, and others. For example, the
PatchMatch method uses the L2 distance to measure image patch
matching. Considering that pixel-wise metrics tend to reflect the
overall difference between the two images, this type of measure-
ment does not involve the direct correlation between images. It
is well known that face images have clear structural correlations.
According to the well-known visual psychology theory (Gestalt the-
ory), the human eye is particularly sensitive to structural informa-
tion in images. Therefore, in the generation process of the proposed
method, in addition to using the content loss used in DIP to mea-
sure the face difference, an image difference metric based on the
structural information of the face is added. Specifically, we adopt
SSIM, which can measure image similarity based on brightness,
contrast and structure, to measure the structural loss of the gener-
ated face image.

SSIM was proposed by the Laboratory for Image and Video Engi-
neering at the University of Texas at Austin [29]. Given two images
I; and I, the SSIM of the two images can be calculated as follows:
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Figure 2 Deep convolutional generative adversarial network (DCGAN) framework overview. The figure
consists of two parts (divided by a red dotted line), the upper part is a schematic diagram of DCGAN training,

and the lower part is the overall architecture of DCGAN.
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SSIM (Il, 12) =

where u;, is the average of the brightness of the image pixels in I,
M1, is the average of the brightness of the image pixels in I, 0121 is
the variance of I, 0'122 is the variance of I, and ¢y, 1, is the covariance

of I} and . ¢; = (le)2 and ¢, = (kzL)2 are constants used to
maintain stability. L is the dynamic range of the pixel values in the
images. From past experience, k; = 0.01 and k, = 0.03.

In terms of the implementation of image structural similarity the-
ory, SSIM defines structural similarity from the perspective of
image composition and independent brightness and contrast. In
this fashion, SSIM can well reflect the differences in the structural
properties of objects in different images.

3. METHOD

3.1. Network Architecture

For the semantic image inpainting methods based on deep genera-

tive models, the issue of image restoration is not considered at the

network training stage. That is, adversarial training takes place in

GAN using non-damaged real samples and generated samples, so
that “G” has the capability to generate as many real samples as pos-
sible, and “D” has the capability to distinguish true samples from
false. Then the repair of a corrupted image I can be transformed
into the process of generating a new sample S that has very similar
content corresponding to the known part of the inpainting image
generated by G. In order to achieve this goal, we need to iteratively

modify the newly generated image S, and the basis for the modi-
fication is to reduce the difference between the regions of S corre-
sponding to the known regions of the corrupted image I. Figure 3
shows the framework for image inpainting based on deep genera-

tive models.

According to the framework of Figure 3, the image inpainting pro-
cess is to generate a new sample S from the noise signal z firstly,
and then the element value in signal vector z is updated using back-
propagation based on the discriminator loss of S and the different
losses between S and 1. After modifying z iteratively, we can recover
the encoding Z that is “closest” to the corrupted image.

3.2. Objective Function

We first introduce the discriminator loss L, which is different from
the GAN optimizing function given by Formula (1), because in
image restoration, there is no real sample image input to the net-
work. That is, only the discriminator loss of the new generated sam-
plesis available. The discriminator loss L, is thus defined as follows:

Ly(z) = log(1-D(G(2))) 3)

By using L, the network can continuously update z to fool D, which
ultimately leads to a more realistic corresponding generated image.

Regarding the reconstruction loss L, with respect to the genera-
tor, in DIP, the masked L1 distance between the network G output
and the original image are used. By using additional discriminators,
DCGAN can generate clearer sample images. However, if only L, is
added, the structure consistency between the generated image and
the original image cannot be guaranteed, which will inevitably lead
to errors in the repair results, as shown in Figure 1. Especially when
filling large missing regions, we must take greater advantage of the
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Figure 3 Framework for image inpainting based on deep generative models. The face image is iteratively generated by the

DCGAN network with face generation capability, and finally the face image most similar to the known portion of the face

image to be repaired can be generated.

remaining available data in the image to be inpainted. In practice
we apply the context loss and structure loss to capture such infor-
mation. In the DIP method, the authors found that the L1-norm
performs slightly better than the L2-norm in the semantic inpaint-
ing method based on deep generative models. For the context loss
L., we also use the pixel-wise L1-norm in our method. In order
to ensure the consistency of the face structure after inpainting, we
introduce the structural loss L based on SSIM, and introduce the
adversarial loss L. The overall loss function is thus defined by:

L= AlLd + AzLC + A3LS (4)

where 4;, 4, and A3 are the weights used to balance the effects of
the different losses.

To set reasonable weight values, an effective way is to normalize the
various loss values. For example, although SSIM can well describe
the structural similarity between two images, its range of values is 0
to 1; when the two images have greater similarity, its value is larger.
The Li-norm value on the other hand is smaller when the two
images are more similar. Therefore, the SSIM value cannot be used
for structural loss of the inpainting network directly, and the SSIM
value representing the similarity of two images must be converted
into a structural difference representation between two images. The
simplest conversion method is that using the value of 1 — SSIM to
express the structural loss. In order to unify all losses (the L, loss and
the L, loss in particular are not at the same levels generally), we need
to normalize both the L, loss and L, loss. The method we use is to
generate a sufficient number of samples from a specific data set used
to train G, and then use a number of randomly selected test samples
to calculate their SSIM values and L1 values, and finally the nor-
malized parameters are selected according to the statistical results
to achieve normalized processing adapted to the training data set.
Figure 4 shows scatter plots of SSIM values and L1-norm values
between 64 test set images and 12800 images generated by DCGAN
trained on the CelebA data set.

We calculate the mean y; and standard deviation o; of the SSIM
values for 64 test samples and all generated images, and use u,-3 * g,
as the minimum value s,,;, of SSIM values and y, + 3 * o, as the
maximum value s,,,, of SSIM values; the normalized value of L, can

then be calculated by Formula (5). The normalization of L, can be
achieved by the same method, namely, we calculate the mean u,
and standard deviation o, of the L1-norm values for 64 test samples
and all generated images, such that ¢,,;, = u. - 3 * o, and ¢, =
U, + 3 = o.. The formula is given in (6).

la Dssim (11’12) < Spin

-D.., (I,I
L5(11,12)= (smux sstm(l 2))’ others (5)

Smax ~ Smin

Oa Dssim (11’12) > Smax

1! ” Il - 12 ”1> Cinax
I -1
L (I, 1) = M others (6)
max min
0; ” Il - 12 ”l< Cinim

In the equations, Dy, (I1, I,) represents the SSIM values of images
Iyand I; and || I; - I, ||; represents the L1-norm of the difference
between images I; and I,.

In addition to the L, loss calculated by the discriminator network
D based on the generated sample, L, and L, are used to retain the
available data of the input corrupted images. For each inpainting
image I, assume that the missing pixels are indicated by a “mask”
matrix M, and each element in M encodes the pixel status, namely
“1” for an existing pixel and “0” for a missing pixel. In the traditional
exemplar-based inpainting methods, it is considered that the more
information that is known around a pixel, the higher the repair pri-
ority of the patch where the pixel is located. This inspired us to
increase the penalty for the loss in areas close to the missing region
border. In other words, the closer a pixel is located to the repair
boundary, the greater the penalty assigned to the loss.

To achieve this goal, we propose a weighted loss matrix W for the
L. and L, losses. W is used to indicate the weight of the pixel loss
penalty around the contour of the repair area. The element values
in W can be obtained by M, similar to the confidence term [30],
which has been used in exemplar-based image inpainting methods.
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Figure 4 Scatter plots of the structural similarity index (SSIM) values and -norm values between generated samples and

test samples.

We also set a block size parameter k. Then W can be calculated as
follows:

Zyen, (01

5 7)

W(p)=1+a

where O is an all-ones matrix of the same size as M, @, is a patch
centerd at pixel p with size k * k, and « is a constant.

Through the calculation of Formula (7), the weight values of the
pixels far from the repair contours (where the distance is greater
than k) will be 1, and for the pixels near the repair contours, the
weight values will increase according to the number of unavailable
pixels nearby, which can ensure that greater loss penalty weight val-
ues are set for pixels closer to the repair border.

Thus, for each input corrupted face image I, the weighted multiple
constraints loss function of our method is:

L) =2A1Log(1-D(G @) +ALL (WOMOG(2),
WOMOD+LL(WOMOGE,WOMOID
(8)

where © represents an element-wise product.

Figure 5 shows the results for image inpainting using each of the
three losses independently. Figure 5(c) shows that the inpainted
regions in the results using only the L; loss constraint produce clear
face structure information; however, as there is no constraint added
to the repair process by using other information available in the
images to be repaired, the generated face images are not related
to the samples to be repaired, and the repaired results are corre-
spondingly unreasonable. In the inpainting results using only the
L loss constraint (Figure 5(d)), the repaired regions have a certain

correlation with the input corrupted face images, but there is obvi-
ous blurring. We were surprised to find that by using only the L.
loss as a constraint, face image inpainting can produce very good
repair results (Figure 5(e)), which demonstrates that considering
the structural loss is critical for image completion of images with
obvious high-level semantic features.

3.3. Blending Results

By using a back-propagation algorithm based on the total loss of
Ly, L. and L, we can update the input signal z iteratively and thus
obtain the closest Z in the latent representation space of the cor-
rupted image. However, unlike the traditional inpainting methods
in which repair processes are carried out by diffusing the informa-
tion from the repair contours in the missing region gradually, the
inpainting methods based on deep generative models must stitch
the generated loss blocks into the corrupted images. Therefore, it is
necessary to use a blending method to ensure the natural transition
of the image blocks from different images. Poisson blending [31] is
used in our method to reconstruct the final results.

For an input corrupted image I, it is assumed that the most simi-
lar generated image is T = G (2) by iterative updating. By using the
Poisson blending method, the reconstruction process of the final
result image, F, follows four steps: The first step is to calculate the
gradient field of I and T, the second step is to merge the gradi-
ent fields of I and R according to the mask M, that is, replace the
gradient field of the corrupted region in I with the correspond-
ing region gradient field in T. The third step is to calculate the
divergence of the merged gradient field. Finally, according to the
Poisson reconstruction equation, the coefficient matrix is solved
to obtain the reconstructed image regions corresponding to the
input corrupted image. In Figure 6, we used gray scale images to
illustrate the process clearly, and an illustration diagram of the
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(e) Inpainted results using L only.

Figure 5 Face image inpainting results using only loss constraints, respectively.

blending process is shown. In Figure 7, we present a comparison
of several sets of inpainted results obtained with and without the
blending method. The experimental results demonstrate that the
final inpainting quality is improved significantly by the blending
process.

3.4. Implementation Details

To generate sample images which are very close to the input face
image, we make full use of the available information in the input
image to restrain the generation process of the deep generative
models (G and D). In our experiments, DCGAN is trained using
the CelebA dataset, which consists of 202,599 face images (of which
2000 face images were reserved as a dataset for testing). After train-
ing, a 64 % 64 * 3 image can be generated from a 100-dimensional
vector using model G. For discriminator model D, the input is an
image with dimensions of 64 * 64 * 3 and its output is fed to a two-
class softmax. The full architecture details can be found in [7]. The
normalized parameters are set as s,,,;, = 0.1198 and s,,,,, = 0.8431.
(For 64 x 12800 SSIM values, the mean u, = 0.4836, the standard

deviation o, = 0.1198, s,,;,, = Ms = 3 * T, Spax = Ms + 3 * 0,), and
Cmin = 739, and ¢,,,, = 4861 are set. (For 64 * 12800 L1-norm
values, the mean u. = 2800, the standard deviation o, = 687, and
Cin = Mc—3%0,and ¢, = U +3%0,). The difference loss weights
are set as: 4; = 0.003, 1, = 0.2, and 4; = 0.797 in all experiments.
The values for these loss weights are set based on experience. In
fact, through Figure 5, we can clearly see that the maximum weight
should be given to the structural loss to ensure good repair results.
The parameters in Formula (7) are set as: k = 7 and o = 2, and
their values are also set based on experience. Note that k cannot be
too small; otherwise it cannot ensure the consistency of the repair
contours. In all experiments, the number of iterations is set to 1000
to ensure convergence of the generated face image.

4. EXPERIMENTAL RESULTS

We carry out extensive experiments to demonstrate the capabili-
ties of our proposed method compared to DIP, the state-of-the-
art method for semantic face inpainting. Specifically, it includes
various standard mask repair comparison experiments, arbitrarily
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Figure 6 Image blending processing illustration; (a) original image; (b) inpainting result with blending process; (c) inpainting result using
the direct stitching method; (d) the masked input image; (e) the gradient field of (d); (f) iterative generated sample image; (g) the gradient field
of (f); (h) merged gradient field by combining (e) and (g); and (i) divergence of the merged gradient field.

a

(b) Inpainting results with blending process.

-

-

Figure 7 Comparison of results between inpainting with and without blending.

masked face image repair comparison experiments, different face
database comparison experiments, and a large number of pixel loss
completion experiments.

4.1. Qualitative Analysis

In order to qualitatively analyze the performance of the proposed
method, we compare the method with the DIP method. Figure 8

shows the repair results of the DIP method and our method in the
case of center-masked images. Figure 9 shows the repair results for
various standard masked images, and Figure 10 shows the repair
results for arbitrarily masked face images.

In the six groups of experimental results given in Figure 8, our
method achieved better repair results than the DIP method. There
are richer face structures and more coherent edges in the pro-
posed method; these properties make the overall repair results more



1240

Z. Qiang et al. / International Journal of Computational Intelligence Systems 12(2) 1232-1244

O O

(a) Input images.

LR
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(c) DIP results.
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(d) Our results.

Figure 8 Comparison between DIP method and our method for center-masked images.

Figure 9 Comparison between DIP method and our method for standard masked images.



Z. Qiang et al. / International Journal of Computational Intelligence Systems 12(2) 1232-1244

ST ‘\I"‘IEIEIE

. e

l -
4

"'

Input

W"'

L

1241

‘.

"e9lE

Masked

Figure 10 Comparison between DIP method and our method for arbitrarily masked images.

reasonable. In Figure 9, except for the first group of experiments,
which repair the upper half of the whole face image, the two meth-
ods are not ideal, while the other experimental results using the
proposed method achieve better results. In addition to the advan-
tages shown in Figure 8, more consistent facial skin is achieved in
our results, and some experimental results have achieved amazing
results in which it is difficult to find the repair traces to human eyes.
In Figure 10, four different arbitrarily masked inpainting results are
shown, and compared with the original images, there are obvious
blurred marks in the results using DIP, and unique objects in the
face images are more obvious(as shown by the results in the first
line).

The effectiveness of the proposed method is verified by qualitative
analysis through the three experiments and the results shown in
Figures 8-10. The experimental results demonstrate that the final
restoration results are more reasonable when the structural loss and
adaptive weight strategy are applied.

4.2. Quantitative Analysis

To further verify the effectiveness of the proposed method, we
compare the experimental results obtained by randomly discard-
ing 20%, 40%, 60% and 80% of the pixels in an image. The visual
experimental results are shown in Figure 11, where the first row to
the fourth row show the inpainting results when discarding 20%,
40%, 60% and 80% pixels, respectively. The advantages and disad-
vantages between the proposed method in this paper and the DIP
method are difficult to distinguish by the human eye in these results.
Therefore, quantitative analysis results are presented in Table 1,
and the peak signal-to-noise ratio (PSNR) and SSIM values of the
inpainted images and the original unmodified images are com-
pared. Note that the proposed method obtains relatively higher
PSNR and SSIM values.

Table 1 PSNR values (dB) and SSIM values comparison between DIP
and our method based on different proportions of missing pixels.

DIP Ours
PSNR SSIM PSNR SSIM
20% 19.8658 0.9517 20.0649 0.9533
40% 19.0177 0.8975 19.9802 0.9089
60% 18.2592 0.8547 19.8783 0.8892
80% 15.7974 0.7823 19.7447 0.8461

4.3. Limitations

All of the above experiments are based on the CelebA data set, and
the test set is also from CelebA. On the trained network, we there-
fore use the data from other data sets to carry out further experi-
ments. Figures 12 and 13 show the experimental results when using
images from the SiblingsDB data set, and Figure 14 shows the repair
results of the Asian face data set.

Although our method is capable of obtaining semantically pleasing
inpainting results, even on images not used to train the network,
it has some limitations. Through the results shown in Figures 12—
14, we can find similar failure cases for both DIP and our method.
This is because the CelebA data set images are roughly cropped and
aligned, while the other data sets are not processed in this manner.

The generation model used in all experiments was DCGAN trained
using images from the CelebA dataset, and it is difficult to obtain
good results for face images that are not rich in the data set. As
shown in Figures 14, the results for the two methods on Asian face
images are unsatisfactory.

5. CONCLUSION

In this paper, we apply the experience gained from traditional
image inpainting methods to semantic face inpainting based on
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Figure 12 Comparison between DIP method and our method for images from SiblingsDB with center mask.
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Figure 13 Comparison between the DIP method and our method on SiblingsDB images with arbitrary masks.
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Figure 14 Comparison between the DIP method and our method on Asian face images with different masks.

deep generative models, and through many experiments, the pro-
posed method is proven effective for face inpainting. Compared
with traditional image inpainting methods, the proposed method
can achieve semantic face completion and its advantages are easily
discerned. Compared with the DIP benchmark method proposed
recently for semantic face inpainting, the proposed method can
enhance content continuity and structural consistency and yield
more reasonable inpainted results.

Although we have made some progress in face inpainting, there
remains room for further improvement, and we propose the follow-
ing promising directions for future work.

 Standard face model and corresponding representation loss
function: The importance of a face’s structural information for
face inpainting has been demonstrated in this paper, and it is
well known that the standard face model is a basic feature of a
face’s structure [32]. How to obtain the standard face model of
the corrupted face image and represent the obtained result as a
loss function will be a very valuable research contribution [33].

* Symmetric feature and corresponding representation loss
function: Another basic feature of the face structure is
symmetry [34], which is also a high-level semantic feature of
the face. It is highly desirable to be able to represent and apply
face symmetry feature(s) to face inpainting effectively.

 High-resolution face inpainting and synthesis:
Notwithstanding GANs and other models that have greatly
improved the quality of face completion, high-resolution face
inpainting remains an open problem [35]. A synthesis
approach may be an effective way to solve this problem [36].

In the future, we hope that more applications based on face image
inpainting will be developed and applied in real life.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest regarding
the publication of this paper.

ACKNOWLEDGMENTS

This work is supported by the project of National Natural Sci-
ence Foundation of China (11603016), Key Scientific Research

Foundation Project of Southwest Forestry University (111827) and
the project of Scientific Research Foundation of Yunnan Police Offi-
cer College (19A010).

REFERENCES

[1] N. Ersotelos, F. Dong, Building highly realistic facial modeling
and animation: a survey, Visual Comput. 24 (2008), 13-30.

[2] J. Shen, T.F. Chan, Mathematical models for local nontexture
inpaintings, STAP. 62 (2002), 1019-1043.

[3] C.Barnes, E. Shechtman, A. Finkelstein, et al., PatchMatch: a ran-
domized correspondence algorithm for structural image editing,
TOG. 28 (2009), 1-11.

[4] O. Vinyals, A. Toshev, S. Bengio, et al., Show and tell: a neu-
ral image caption generator, in 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Boston, 2015,
pp. 3156-3164.

[5] Y. Lecun, L. Bottou, Y. Bengio, et al., Gradient-based learn-
ing applied to document recognition, Proc. IEEE. 86 (1998),
2278-2324.

[6] M. Mirza, S. Osindero, Conditional generative adversarial
nets, arXiv preprint, arXiv:1411.1784, 2014. https://arxiv.org/abs/
1411.1784

[7] A. Radford, L. Metz, S. Chintala, Unsupervised representation
learning with deep convolutional generative adversarial networks,
arXiv preprint, arXiv:1511.06434, 2015. https://arxiv.org/abs/
1511.06434

[8] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein GAN,
arXiv preprint, arXiv:1701.07875, 2017. https://arxiv.org/abs/
1701.07875

[9] D. Berthelot, T. Schumm, L. Metz, Began: boundary equilib-
rium generative adversarial networks, arXiv preprint, arXiv:
1703.10717, 2017. https://arxiv.org/abs/1703.10717

[10] H. Zhang, V. Sindagi, V.M. Patel, Image de-raining using a con-
ditional generative adversarial network, TCSVT. (2019), 1

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative
adversarial nets, in Proceedings of the 28th International
Conference on Neural Information Processing Systems
(NIPS), Montreal, 2014, pp. 2672-2680. http://dblp.uni-
trier.de/db/conf/nips/nips2014.html#GoodfellowPMXWOCB14

[12] D. Pathak, P. Krahenbuhl, J. Donahue, et al., Context encoders:
feature learning by inpainting, in 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Las Vegas, 2016,
pp. 2536-2544.


https://doi.org/10.1007/s00371-007-0175-y
https://doi.org/10.1007/s00371-007-0175-y
https://doi.org/10.1137/S0036139900368844
https://doi.org/10.1137/S0036139900368844
https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TCSVT.2019.2920407
https://doi.org/10.1109/TCSVT.2019.2920407
https://doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1109/CVPR.2016.278
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1703.10717
http://dblp.unitrier.de/db/conf/nips/nips2014.html#GoodfellowPMXWOCB14
http://dblp.unitrier.de/db/conf/nips/nips2014.html#GoodfellowPMXWOCB14

1244

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

Z. Qiang et al. / International Journal of Computational Intelligence Systems 12(2) 1232-1244

R.A. Yeh, C. Chen, T.Y. Lim, et al., Semantic image inpainting
with deep generative models, in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Honolulu, 2017,
pp. 5485-5683.

B. Dolhansky, C. Canton Ferrer, Eye inpainting with exemplar
generative adversarial networks, in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Salt Lake
City, 2018, pp. 7902-7911.

Y. Bengio, P. Lamblin, D. Popovici, et al., Greedy layer-wise train-
ing of deep networks, in Proceedings of the 19th International
Conference on Neural Information Processing Systems, Canada,
2007, pp. 153-160.

Y. Bengio, Learning deep architectures for AI, Found. Trends®
Mach. Learn. 2 (2009), 1-127.

J. Masci, U. Meier, D. Ciresan, et al., Stacked convolutional auto-
encoders for hierarchical feature extraction, in International Con-
ference on Artificial Neural Networks (ICANN), Part I, Espoo,
2011, pp. 52-59.

Y. Li, S. Liu, J. Yang, et al., Generative face completion, in 2017
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, 2017, pp. 3911-3919.

D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv
preprint, arXiv:1312.6114, 2013. https://arxiv.org/abs/1312.6114
J. Donahue, P. Krihenbiihl, T. Darrell, Adversarial feature learn-
ing, arXiv preprint, arXiv:1605.09782, 2016. https://arxiv.org/
abs/1605.09782

A. Lahiri, K. Ayush, PK. Biswas, et al., Generative adversar-
ial learning for reducing manual annotation in semantic seg-
mentation on large scale miscroscopy images: automated vessel
segmentation in retinal fundus image as test case, in 2017
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, 2017, pp. 42-48.

T. Salimans, 1. Goodfellow, W. Zaremba, et al, Improved
techniques for training gans, in Advances in Neural Information
Processing Systems, Barcelona, 2016, pp. 2226-2234. http://dblp.
uni-trier.de/db/conf/nips/nips2016.html#SalimansGZCRCC16
E.L. Denton, S. Chintala, R. Fergus, Deep generative image
models using a Laplacian pyramid of adversarial networks,
in Advances in Neural Information Processing Systems, Mon-
treal, 2015, pp. 1486-1494. http://dblp.uni-trier.de/db/conf/nips/
nips2015.html#DentonCSF15

J.Y. Zhu, P. Kridhenbiihl, E. Shechtman, et al., Generative visual
manipulation on the natural image manifold, in European Con-
ference on Computer Vision (ECCV2016), Amsterdam, 2016, pp.
597-613.

(25]

(26]

(35]

P. Isola, J.Y. Zhu, T. Zhou, et al., Image-to-image translation with
conditional adversarial networks, in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu,
2017, pp. 1125-1134.

H. Zhang, T. Xu, H. Li, et al., Stackgan: text to photo-realistic
image synthesis with stacked generative adversarial networks,
in 2017 IEEE International Conference on Computer Vision
(ICCV), Venice, 2017, pp. 5907-5915.

H. Zhang, T. Xu, H. Li, et al., StackGAN++: realistic image syn-
thesis with stacked generative adversarial networks, TPAMI. 41
(2019), 1947-1962.

A.Nguyen, J. Clune, Y. Bengio, et al., Plug and play generative net-
works: conditional iterative generation of images in latent space,
in 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), Honolulu, 2017, pp. 4467-4477.

Z.Wang, A.C. Bovik, H.R. Sheikh, et al., Image quality assessment:
from error visibility to structural similarity, IEEE Trans. Image
Process. 13 (2004), 600-612.

A. Criminisi, P. Perez, K. Toyama, Object removal by exemplar-
based inpainting, in 2003 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), Madison,
2003, pp. 721-728.

P. Pérez, M. Gangnet, A. Blake, Poisson image editing, TOG. 22
(2003), 313-318.

S.E Kak, EM. Mustafa, P.A. Valente, A review of person recogni-
tion based on face model, Eurasian J. Sci. Eng. 4 (2018), 157-168.
J. Deng, J. Guo, N. Xue, et al., Arcface: additive angular margin loss
for deep face recognition, in 2019 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, 2019, pp. 4690-4699. http://openaccess.thecvf.com/
content_CVPR_2019/html/Deng_ArcFace_Additive_Angular_
Margin_Loss_for_Deep_Face_Recognition_CVPR_2019_
paper.html

R. Huang, S. Zhang, T. Li, et al., Beyond face rotation: global
and local perception gan for photorealistic and identity preserv-
ing frontal view synthesis, in 2017 IEEE International Conference
on Computer Vision (ICCV), Venice, 2017, pp. 2439-2448.

B. Jiang, H. Liu, C. Yang, et al., Face inpainting with dilated skip
architecture and multi-scale adversarial networks, in 2018 9th
International Symposium on Parallel Architectures, Algorithms
and Programming (PAAP), Taipei, 2018, pp. 211-218.

C. Yang, X. Lu, Z. Lin, et al., High-resolution image inpainting
using multi-scale neural patch synthesis, in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu,
2017, pp. 4076-4084.


https://doi.org/10.1109/CVPR.2017.728
https://doi.org/10.1109/CVPR.2017.728
https://doi.org/10.1109/CVPR.2017.728
https://doi.org/10.1109/CVPR.2017.728
https://doi.org/10.1109/CVPR.2018.00824
https://doi.org/10.1109/CVPR.2018.00824
https://doi.org/10.1109/CVPR.2018.00824
https://doi.org/10.1109/CVPR.2018.00824
https://doi.org/10.7551/mitpress/7503.003.0024
https://doi.org/10.7551/mitpress/7503.003.0024
https://doi.org/10.7551/mitpress/7503.003.0024
https://doi.org/10.7551/mitpress/7503.003.0024
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/10.1109/CVPR.2017.624
https://doi.org/10.1109/CVPR.2017.624
https://doi.org/10.1109/CVPR.2017.624
https://doi.org/10.1109/CVPRW.2017.110
https://doi.org/10.1109/CVPRW.2017.110
https://doi.org/10.1109/CVPRW.2017.110
https://doi.org/10.1109/CVPRW.2017.110
https://doi.org/10.1109/CVPRW.2017.110
https://doi.org/10.1109/CVPRW.2017.110
http://dblp.uni-trier.de/db/conf/nips/nips2016.html#SalimansGZCRCC16
http://dblp.uni-trier.de/db/conf/nips/nips2016.html#SalimansGZCRCC16
https://doi.org/10.1007/978-3-319-46454-1_36
https://doi.org/10.1007/978-3-319-46454-1_36
https://doi.org/10.1007/978-3-319-46454-1_36
https://doi.org/10.1007/978-3-319-46454-1_36
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/ICCV.2017.629
https://doi.org/10.1109/ICCV.2017.629
https://doi.org/10.1109/ICCV.2017.629
https://doi.org/10.1109/ICCV.2017.629
https://doi.org/10.1109/TPAMI.2018.2856256
https://doi.org/10.1109/TPAMI.2018.2856256
https://doi.org/10.1109/TPAMI.2018.2856256
https://doi.org/10.1109/CVPR.2017.374
https://doi.org/10.1109/CVPR.2017.374
https://doi.org/10.1109/CVPR.2017.374
https://doi.org/10.1109/CVPR.2017.374
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/CVPR.2003.1211538
https://doi.org/10.1109/CVPR.2003.1211538
https://doi.org/10.1109/CVPR.2003.1211538
https://doi.org/10.1109/CVPR.2003.1211538
https://doi.org/10.1145/882262.882269
https://doi.org/10.1145/882262.882269
https://doi.org/10.23918/iec2018.01
https://doi.org/10.23918/iec2018.01
https://doi.org/10.1109/ICCV.2017.267
https://doi.org/10.1109/ICCV.2017.267
https://doi.org/10.1109/ICCV.2017.267
https://doi.org/10.1109/ICCV.2017.267
https://doi.org/10.1109/PAAP.2018.00043
https://doi.org/10.1109/PAAP.2018.00043
https://doi.org/10.1109/PAAP.2018.00043
https://doi.org/10.1109/PAAP.2018.00043
https://doi.org/10.1109/CVPR.2017.434
https://doi.org/10.1109/CVPR.2017.434
https://doi.org/10.1109/CVPR.2017.434
https://doi.org/10.1109/CVPR.2017.434
http://openaccess.thecvf.com/content_CVPR_2019/html/Deng_ArcFace_Additive_Angular_Margin_Loss_for_Deep_Face_Recognition_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Deng_ArcFace_Additive_Angular_Margin_Loss_for_Deep_Face_Recognition_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Deng_ArcFace_Additive_Angular_Margin_Loss_for_Deep_Face_Recognition_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Deng_ArcFace_Additive_Angular_Margin_Loss_for_Deep_Face_Recognition_CVPR_2019_paper.html
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#DentonCSF15
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#DentonCSF15
https://arxiv.org/abs/1605.09782
https://arxiv.org/abs/1605.09782
https://arxiv.org/abs/1312.6114

	Face Inpainting with Deep Generative Models
	1. INTRODUCTION
	2. RELATED WORK
	2.1. Image Generation
	2.2. Image Loss Measurement

	3. METHOD
	3.1. Network Architecture
	3.2. Objective Function
	3.3. Blending Results
	3.4. Implementation Details

	4. EXPERIMENTAL RESULTS
	4.1. Qualitative Analysis
	4.2. Quantitative Analysis
	4.3. Limitations

	5. CONCLUSION


