
Information System "Electronic University": the

Experience of Khmelnytskyi National University

Andrii Mazarchuk

Khmelnytskyi National University

Department of Automated Systems and

Modeling in Economics

Khmelnytskyi, Ukraine

a.mazarchuk@gmail.com

Constantin Belovsky

Khmelnytskyi National University

Department of Automated Systems and

Modeling in Economics

Khmelnytskyi, Ukraine

constantin.belovsky@gmail.com

Tetiana Zavgorodnia

Khmelnytskyi National University

Department Of Automated Systems And

Modeling In Economics

Khmelnytskyi, Ukraine

zavgorodnyatp@gmail.com

Abstract — The article is devoted to the development of a

university management information system based on the

experience of developing and implementing the Electronic

University system at the Khmelnytskyi National University.

We consider the main tasks solved by the university

management system, taken architectural decisions, the

principles of an effective database structure design,

development tools, report generation, programming languages

and frameworks. A comparative analysis of possible

approaches is carried out and recommendations are made

taking into account practical experience in using the system,

which has been developed and used since 2001. The main

business processes and functional structure of the information

system are considered. The need and possibility of storing data

that reflect the history of all changes are justified. This

provides the possibility of obtaining a data slice or the state of

a certain information object at any time by certain calculations

in the database. It also gives you the opportunity to get almost

any statistics for any interval or at any time.

Keywords — Information system, database, design,

development.

I. INTRODUCTION

Most universities have a limited budget for the
development and implementation of information systems.
Commercial solutions of well-known large companies, such
as the Oracle, can cost about $1.5 - $2 million, and
subsequent support cost can reach $500,000 a year. Such
projects are viable within the grant funding, and for most
universities unaffordable. Even domestic development can
cost about hundreds of thousands of hryvnias and tens of
thousands of hryvnias a year to support, which most
universities are not willing to pay.

Under these conditions, the development of an
information system by the university itself, with appropriate
specialists, is quite viable. With a good initial planning of the
structure of an information system, it can gradually develop,
adding new functions and capabilities without the need to
constantly rework the entire system from scratch. Such an
approach will not give a quick result, however, the
introduction of large “ready-made” information systems,
which is often accompanied by partial or deep adaptation of
the modules of the system to the specific needs of the
university, can take years, and the inconsistency of the
structure of such a system with the changing business
processes of the university after several years of

implementation and significant costs may generally lead to
the abandonment of the use of such a system. Therefore, a
departure from the universal type of the system and the
development of its own functional modules in practice can
give even more significant and faster results, and specific
modules without any adaptation will work in strict
accordance with the requirements of the customer.
Adaptation of modules in case of business process changes at
the university can also be performed by its own developers.

Strictly speaking, the development of an information
system is a process of continuous development. After the
implementation of the initially ordered modules, there are
always new requirements, both for the development of
existing modules and the development of new ones for
various departments or tasks. Therefore, the choice of
development tools / languages is very important. The main
requirement is openness. With a sufficiently long
development period, it is very important to be able to
introduce new technologies, which could simply not exist at
the time the project started, and for this to happen, there must
be the possibility of integrating existing ones with new ones.
Binding to closed commercial solutions in the future often
leads to problems. And given the limited budget, the most
suitable are Open Source solutions. It should also be
considered that the use of open standards makes it easier to
find developers with the appropriate qualifications, which is
important with the long-term development of the project.

II. SELECTION OF DEVELOPMENT TOOLS

Our information system "Electronic University" began to
be projected from 1999, when most developers used native
binary code applications obtained using compiled
programming languages. We proceeded from the
requirements of the work of users with different operating
systems in a distributed network, both within the university
and beyond. Updating of versions of modules should occur
often and quickly. Therefore, we decided to design the
system using a client-server technology using web interfaces
[1]. This approach was fully justified not only then, but also
showed promise for many years to come, when the rapid
development of web technologies provided the ability to
build applications of any level of complexity, both for
personal computers and for tablets or smartphones.

The main advantage of using web technologies is the
possibility of centralized development and support of the

6th International Conference on Strategies, Models and Technologies of Economic Systems Management (SMTESM 2019)

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Economics, Business and Management Research, volume 95

481

system when users can access it from anywhere, both inside
the university, and from home or on the road. At the same
time, it remains possible to restrict access to critical
information only from specific devices / subnetworks during
authorization, both with a password and / or security
certificates (most often such requirements are put forward to
access financial information). Some features of the work of
users with confidential information through the web
interfaces have set appropriate requirements for the means of
security. For example, the connection between the client and
the server should have been encrypted, user authentication
should be provided by a login/password pair, some key
elements transmitted by web interfaces must be digitally
signed, sql queries to the database must use parameterization.

PHP was chosen as the main programming language for
the server side for its simplicity and ease of use. This choice
was influenced by the fact that it was used to create more
than half of the sites on the Internet. And this, in turn,
determined a huge number of developers using PHP, as well
as tools, frameworks, documentation and support. Although
many corporate systems are developed using Java
technologies, practical experience in developing websites
using them, as well as interaction with existing solutions,
shows that, as a rule, the development process using Java is
much more resource intensive than PHP, and the production
version in Java work significantly slower than PHP. We do
not claim that Java projects are necessarily slower than PHP,
but Java is a more universal and complex platform that
requires high qualifications for effective use. The use of PHP
for developing web applications even for less skilled
developers, gives the opportunity to develop high
performance websites. In other words with a team of
qualified Java developers, Java is an excellent choice, but
PHP will allow you to get almost the same results, with the
requirements for developers can be lower and find such
developers much easier.

Since most popular modern frameworks simply didn’t
exist at the time of the development of the Electronic
University, we developed our own framework based on the
use of templates, allowing us to quickly and compactly
describe a standardized web interface built on “cascade”
tables that often follow the structure of the database, which
allowed to significantly reduce development time.

By “cascade” tables we understand tables where, in
addition to data, buttons are displayed on the table row for
show related records from other tables. Those tables may
also have related tables, etc. When you click on the button,
the current table is collapsed, leaving only the selected row
with header and the selected linked table is displayed with a
small indent under the row. Thus, opening the following
levels of nesting, you get one row (with a header) of each
table along the path and in full (the current page) of the last
selected linked sub-table. Visually, it looks like a cascade of
tables, where you can see the data from all related records of
different tables that led to the current displayed table. At the
same time, clicking on the heading of the corresponding
table allows you to immediately return to this table,
bypassing the intermediate steps, similar to breadcrumb in
modern file managers, this feature has been implemented as
the basis of the interface of the Electronic University since
2002.

This approach allows a unified description of the table
display structure (a table here also means the result of a
complex query) and simplifies rendering. With the traditional
approach, when all the details of the selected row of the table
are displayed in a separate dialog box, placing information
from a variety of related tables in it at the same time
becomes problematic and leads to either oversaturation of
information on the screen or requires significant additional
time spent on optimizing the placement of all data in a user
friendly manner. In this case, as a rule, the transition to the
next level of detail hides data from previous levels,
complicating the perception of the data chain by which you
got to this point and it is impossible to return to an arbitrary
intermediate level. Thus, cascading tables can significantly
reduce the development time of a complex information
system in which a large amount of interconnected data is
used.

It should also be noted that for each table in the cascading
chain, you can determine the parameters that will be
calculated based on the selected record. These parameters are
available during the formation of related tables and can be
used both in a query to form a modified set of records, and
when forming an available set of actions for each table
record. Also, each table can have not only one form for
editing and one for adding records, but a whole set of forms,
the choice of which depends on the parameters generated at
previous levels. For example, the “Orders” table may have
the “List” sub-table for viewing the general list and the
“Order categories”, which in turn may have the “Students”
sub-table. When get to the “Students” table from a certain
category of order, columns set is defined by the category,
and the form for adding and editing a record also selected by
category. For example, in categories with a change in the
financial form of training, it is displayed in the table and it
can be changed in the form for editing, in the category for
transfer from group to group, there can be only the names of
groups in the table and financial form change shouldn’t be
allowed when editing (the field can simply be absent on the
form). Such a declarative approach to the description of the
interface allows in many cases to not use programming in its
pure form, which also significantly speeds up development
and reduces the number of potential errors.

Initially, the client interface of the system was built using
standard HTML with minimal use of JavaScript. This
approach imposes minimal requirements on client
computers, which is especially important for universities,
where the hardware is usually updated infrequently and it is
quite possible to meet quite old computers with low
productivity.

Today, there is a situation where even the performance of
outdated computers 5-7 years old is enough to run
applications that are completely built with HTML5, and
which give the client application substantially greater
opportunities comparable to native applications. Therefore, it
is advisable to create new projects / modules based on this
technology and its derivatives (Progressive App and so on).
That, however, does not exclude the simultaneous use of
modules built with “old” technologies.

In this case, the role of the client application is reduced to
working with data, and there is almost no need to create an
interface on the server side. When choosing a modern PHP

Advances in Economics, Business and Management Research, volume 95

482

framework, you can recommend Symphony and Laravel.
The choice between them depends on the chosen role of PHP
in the formation of the interface. If basically it is intended to
provide a fast and efficient REST interface to ensure
interaction with the Rich Client, then the optimal choice will
be Symphony, if in addition it is planned to actively form
various data entry forms using PHP - then Laravel. For the
formation of a convenient and efficient interface on the client
side today there are a large number of different frameworks.
Among the most widely used can be called Angular and
React.

As already noted, one of the basic requirements for all
the tools used in the development of an information system
for a university should be simplicity and efficiency, so that a
small team of developers with minimal effort can create a
high quality and convenient product in a short time. A
distinctive feature of the university information system, as
well as most corporate systems, is intensive work with a
database using tables or hierarchical structures. The number
of entries may be hundreds of thousands or more, which
means that these components should support buffering,
infinite scrolling, filtering and sorting, both client-side and
server-side if necessary. It is also important that there are a
large number of various components that provide convenient
data entry, both in the form of forms and inside tables, for
various types of data and with validation support. All these
components must support integration and interaction among
themselves "out of the box." In particular, they should
initially be in the same style. Although these requirements
may seem insignificant, in practice the integration of
disparate components, both according to data, interaction,
and by styles, can be a nontrivial task, which takes more
effort than doing the direct work of creating a functional
module or a specific form / table.

Unfortunately, most modern frameworks concentrate on
the core and simple basic components, trying to make the
most of the capabilities of modern HTML, which was not
originally designed to work with "big data". There are a large
number of additional components that implement complex
work with tables, trees, etc., each of which is designed by
different developers for different tasks. In practice, their
integration can be quite difficult and expensive. Moreover,
the use of various third party libraries, extending the basic
capabilities of the framework, can lead to the application
expanding to significant sizes, resulting in a dramatically
increased load time and requirements for the client’s
computer.

Therefore, to create a university information system, we
chose the ExtJs javascript-based framework for developing
corporate systems. This framework is commercial, but
nevertheless, free versions under the GPL license are
regularly provided, the community of developers exceeds 2
million. The main advantages of this framework are
completeness and integration with support for high level
components for working with "big data". In addition, the
framework includes tools for developing and compiling
production versions. The choice of this framework
significantly reduces the need for finding and studying
additional components and tools for assembling and
compiling - they already exist in this framework and are
integrated with each other. Dozens of different themes are
also supported out of the box, including high contrast for

people with low vision, night and others. At the same time,
it’s not even the number of themes that is important, but the
fact that all components support a single style system, so by
changing the basic styles centrally, we can easily adapt the
appearance of our application to the customer’s requirements
without spending time tweaking the styles of the individual
components. The framework continues to actively develop
and supports almost all versions of modern browsers,
including mobile ones.

Last year, the ExtJs Community Edition (CE) version
was released, which is updated as often as commercial and is
available free of charge if the profit from its use per year
does not exceed $10,000, which is more than suitable for
systems developed by universities for internal use. ExtJs has
been developing for over 12 years and provides support for
all modern browsers. Before the advent of full HTML5
support in all browsers, many complex effects could not be
realized only by styles, especially in all browsers, so
developers had to use more sophisticated methods using
JavaScript. To maintain compatibility, components designed
for browsers without HTML5 support are moved in the
Classic Toolkit (not included in CE), and completely
redesigned and optimized for HTML5 in the Modern
Toolkit. Both toolkits support responsive configurations,
allowing to create one application that adapts both to
desktops, tablets and smartphones (among others, font sizes,
indents, component appearance are automatically adapted),
which allows you to create modern applications with support
for all types of devices with minimal costs.

When developing a project that is constantly evolving
and growing, over time, developers are faced with the fact
that the size of the application becomes so large that the load
time becomes unacceptable, and in some cases even lacks the
resources to perform certain operations [2]. Starting with
ExtJs 6.5, support for downloadable packages has been
added both in the framework itself and in the Sencha Cmd
command line tool. Although the CE tools do not have
commands for working with packages, nevertheless the
projects created with by them are fully compatible with
Sencha Cmd (which is distributed free of charge), therefore
the indicated possibility of compiling a project with packages
intended for dynamic loading fully works for CE projects
[3]. Thus, we can recommend create new projects based on
the Modern Toolkit using Community Edition, and use
Sencha Cmd for development (watch/build) and create
packages. The application itself is only a loader + base
packages used throughout the application, and all application
functionality should be placed in dynamically loadable
packages.

The central component of any information system is the
database. The right choice of the RDBMS can determine the
success of the entire project. Nevertheless, over the past 10
years, most popular RDBMSs have added support for
virtually all the functions necessary to create a high
performance corporate information system (transactions,
support for referential integrity, stored procedures, including
Java, high performance on complex multilevel queries from
many tables and etc.). All RDBMSs already have advanced
administrative tools with support for all major platforms.
Among Open Source database initially most developed
database was PostgreSql, but the lack of easy to use tools for
Windows for a long time made it "exclusive" product for

Advances in Economics, Business and Management Research, volume 95

483

"professionals". FirebirdSql (originally Interbase) although it
did not have as PostgreSql, object capabilities and an
expanded set of built-in functions, initially supported all
major relational database management system functions, and
has a highly developed administrative tool. However,
initially it was a commercial RDBMS, which limited the
number of its users. MySql turned out to be the most popular
and well known, which for a long time did not support high-
level RDBMS functions, had poor performance on complex
queries, but was cross-platform, had a large set of convenient
tools and impressive performance when performing simple
queries on simple unrelated data structures.

To date, the main functionality, different tools and
performance of all these databases are generally comparable.
Based on PostgreSql and MySql, you can build scalable
load-balanced cluster. FirebirdSql does not support the
creation of a load-balanced cluster (planned for the next
release). Based on this, PostgreSql may be the best option for
launching a new project, but if you have MySql or
FirebirdSql specialists, you can safely choose these RDBMS.

Despite the fact that information systems should reduce
the volume of printed documents, nevertheless, such
documents are still not completely excluded. There are a
number of forms of documents required for external
reporting or requiring a signature to confirm authenticity. In
this case, the information system can reduce the number of
print versions by prior agreement and approval in electronic
form, printing only the final version. When using the web
interface, the task of the organization of printing documents
arises. In the Electronic University, an approach that has
already become widespread is used for this, when a
document for printing is formed as a file on the server and
sent to the client, where it is printed using locally installed
programs. In order to simplify this process, most documents
are generated in PDF format, since it is supported on almost
every computer, and the format itself provides the same print
result in different environments.

Although it is possible to simply create a PDF file using
PHP, we consider it more appropriate to use special tools for
design and report generation. One of the most suitable for
this is JasperReports, which is a set of Java libraries for
generating reports based on templates in XML format. One
of the factors determining the choice of JasperReports is the
availability of advanced report designer JasperSoft Studio.
Since both the generator and the designer are written in Java,
they are completely platform independent. We can generate
and develop reports under Windows, and generate them on a
Linux server. JasperReports comes with a large number of
sample applications and reports. Thus, it is sufficient simply
to create an application on their basis, which will integrate
the report generator with the information system. Although
JasperReports is not the only report generator on the market,
and not unique to Java, its advantage over other generators,
such as BIRT, is its extensive support for print reporting
features (pagination). In particular, support for headers and
footers, both for pages, groups and columns, various options
for placing group totals depending on the totals of other
groups and the distance to the bottom of the page and much
more. The big advantage of using Java at the heart of the
report generator is the possibility of using Java expressions
inside the report and the introduction of custom Java classes,
which opens up virtually unlimited possibilities for

generating a report even in the most difficult cases. It also
supports nested reports, cross tables, subtables and diagrams
with the ability to transfer parameters to subordinate data
sources (subreports, crosstables, etc.) and return the
calculated values to the main report. As a data source, you
can use as any DBMS via JDBC, as well as text files, JSON,
XML, XLS, XLSX, ODS. It is also possible to create your
own data providers to access any data source. Although the
main interest for us is the export of the report in PDF format,
the formats DOC, DOCX, XLS, XLSX, ODS, ODT, HTML
are also supported. Thus, it is possible to form a fairly
complex report, available for further editing / filling.

III. EXPERIENCE IN DESIGNING AN INFORMATION SYSTEM

We started the project of our information system
Electronic University, based on the following provisions. It
is necessary to quickly create most basic modules that would
allow the users of our university to begin work on filling the
system with data. In the future, additional modules are added
to the system, expanding its capabilities in accordance with
accepted priorities. The information in the database should
reflect not only the current state of all information objects,
but also the complete history of their changes. In this case,
with the help of certain queries, we can get / calculate the
state of any object at almost any point in time, which is very
important for the work of our university [4].

Traditionally, databases are divided into operational and
analytical. Operational databases process data in real time
and store only the current state. Analytical databases stores
and quickly processes historical information, and receives
information not in real time, but as a result of periodic
synchronization with operational databases, receiving, as a
rule, already aggregated information. It’s often limited to a
specific (reporting) period, for example: day, month, quarter.
The proposed approach allows storing historical information
in an operational database with virtually no loss of
performance, receiving the current state in real time based on
historical data, and performing analytical processing on their
basis. As a result, there is no need to maintain two different
databases. Moreover, analytical processing can be performed
at any time based on current, relevant data, without the need
for additional synchronization.

The basis of the information system is the activity of
people in the educational process [5], [6]. Therefore, the first
basic modules of our system were the “HR department” and
“educational department”.

The basis of the “HR department” is personal data about
people (employees and students) and administrative orders
reflecting documents for any moment of changes in the
position of people in the service or study structure. We have
developed a whole system of orders for the reception,
dismissal and relocation of employees. A similar system of
orders was developed for enrollment, deduction and transfer
of students to the appropriate course, specialty financial
form, etc [7]. Each electronic order is an entry in the
corresponding database table. Any new state of an employee
or student is also an entry in the subtable of the
corresponding order. The duty of the HR department staff is
in time create electronic orders for any changes in the
personnel structure of staff and students. Any other module
of the system that operates with lists of employees or
students, refers to the HR department module and requests

Advances in Economics, Business and Management Research, volume 95

484

the appropriate list for the required date. The system
calculates the status of each person from the list on the basis
of electronic orders. For example, if an order is introduced to
dismiss some teacher or dismiss a student from tomorrow,
then today this person will still be in the list of the relevant
department or study group. Tomorrow, when calculating the
list of this department or study group, the system will
automatically exclude such a person from the list. At the
same time, for any employee or student, you can get
complete data along with the history of his personnel
changes. Similarly, you can get a list of employees or
students for any past or future date. For example, you can
easily get a list of a group of students who graduated last
year. This approach very easily allowed us, for example, to
form a separate module for all university graduates.

The activity of the education department is based on the
curriculum. We have developed an electronic curriculum
structure that matches the patterns approved by the ministry
and the management of our university. The curriculum for
each individual specialty is entered into the database.
Changes and correction of plans for each academic year are
recorded in the form of so-called work plans. On the basis of
work plans, individual curricula for each student are formed
annually in the dean's offices. On the basis of the students'
individual plans, an electronic lesson schedule and session
control for each academic discipline is formed [8].

The next most important module that could already use
data from personnel and the training department is the dean's
module. The structure of the dean's office was made up of
electronic sheets for session control (exams, tests, course
projects) and students' individual plans. The dean's office
receives lists of student groups from the personnel
department module. They are simply calculated on the basis
of orders for the date requested by the dean's office. All
sheets are formed and associated with the individual plans of
students. After making session assessments, they are
automatically displayed in the individual plans of each
particular student. For deans, a general table of the results of
any session can be formed for groups or specialties of
students. In our system, electronic statements record any fact
of passing or re-passing any type of control over academic
disciplines. Therefore, the system can calculate the status of
the results of the session for any student at any time. This
allows deans to see and analyze the dynamics of the results
during any session. A number of additional functions were
added to the dean's module in the process of further
development of the system (for example, lists of debtors
based on the results of sessions, averaged rates of passing
sessions by groups or specialties, generation of data for
printing applications to diplomas, etc.).

The next module is the “Chair”. It allowed the
responsible staff of the department on the basis of the
curriculum to carry out the assignment of disciplines to
teachers, as well as monitor the results of the sessions in all
disciplines of the department. Based on this information, the
function of creating an electronic lesson schedule has been
added to the module of the training department.

Next, we have developed modules "Teacher" and
"Student." For teachers, we have connected the possibility of
individual filling out electronic sheets for the assigned
disciplines formed by the deans. Also, teachers were able to

view the class schedule, the list of disciplines of the
department for any semester, which was formed by scanning
the curricula of all specialties on the basis of the assigned
department. In the future, the teacher module was
significantly expanded by the subsystem of the rating system
of teachers, developed by the staff of our university. Further,
an application developed on the basis of the ExtJs framework
was added to the module, which allows automating the
accumulation of data from the daily activities of each teacher
- an “electronic journal”. The teacher periodically assigns
marks for all types of students' activities. The total grade for
the discipline for each student is automatically calculated in
an electronic journal based on the formulas developed by the
methodological management of the university, according to
the weights of each type of activities. Also, the ability to
form a work program for each discipline assigned to the
teacher has been added to the teacher’s module. All
information from electronic journals or work programs is
available to deans and students.

The student module allows each student logged into the
system to view their personal data, their individual
curriculum, grades in the electronic journal for all classes,
results of sessions, a schedule of classes. In the future, the
function of forming an individual curriculum by the student
himself was added by selecting certain disciplines from the
respective lists offered by the chairs and deans.

In the future, the system can be expanded with additional
modules, thus integrating the activities of new university
services into an electronic information system. To do this,
add the corresponding structure to the database (usually one
or several related tables) and the corresponding module to
form the server and client interface. Usually, the relevant
responsive staff of the university turns to us, which, for
example, want to see and analyze the relevant activities in
the educational process. Naturally, the basis of such
information are the structures developed for the modules of
the HR department, educational department, dean's office
and teachers [9].

IV. CLUSTER CREATION EXPERIENCE

After the introduction of the university management
information system and the completion of the user adaptation
period, a very crucial issue is the reliability of the system and
the high accessibility of users to the system 24/7. We will
assume that the network functions reliably and its throughput
ensures all the needs of the system. Therefore, we will
discuss the main aspects of the software and hardware
architecture of such a system [10].

Experience in operating an information system at our
university showed that when placing the main components of
an information system (web server + database server) on a
single server, there are the following problems that do not
allow for constant round-the-clock access to the system.

Updates of the operating system and particular services.
In this case, the server has to reboot or temporarily suspend
the updated services of the information system. This is not a
big problem if administrators perform updates at a time that
is not critical to the work of users.

Any system sometimes fails, or after a software update,
problems suddenly arise related to the modified parameters
of the updated components. In these cases, the system may

Advances in Economics, Business and Management Research, volume 95

485

be temporarily unavailable, sometimes (depending on the
complexity of the problem) even for a very long period.

After aging hardware component dramatically increases
the probability of failure in the system. This is especially true
for hard drives. In this case, any operating system can begin
to behave quite inadequately and at the same time to discover
the real cause of the problem that has arisen can be quite
difficult. Once we had damage on our hard drives. As a
result, the system continued to work, but the speed of work
fell sharply, the CPU load for no apparent reason increased
to almost 100%. Identify the problem was not easy. The
whole working day of administrators and users of
information system has turned into torture.

For reliable operation of the equipment, it is necessary to
periodically conduct preventive maintenance work. For a
single server, this also means an interruption in the work of
the information system.

And, finally, an elementary excess of server load, when a
single server simply cannot cope with a large number of
users accessing it simultaneously or in a very short period of
time.

The basic recipe for improving the reliability of systems
in such situations is duplication and redundancy of both
hardware and software components. Of course, for reliable
operation of hard drives, it is necessary in such cases to use
RAID arrays of at least level 1 (mirroring). In case of
software failures, the damaged disk automatically leaves the
array and the system sends the corresponding message to the
administrator. In this case, you can safely perform the
restoration work and reinsert the disk into the RAID. If the
disk completely fails, the system may also have a small
interruption (shutting down the server and replacing the
damaged disk with a working one and then inserting it into
the RAID array).

To duplicate the remaining software and hardware
components of the system, today we can find quite
inexpensive cluster solutions. Cluster organization requires at
least two hardware servers and corresponding cluster
management software. At the same time, two or more
physical servers are visible to users as a single system in
terms of requests and obtaining relevant information.

The simplest cluster is a “high availability” cluster, when
all the main services of both servers duplicate each other, but
only one is active. Second server is constantly running and is
in hot standby. Cluster manager monitors all services of the
active server. In case of stopping or out of any service, the
manager automatically switches this service to the backup
server and the system continues to work. In this case, it is
very convenient to do software updates or maintenance
work. To do this, it is enough to remove a separate server
from the cluster, perform all the necessary work on it and
reenter it into the cluster. Then a similar procedure can be
performed with another server in the cluster.

However, for high availability (HA) clusters, the problem
of redistributing the load if it is exceeded resources of the
single server is not solved. In such cases, a so-called load
balancer is added to the cluster. The classic cluster diagram
with a load balancer is shown in the following figure (Fig. 1).

Fig. 1. Classic cluster with load balancer

Here, the load balancer is a separate server that users see
as the “entry point” to the system. Cluster nodes are separate
servers that duplicate various components of the system. A
very important point is the “disk array” that all nodes of the
cluster must “see”. At the same time, each individual node
gets access to the same system information on disk (for
example, a site or database). To improve the reliability of the
system, the load balancer must also be duplicated, that is, a
separate failover cluster can be organized specifically for the
balancer.

Such a solution can be quite expensive, especially if you
have a separate hardware disk array. Can we just get by with
two separate servers and get a failover cluster with load
balancing? It turns out you can.

For our system, if there are two identical servers (by the
way, in general, servers may differ from each other in
hardware configuration) we used the Linux operating system
(CentOS-6.5) and the cluster management software offered
by clusterlabs.com. This solution is open, free and fairly
reliable.

The pacemaker cluster manager is installed on both
cluster nodes, which uses the corosync service to monitor
individual services of the system. Each cluster node is set to
a static real IP address. You also need a third IP address that
users will contact and which will be “floating” between the
individual nodes. The pacemaker manager provides a special
IPAddr resource that is installed on both nodes, but is
activated only on one of them. We also assign the third
“cluster” IP address to this resource. Also, load balancers are
installed on both nodes (for example, HAProxy for a web
server or PgPool-II for a PostgreSQL database server). The
balancer is associated with a cluster IP address. Therefore,
only one balancer will also respond, the second will be in
reserve. In the configuration of each balancer, it is indicated
that the load is divided between the corresponding services
of both nodes. Web services and database services are
installed on both sites with the same configuration. At the
same time, the pacemaker ensures that when the cluster is
raised, these services are activated on both nodes.

Advances in Economics, Business and Management Research, volume 95

486

Further work scheme is quite simple. Let, for example,
the cluster IP address (and therefore the load balancer) are up
on the first node. Then he will answer all users. Upon
receiving a request, the balancer redirects it either to the
service of the first node (to itself), or to the service of the
second node (to static IP addresses), ensuring that the
number of requests is distributed evenly. Since the main
functions of the balancer (frontend) are tracking and
redirection, a separate balancing service is able to handle a
huge number of requests from users. The main load falls on
the end services (backend), between which requests are
redistributed, which means that the load capacity of the
cluster increases at least 2 times. If, for example, one of the
cluster nodes needs to be sent for maintenance, it’s simply
removed from the cluster. At the same time, all services
automatically migrate to another node (along with the cluster
IP address and balancer). Now users will only answer the
second server. The balancer will determine that only services
on itself are “alive” and all requests will be redirected only to
them. In fact, now the cluster works as a single server. But
users will notice almost nothing, especially if the load on the
cluster at this moment is small. We quietly deal with the first
server and after all the work is finished, we load and enter it
into the cluster. The balancer, having discovered the
presence of additional services, starts regular load balancing.

In the same way, another cluster node can be set up. At
the same time, the entire system remains permanently
accessible to users. As you can see, the combination of
redundancy and load balancing allows you to significantly
increase both the performance of the entire information
system and increase its reliability by providing constant
round-the-clock user access with only two separate servers.

The most "fragile" cluster element in our case is the disk
array. We do not have a separate hardware device. Therefore,
a special cluster wide RAID 1 level is organized using the
DRBD service, in which each node has its own mirrored
disk, which is automatically replicated at high speed via
additional gigabit network interfaces with any changes on
any of the disks. Thus, each node has its own copy of the
shared disk storage, which is almost instantly synchronized
with the other node. It is “almost” and is thus a fragile
element.

V. CONCLUSIONS

The described cluster solution has been successfully used
by us for the past 6 years and has shown very high efficiency
and reliability. The inaccessibility of the information system
for users mainly arises due to problems in the internal
network or the network of our provider. Proposed approach
to database structure allows combine analytical and
operational data processing in one database, getting current
state from historical data in real time and allowing analytical
processing at any moment on current relevant data without
any delays for synchronization. Continuous development
over time leads to big application footprint, but proposed set
of tools and dynamic package loading based on CE
combined with traditional Sencha Cmd builds solve this
issue. Instead of proposing PHP as main development
language for web development, we recommend Java based
Jasper Report tools and libraries for report generation.

Integration of PHP with other tools on back end allow
significantly improve overall application performance.
Instead of using expensive hardware cluster solutions
proposed software high availability cluster with load
balancer configuration, that allows to build clusters on
existing hardware with at least two nodes without additional
expenses.

Also this allows gradually scale up the system adding
new nodes without need of full hardware replacement at
once. Thus, 20 years of practical experience in developing an
information system for a university has shown the viability
of the concepts and principles of designing modules of the
system we have adopted. Today, most of the processes of
activity at our university are integrated into the Electronic
University. We can use new modern development tools and
introduce them into our system, adding new modules or
gradually updating existing ones. Our approaches will allow
the following developers, who will replace us in the future,
to continue the development of the system, gradually
expanding it and modernizing it.

REFERENCES

[1] P. Nicolaescu, M. Rosenstengel, M. Derntl, R. Klamma, and
M. Jarke, “Near real-time collaborative modeling for view-based Web
information systems engineering”, Information Systems, vol. 74, p. 1,
pp. 23-39, May 2018

[2] A.S. Lee, M. A. Thomas and R. L. Baskerville, “Going back to basics
in design science: from the information technology artifact to the
information systems artifact”, Information Systems Journal, vol. 25,
iss. 1, 2014. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/isj.12054. Accessed
on: July 10, 2019

[3] Xuequn Wang, Xiaolin Lin & Nick Hajli (2019) Understanding
Software Engineers’ Skill Development in Software Development,
Journal of Computer Information Systems. Doi:
10.1080/08874417.2019.1566805

[4] A.Y. Mazarchuk, C.E. Belovsky, and S.S. Grygoruk, "Structure,
architecture and functionality of modern integrated university
management system", in Actual problems of traing specialists in ICT.
Conference proceedings. - Sumy: Sumy State University, 2013, p. 2,
pp. 22-29

[5] Albert H. Huang, “A Model for Environmentally Sustainable
Information Systems Development”, Journal of Computer
Information Systems, vol. 49, no. 4, pp. 114-121, 2009

[6] Tim Huygh and Steven De Haes “Investigating IT Governance
through the Viable System Model”, Information Systems
Management, vol. 36, no. 2, pp. 168-192, 2019.

[7] S. Henningsson, P.W. Yetton, and P.J. Wynne, “A review of
information system integration in mergers and acquisitions”, Journal
of Information Technology, , vol. 33, no. 4, pp 255–303, 2018.

[8] R. Hadidi, and D. Power, "Management Information Systems (MIS)
Curricula Development, Management, and Delivery - Possible
Sharing Economy Solutions," Journal of the Midwest Association for
Information Systems, vol. 2019, iss. 1, 2019. [Online]. Available:
https://aisel.aisnet.org/jmwais/vol2019/iss1/1. Accessed on: July 19,
2019.

[9] C. Bel'ovsky “Designing a Modern Information System of University
Management: the Experience of Khmelnitsky National University”,
Journal of Research on Trade, Management and Economic
Development, vol.2 , iss. 1, pp. 63-69, 2015.

[10] A.Castellanos, J.Cigarran, and A.García-Serrano, “Formal concept
analysis for topic detection: A clustering quality experimental
analysis”, Information Systems, vol. 66, pp. 24-42, June 2017.

Advances in Economics, Business and Management Research, volume 95

487

https://onlinelibrary.wiley.com/doi/abs/10.1111/isj.12054
https://aisel.aisnet.org/jmwais/vol2019/iss1/1

