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1.  INTRODUCTION

Backus–Naur Form (BNF) can express type-2 grammar (CFG: 
Context-Free Grammar) in the Chomsky hierarchy. Although 
BNF is traditionally used in the syntax definition of programming 
languages, it is possible to describe ambiguous grammar (e.g. dan-
gling-else problem). The ambiguous grammar is not allowed pro-
gramming languages because the compiler would interpret multiple 
languages. Unfortunately, it has been proved that there is no algo-
rithm to judge that the CFG contains ambiguous grammar [1,2].

On the other hand, Parsing Expression Grammar (PEG) introduced 
by Ford [3] is not ambiguous grammar because it has ordered choice 
property. However, the ordered choice causes “prefix capture” [4]. 
“Prefix capture” is a problem of hiding the language to be accepted 
according to the order of choice. Checking syntax files that contain 
such mistakes usually confirms the behavior of the parser gener-
ated by the parser generator. However, in confirming the behavior 
of the parser, it is possible to check only the top level non-terminal 
symbols, and it is necessary to rebuild the parser for each change in 
the syntax files. To support checking the syntax files, this paper pro-
poses Tamias to check the production rules in the PEG syntax files.

2. � PARSING EXPRESSION GRAMMAR  
AND ITS PARSING TECHNIQUE

Parsing expression grammar is a formal grammar, introduced 
by Ford [3]. PEG is deterministic. Therefore, it is suitable for the 
syntax definition of the programming languages, and it was found 

that not only the CFG but also a part of the context-sensitive 
grammar can be expressed.

2.1.  Definition of PEG

A PEG G is defined by the four-tuples:

G V R eN S= ( , , , )Σ

where

	 1.	 VN is a finite set of non-terminal symbols.

	 2.	 Σ is a finite set of terminals (Σ ∩ VN = f).

	 3.	 R is a finite set of production rules.

	 4.	 es is a parsing expression called the start expression.

The production rule is described in the form of “A = e” or “A ← e” 
(where A ∈VN, e is a parsing expression). A parsing expression is 
an instruction for an input string given by users and is described by 
a non-terminal or a terminal symbol. A parsing expression can use 
operators. When the input string s is applied to the parsing expression 
e, e matches the substring of s and indicates “success” or “failure”. s has 
a pointer p representing the reading position. If e indicates success, e 
consumes the prefix of s (i.e. advances p by the length of the substring). 
Also, if e indicates failure, let s applies the next parsing expression.

2.2.  Packrat Parsing Technique

Packrat parsing is one of the parsing techniques that can parse 
PEG [5]. It is a top-down parsing technique proposed by Ford 
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A B S T R AC T
Parsing Expression Grammar (PEG) proposed by Ford has the higher expressive ability than traditional Backus–Naur form, but 
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order of choice. To support checking syntax files including such mistakes, this paper proposes Tamias: a production rules checker 
to support checking the PEG syntax files. Tamias has PEG interpreter which can check production rules of PEG. It can verify the 
behavior of production rules and measure the reach rate of choices.
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Figure 1 | AST for production rule “A = B + / & C D / E*”.

in 2002. Ford solved the problem that the parsing time of PEG 
including a backtracking increases exponentially with linear time 
by memoization of the parsing result.

2.3.  Prefix Capture

“Prefix capture” is a problem of hiding the language to be accepted 
according to the order of choice. For example, the grammar “A = 
(‘+’/‘++’)[a–z]” does not accept the language “++i”. The reason is 
that parsing “[a–z]” fails after parsing “+” of the language “++i”. 
To solve this problem, the order ‘+’ and ‘++’ is reversed. Thus, it is 
difficult to understand prefix capture immediately.

3.  TAMIAS

Tamias is a production rules checker to support checking the syntax 
files for PEG. Tamias has three areas: a text editor area, a list of 
non-terminal symbols, and a production rules check area. Tamias 
parses the production rules entered in the text editor area and con-
verts them into an Abstract Syntax Tree (AST) as shown in Figure 1. 
Tamias has PEG interpreter which can check all choices and any 
non-terminal symbols in production rules according to PEG. Also, 
Tamias can parse without building a parser. A checking method 
using a PEG interpreter can be selected from the production rules 
check area. There are two methods of checking the production rules, 
“production rules verification” and “reach rate measurement”. Both 
methods require one testable symbol and one input string. A test-
able symbol refers to a non-terminal symbol from which a terminal 
symbol can be derived. Tamias recursively searches and extracts 
testable symbols from the grammar described in the text editor area.

3.1.  Production Rules Verification

Production rules verification can confirm whether the input string 
is accepted by the production rule. In one verification, production 
rules verification requires an expected output in addition to one 
testable symbol and one input string. The users can select whether 
the specified input string is accepted or rejected. Tamias displays 
the comparison result between the expected output and the output 
of PEG interpreter. If the expected output and the actual output are 
equal, “Passed” is displayed. Otherwise, “Failed” is displayed.

3.2.  Reach Rate Measurement

Reach rate measurement calculates the rate of success of parsing in 
the ordered choice of the selected production rule. The reach rate is 
obtained by assigning two or more check results in one production 
rule to the following calculating formula (1):

	 Reach rate
Parsing success choices

All choices
[%] = × 100 � (1)

3.3.  PEG Interpreter

Parsing expression grammar interpreter is an interpreter that exe-
cutes parsing for PEG described in text editor in Tamias. PEG 
interpreter requires a testable symbol and an input string. PEG 
interpreter shows the output of the parsing expression after parsing. 
By selecting testable symbols, PEG interpreter can check not only 
top level non-terminal symbols.

4.  IMPLEMENTATION OF PEG INTERPRETER

4.1.  Data used in the PEG Interpreter

•• Production rules:

	 Production rules are rules obtained from non-terminal sym-
bols that can be derived from testable symbols. One produc-
tion rule is expressed as a pair of a non-terminal symbol and a 
parsing expression. The parsing expression is further, as shown 
in Figure 1, divided into ordered choice and sequence for easy 
execution with a PEG interpreter.

•• Input string:

	 Input string has a string and a pointer that expresses a reading 
position.

•• Lookup table:

	 Lookup table stores the reading position of the input string. 
The row of the lookup table corresponds to the parsing process-
ing, and the column corresponds to the reading position of the 
input string.

4.2.  PEG Interpreter Algorithm

We have developed a PEG interpreter based on Packrat pars-
ing technique described in Subsection 2.2 to parse the grammar 
written in the text editor area. As a result, production rules can be 
quickly verified.

The algorithm of the PEG interpreter is shown in Figure 2. It recur-
sively is executed until parsing of the terminal symbol.

5.  EXPERIMENT AND DISCUSSION

We confirm that PEG interpreter can parse correctly by using 
grammar representing addition and multiplication and grammar 
including prefix capture.
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Figure 3 | Result of executing production rules verification.

Figure 4 | Two results of executing reach rate measurement.

Figure 2 | PEG interpreter algorithm.

5.1.  Production Rules Verification

We confirm the production rules verification method by using 
grammar representing the addition and multiplication below:

Sum = Product ‘+’ Product/Product
Product = Value ‘*’ Value/Value
Value = [0–9]

We write the grammar in the text editor area of Tamias and check 
the two languages “1 + 2 * 3” and “*2” in the production rules check 
area. Next, we selected “accept” as the expected output in both lan-
guages. The experimental results are shown in Figure 3.

As shown in Figure 3, the check result of the language “1 + 2 * 3” 
according to the grammar was “Passed”. On the other hand, the 
check result of the language “*2” not conforming to the grammar 
was “Failed”. Therefore, the production rules verification can check 
the grammar correctly.

5.2.  Reach Rate Measurement

We confirm the reach rate measurement method by using grammar 
“A = (‘+’/‘++’)[a–z]” including prefix capture. However, since 
Tamias does not currently support input of parsing subexpres-
sion, we write the following grammar into the text editor area 
of Tamias.

A = Op Id
Op = ‘+’/‘++’
Id = [a–z]

Next, we measure the reach rate of “A” using two languages “+i” and 
“++i”. Finally, we reverse the choices of “Op” and measure the reach 
rate of “A” using the same languages. The experimental results are 
shown in Figure 4.
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As shown in the upper part of Figure 4, the reach rate is not 100% 
in the grammar including prefix capture. In contrast, as shown in 
the lower part of Figure 4, the reach rate is 100% in the grammar 
excluding prefix capture. Therefore, from the formula of reach rate 
[formula (1)]:

Parsing success choices All choices=

it can be proved that prefix capture has not occurred for all input 
strings.

6.  RELATED RESEARCH

Honda et al. [6] proposed a PEG debugger to support development 
of PEG. The PEG debugger has functions such as setting break-
points, executing steps, displaying stack trace, and so on. The PEG 
debugger can check the behavior for one input and the occurrence 
of prefix capture. However, the PEG debugger cannot prove that 
prefix capture has not occurred for any input string.

Mori et al. [7] proposed a parser generator that can composite pars-
ers and implemented its prototype. In the traditional method, when 
part of the syntax in PEG was changed, it was necessary to rebuild 
the corresponding parser. The proposed method can generate a 
parser that can deal with the problem of the traditional method. 
Tamias solves the problem of rebuilding the parser by implement-
ing a PEG interpreter.

7.  CONCLUSION

In this paper, we have proposed Tamias: a production rules checker 
to support checking the syntax files for PEG. Tamias has PEG inter-
preter which can check all choices and any non-terminal symbols 
in production rules according to PEG. Tamias can check the pro-
duction rules and can measure reach rate of choices by using PEG 
interpreter. In the production rules verification, Tamias compares 
the expected output with the output of the PEG interpreter and dis-
plays the result. In the reach rate measurement, Tamias can check 
that the grammar does not contain prefix capture.

The experiment with a grammar representing addition and mul-
tiplication showed that Tamias can compare the expected output 
by users with actual output by PEG interpreter without building a 
parser. The experiment with a grammar including prefix capture 
showed that Tamias can prove that prefix capture has not occurred 
for any input strings by measuring reach rate.

Therefore, Tamias can support checking PEG syntax files. A future 
work is to improve Tamias to support parsing subexpression 
described by parentheses.
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