
Journal of Robotics, Networking and Artificial Life
Vol. 6(2); September (2019), pp. 123–127

DOI: https://doi.org/10.2991/jrnal.k.190828.011; ISSN 2405-9021; eISSN 2352-6386
https://www.atlantis-press.com/journals/jrnal

Research Article

Implementation of Tamias to Check Production Rules
for Parsing Expression Grammar

Tetsuro Katayama1,*, Toshihiro Miyaji1, Yoshihiro Kita2, Hisaaki Yamaba1, Kentaro Aburada1, Naonobu Okazaki1

1Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi,
Miyazaki 889-2192, Japan
2School of Computer Science, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji City, Tokyo 192-0982, Japan

1.  INTRODUCTION

Backus–Naur Form (BNF) can express type-2 grammar (CFG:
Context-Free Grammar) in the Chomsky hierarchy. Although
BNF is traditionally used in the syntax definition of programming
languages, it is possible to describe ambiguous grammar (e.g. dan-
gling-else problem). The ambiguous grammar is not allowed pro-
gramming languages because the compiler would interpret multiple
languages. Unfortunately, it has been proved that there is no algo-
rithm to judge that the CFG contains ambiguous grammar [1,2].

On the other hand, Parsing Expression Grammar (PEG) introduced
by Ford [3] is not ambiguous grammar because it has ordered choice
property. However, the ordered choice causes “prefix capture” [4].
“Prefix capture” is a problem of hiding the language to be accepted
according to the order of choice. Checking syntax files that contain
such mistakes usually confirms the behavior of the parser gener-
ated by the parser generator. However, in confirming the behavior
of the parser, it is possible to check only the top level non-terminal
symbols, and it is necessary to rebuild the parser for each change in
the syntax files. To support checking the syntax files, this paper pro-
poses Tamias to check the production rules in the PEG syntax files.

2. � PARSING EXPRESSION GRAMMAR
AND ITS PARSING TECHNIQUE

Parsing expression grammar is a formal grammar, introduced
by Ford [3]. PEG is deterministic. Therefore, it is suitable for the
syntax definition of the programming languages, and it was found

that not only the CFG but also a part of the context-sensitive
grammar can be expressed.

2.1.  Definition of PEG

A PEG G is defined by the four-tuples:

G V R eN S= (, , ,)Σ

where

	 1.	 VN is a finite set of non-terminal symbols.

	 2.	 Σ is a finite set of terminals (Σ ∩ VN = f).

	 3.	 R is a finite set of production rules.

	 4.	 es is a parsing expression called the start expression.

The production rule is described in the form of “A = e” or “A ← e”
(where A ∈VN, e is a parsing expression). A parsing expression is
an instruction for an input string given by users and is described by
a non-terminal or a terminal symbol. A parsing expression can use
operators. When the input string s is applied to the parsing expression
e, e matches the substring of s and indicates “success” or “failure”. s has
a pointer p representing the reading position. If e indicates success, e
consumes the prefix of s (i.e. advances p by the length of the substring).
Also, if e indicates failure, let s applies the next parsing expression.

2.2.  Packrat Parsing Technique

Packrat parsing is one of the parsing techniques that can parse
PEG [5]. It is a top-down parsing technique proposed by Ford

A RT I C L E I N F O

Article History

Received 15 October 2018
Accepted 22 November 2018

Keywords

Syntax analysis
parser
parsing expression grammar
packrat parsing

A B S T R AC T
Parsing Expression Grammar (PEG) proposed by Ford has the higher expressive ability than traditional Backus–Naur form, but
it also has problems such as prefix capture. “Prefix capture” is a problem of hiding the language to be accepted according to the
order of choice. To support checking syntax files including such mistakes, this paper proposes Tamias: a production rules checker
to support checking the PEG syntax files. Tamias has PEG interpreter which can check production rules of PEG. It can verify the
behavior of production rules and measure the reach rate of choices.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: kat@cs.miyazaki-u.ac.jp

https://doi.org/10.2991/jrnal.k.190828.011
https://www.atlantis-press.com/journals/jrnal
http://creativecommons.org/licenses/by-nc/4.0/
mailto:kat%40cs.miyazaki-u.ac.jp?subject=

124	 T. Katayama et al. / Journal of Robotics, Networking and Artificial Life 6(2) 123–127

Figure 1 | AST for production rule “A = B + / & C D / E*”.

in 2002. Ford solved the problem that the parsing time of PEG
including a backtracking increases exponentially with linear time
by memoization of the parsing result.

2.3.  Prefix Capture

“Prefix capture” is a problem of hiding the language to be accepted
according to the order of choice. For example, the grammar “A =
(‘+’/‘++’)[a–z]” does not accept the language “++i”. The reason is
that parsing “[a–z]” fails after parsing “+” of the language “++i”.
To solve this problem, the order ‘+’ and ‘++’ is reversed. Thus, it is
difficult to understand prefix capture immediately.

3.  TAMIAS

Tamias is a production rules checker to support checking the syntax
files for PEG. Tamias has three areas: a text editor area, a list of
non-terminal symbols, and a production rules check area. Tamias
parses the production rules entered in the text editor area and con-
verts them into an Abstract Syntax Tree (AST) as shown in Figure 1.
Tamias has PEG interpreter which can check all choices and any
non-terminal symbols in production rules according to PEG. Also,
Tamias can parse without building a parser. A checking method
using a PEG interpreter can be selected from the production rules
check area. There are two methods of checking the production rules,
“production rules verification” and “reach rate measurement”. Both
methods require one testable symbol and one input string. A test-
able symbol refers to a non-terminal symbol from which a terminal
symbol can be derived. Tamias recursively searches and extracts
testable symbols from the grammar described in the text editor area.

3.1.  Production Rules Verification

Production rules verification can confirm whether the input string
is accepted by the production rule. In one verification, production
rules verification requires an expected output in addition to one
testable symbol and one input string. The users can select whether
the specified input string is accepted or rejected. Tamias displays
the comparison result between the expected output and the output
of PEG interpreter. If the expected output and the actual output are
equal, “Passed” is displayed. Otherwise, “Failed” is displayed.

3.2.  Reach Rate Measurement

Reach rate measurement calculates the rate of success of parsing in
the ordered choice of the selected production rule. The reach rate is
obtained by assigning two or more check results in one production
rule to the following calculating formula (1):

	 Reach rate
Parsing success choices

All choices
[%] = × 100 � (1)

3.3.  PEG Interpreter

Parsing expression grammar interpreter is an interpreter that exe-
cutes parsing for PEG described in text editor in Tamias. PEG
interpreter requires a testable symbol and an input string. PEG
interpreter shows the output of the parsing expression after parsing.
By selecting testable symbols, PEG interpreter can check not only
top level non-terminal symbols.

4.  IMPLEMENTATION OF PEG INTERPRETER

4.1.  Data used in the PEG Interpreter

•• Production rules:

	 Production rules are rules obtained from non-terminal sym-
bols that can be derived from testable symbols. One produc-
tion rule is expressed as a pair of a non-terminal symbol and a
parsing expression. The parsing expression is further, as shown
in Figure 1, divided into ordered choice and sequence for easy
execution with a PEG interpreter.

•• Input string:

	 Input string has a string and a pointer that expresses a reading
position.

•• Lookup table:

	 Lookup table stores the reading position of the input string.
The row of the lookup table corresponds to the parsing process-
ing, and the column corresponds to the reading position of the
input string.

4.2.  PEG Interpreter Algorithm

We have developed a PEG interpreter based on Packrat pars-
ing technique described in Subsection 2.2 to parse the grammar
written in the text editor area. As a result, production rules can be
quickly verified.

The algorithm of the PEG interpreter is shown in Figure 2. It recur-
sively is executed until parsing of the terminal symbol.

5.  EXPERIMENT AND DISCUSSION

We confirm that PEG interpreter can parse correctly by using
grammar representing addition and multiplication and grammar
including prefix capture.

	 T. Katayama et al. / Journal of Robotics, Networking and Artificial Life 6(2) 123–127	 125

Figure 3 | Result of executing production rules verification.

Figure 4 | Two results of executing reach rate measurement.

Figure 2 | PEG interpreter algorithm.

5.1.  Production Rules Verification

We confirm the production rules verification method by using
grammar representing the addition and multiplication below:

Sum = Product ‘+’ Product/Product
Product = Value ‘*’ Value/Value
Value = [0–9]

We write the grammar in the text editor area of Tamias and check
the two languages “1 + 2 * 3” and “*2” in the production rules check
area. Next, we selected “accept” as the expected output in both lan-
guages. The experimental results are shown in Figure 3.

As shown in Figure 3, the check result of the language “1 + 2 * 3”
according to the grammar was “Passed”. On the other hand, the
check result of the language “*2” not conforming to the grammar
was “Failed”. Therefore, the production rules verification can check
the grammar correctly.

5.2.  Reach Rate Measurement

We confirm the reach rate measurement method by using grammar
“A = (‘+’/‘++’)[a–z]” including prefix capture. However, since
Tamias does not currently support input of parsing subexpres-
sion, we write the following grammar into the text editor area
of Tamias.

A = Op Id
Op = ‘+’/‘++’
Id = [a–z]

Next, we measure the reach rate of “A” using two languages “+i” and
“++i”. Finally, we reverse the choices of “Op” and measure the reach
rate of “A” using the same languages. The experimental results are
shown in Figure 4.

126	 T. Katayama et al. / Journal of Robotics, Networking and Artificial Life 6(2) 123–127

As shown in the upper part of Figure 4, the reach rate is not 100%
in the grammar including prefix capture. In contrast, as shown in
the lower part of Figure 4, the reach rate is 100% in the grammar
excluding prefix capture. Therefore, from the formula of reach rate
[formula (1)]:

Parsing success choices All choices=

it can be proved that prefix capture has not occurred for all input
strings.

6.  RELATED RESEARCH

Honda et al. [6] proposed a PEG debugger to support development
of PEG. The PEG debugger has functions such as setting break-
points, executing steps, displaying stack trace, and so on. The PEG
debugger can check the behavior for one input and the occurrence
of prefix capture. However, the PEG debugger cannot prove that
prefix capture has not occurred for any input string.

Mori et al. [7] proposed a parser generator that can composite pars-
ers and implemented its prototype. In the traditional method, when
part of the syntax in PEG was changed, it was necessary to rebuild
the corresponding parser. The proposed method can generate a
parser that can deal with the problem of the traditional method.
Tamias solves the problem of rebuilding the parser by implement-
ing a PEG interpreter.

7.  CONCLUSION

In this paper, we have proposed Tamias: a production rules checker
to support checking the syntax files for PEG. Tamias has PEG inter-
preter which can check all choices and any non-terminal symbols
in production rules according to PEG. Tamias can check the pro-
duction rules and can measure reach rate of choices by using PEG
interpreter. In the production rules verification, Tamias compares
the expected output with the output of the PEG interpreter and dis-
plays the result. In the reach rate measurement, Tamias can check
that the grammar does not contain prefix capture.

The experiment with a grammar representing addition and mul-
tiplication showed that Tamias can compare the expected output
by users with actual output by PEG interpreter without building a
parser. The experiment with a grammar including prefix capture
showed that Tamias can prove that prefix capture has not occurred
for any input strings by measuring reach rate.

Therefore, Tamias can support checking PEG syntax files. A future
work is to improve Tamias to support parsing subexpression
described by parentheses.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

REFERENCES

[1]	 D.G. Cantor, On the ambiguity problem of Backus systems, J. Assoc.
Comput. Mach. 9 (1962), 477–479.

[2]	 R.W. Floyd, On ambiguity in phrase structure languages,
Commun. ACM 5 (1962), 526–534.

[3]	 B. Ford, Parsing expression grammars: a recognition-based
syntactic foundation, 31st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, ACM, Venice, Italy, 39
(2004), 111–122.

[4]	 R.R. Redziejowski, Parsing expression grammar as a primitive
recursive-descent parser with backtracking, Fundam. Inform.
79 (2007), 513–524.

[5]	 B. Ford, Packrat parsing: simple, powerful, lazy, linear time, func-
tional pearl, Seventh ACM SIGPLAN International Conference
on Functional Programming, ACM, Pittsburgh, PA, USA, 37
(2002), 36–47.

[6]	 S. Honda, K. Kuramitsu, Implementing and evaluating a debug-
ger for supporting development of PEGs. Japan Soc. Softw. Sci.
Technol. 32 (2015), 1–6 (in Japanese).

[7]	 K. Mori, K. Wakita, Composition of parsers for incremental
Parsing Expression Grammars. Japan Soc. Softw. Sci. Technol.
30 (2013), 641–650 (in Japanese).

 Authors Introduction

Tetsuro Katayama

He received the PhD degree in
Engineering from Kyushu University,
Fukuoka, Japan in 1996. From 1996
to 2000 he has been a Research
Associate at the Graduate School of
Information Science, Nara Institute
of Science and Technology, Japan.
Since 2000, he has been an Associate
Professor at Faculty of Engineering,
Miyazaki University, Japan. He
is currently a Professor with the
Faculty of Engineering, University of

Miyazaki, Japan. His research interests include software testing
and quality. He is a member of the IPSJ, IEICE, and JSSST.

Toshihiro Miyaji

He received the Bachelor’s degree
in Engineering (Computer Science
and Systems Engineering) from
University of Miyazaki, Japan in 2018.
He is currently a Master’s student in
Graduate School of Engineering at
the University of Miyazaki, Japan.
His research interests include parsing
and testing for formal languages.

https://doi.org/10.1145/321138.321145
https://doi.org/10.1145/321138.321145
https://doi.org/10.1145/368959.368993
https://doi.org/10.1145/368959.368993
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/583852.581483
https://doi.org/10.1145/583852.581483
https://doi.org/10.1145/583852.581483
https://doi.org/10.1145/583852.581483

	 T. Katayama et al. / Journal of Robotics, Networking and Artificial Life 6(2) 123–127	 127

Yoshihir Kita

He received a PhD degree in Systems
Engineering from University of
Miyazaki, Japan, in 2011. He is cur-
rently an Assistant Professor with the
Computer Science, Tokyo University
of Technology, Japan. His research
interests software testing and bio-
metric authentication.

Kentaro Aburada

He received the B.S., M.S. and
PhD degrees in Computer Science
and System Engineering from the
University of Miyazaki, Japan, in
2003, 2005 and 2009, respectively. He
is currently an Associate Professor
with the Faculty of Engineering,
University of Miyazaki, Japan. His
research interests include com-
puter network and security. He is a
member of IPSJ and IEICE.

Hisaaki Yamaba

He received the B.S. and M.S. degrees
in Chemical Engineering from Tokyo
Institute of Technology, Japan, in
1988 and 1990, respectively, and the
Ph.D. degree in Systems Engineering
from University of Miyazaki, Japan,
in 2011. He is currently an Assistant
Professor with the Faculty of
Engineering, University of Miyazaki,
Japan. His research interests include
network security and user authenti-

cation. He is a member of SICE and SCEJ.

Naonobu Okazaki

He received his B.S., M.S., and
PhD degrees in Electrical and
Communication Engineering from
Tohoku University, Japan, in 1986,
1988 and 1992, respectively. He
joined the Information Technology
Research and Development Center,
Mitsubishi Electric Corporation in
1991. He is currently a Professor
with the Faculty of Engineering,
University of Miyazaki since 2002.
His research interests include mobile

network and network security. He is a member of IPSJ, IEICE
and IEEE.

