
A One-dimensional Dynamic Model of Thin-walled Octagonal Booms 
Considering the Cross-section Deformation 

Ming Deng, Aimin Ji*, Lei Zhang and Hao Wang 
College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China 

*Corresponding author 

Keywords: Thin-walled, One-dimensional dynamic model, Octagonal cross-section, Cross-section 
deformation. 

Abstract. In current studies for dynamic behaviors of the telescopic boom with thin-walled section 
in the aerial work platform, the model was simplified by ignoring the deformation of the cross-section. 
However, as the working length of the boom increases, the section deformation become larger under 
loading. For more accurate dynamic analysis, a one-dimensional dynamic model is developed for 
thin-walled octagonal cross-section boom considering the cross-section deformation in this paper. 
The model was established that the displacement field was formed through the linear superposition 
of a set of deformation modes. The deformation modes were defined based on the contour 
deformations of the cross-section, including out-plane and in-plane, resulted from the unit 
displacements on the discrete nodes. Then the deformation function between adjacent nodes was 
approximated with Hermite curve interpolation. The Hamilton’s principle was used to develop the 
governing equation, and further establish the corresponding finite element implementation. Finally, 
Specific example was also given to verify the accuracy in describing dynamic behaviors of thin-
walled octagonal booms. 

Introduction 

The aerial work platform is used to lift people and instruments to a certain height to carry out 
construction. As the total length of aerial work vehicle’s boom increases, the safety and comfort 
requirements for people on the boom need to be further ensured and improved. For this reason, some 
scholars have optimized the section of the booms and proposed an octagonal section. The boom with 
this cross section has high strength-to-mass ratio, simple manufacturing process and better overall 
rigidity.[1] However, it is difficult to accurately evaluate their performance due to ‘thin walls’ 
comparing with the vast cross-sections. To describe the vibration characteristics of the telescopic 
booms of the aerial work platform, studies have been performed for several decades. Gao et al.[2] 
simplified the telescopic beam system to a cantilever beam with end-concentration parameters and 
take boundary conditions and continuity conditions into consideration when using the classical 
formula of beam vibration. Alexander Pertsch and Oliver Sawodny[3] used the same simplified model 
and performed dynamic system solution with the help of Hamilton’s principle and flexible dynamics 
theory. Pertsch et al.[4] modeled the slender ladder as a Euler-Bernoulli beam with a tip mass to carry 
on studys. Ke and Wang[5] examined the dynamic stability of a functionally graded Timoshenko 
microbeam employing the modified couple stress theory. Then researches on the dynamic behaviors 
of thin-walled beams with cross-sections attracted the attention of experts and scholars and widely 
applied in the engineering. Based on a Timoshenko-Vlasov thin-walled theory, Langseth along with 
Hopperstad[6] investigated the static and dynamic behaviors of square thin-walled aluminum 
extrusions under axial loading. Ren et al.[7] also investigated the distortion of cantilever beams with 
box section under in-plane shear strain.  

A one-dimensional dynamic model is developed for thin-walled booms with octagonal cross-
section to get more accurate dynamic analysis of the boom in this paper. Firstly, the octagonal cross-
section is discretized into eight natural nodes and four intermediate nodes. Then the deformation 
modes are approximated with nodal displacements, which are defined based on the contour 
deformation through a polymorphic interpolation. These contour deformations were resulted by the 
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imposing of unit displacement on each node. Next, with the linear superposition of a set of 
deformation modes, the three-dimensional displacement field is reduced to one-dimensional. With 
the Hamilton’s principle, the governing equation is derived. Finally, through the further interpolation 
of the governing equation, the finite element implementation is obtained. The especial example is 
also presented to validate the one-dimensional dynamic model. 

Cross-section Analysis 

The telescopic boom of the aerial work platform with octagonal cross-section is shown in Fig. 1. 
Extracting the middle side of the boom, then, the displacement of a point on the midline of the cross-
section is defined with the axial u, tangential v and normal w components, which are described as 
positive, along the axis of the natural coordinate system (n, s, z).  

   
Figure 1. Global coordinate system (x, y, z) and natural coordinate system (n, s, z) and discretization of the cross-

sections 

The global coordinate system (x, y, z) is also shown. The cross-section is divided into eight adjacent 
walls connected by 8 natural nodes like nodes 1 and 6. As the length of b and h are much longer than 
a, b and h are both divided into two segments by introducing intermediate nodes like nodes 9 and 10, 
which contribute to describe cross-section deformation. 

Displacement Field  

We can find a total of 12 nodes leading to 48 deformation modes in Fig. 2. The displacement field of 
the cross-section is described by the linear superimposed of a set of basic functions. Each basis 
function of them can reproduce one type of contour deformation mode and compose of two parts: 
node displacement, and interpolation between adjacent nodes. First is derived from the imposing of 
unit displacement on each discrete node. The second part is approximated with interpolation between 
adjacent nodes. The two interpolation functions used in this paper consist of a Lagrange function of 
axial and tangential displacement and a cubic Hermite function of normal components. 

 
 

Figure 2. Basis deformation modes of the thin-walled box girder  cross-section with 8 discretization nodes 
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The deformation modes are all numbered and arranged in the form of matrix with each mode related 
to the associated node (row) and unit displacement (column). These modes are described with basis 
functions, which vary along the coordinates for the tangential, normal and axial components. 

The displacement field on the cross-section midline,࢛ ൌ ሾ࢛ሺ࢙, ,ሻࢠ ࢜ሺ࢙, ,ሻࢠ ࢝ሺ࢙,  is therefore ,܂ሻሿࢠ
approximated as follow:  

     , ,  , ,  ,u s z v s z w s z  1 2 3ψ x ψ x ψ x                                                         (1) 
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The formulas above correspond to a set of N basis functions. Then the three-dimensional 
displacement is defined as[8]: 
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Neglecting structure defect and material uncertainly, the deformation 
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are obtained as follows: 

  2 2 2 2
1 3 2 3 1 2 3   2zz ss zsz n z s n s s z n s z                        x / x / x / x / x / x / / x /ψ ψ ψ ψ ψ ψ ψ          (4) 

 * 2* * * * / 1         =Gzz zz ss ss zz ss zs zs E E vE E v E v E                                                         (5) 

 

2 2

1 3

2 2

2 3

3

0 / / 0 0 /1 /1 0

0 / 0 / 0 /1 /1 0

0 0 / / 0 0 0 / 2 1

n z z E v Ev v

n s s Ev v E v

s z E v

      

      

    

    
    
              

Hx = x    CU = U      =  U = ε = σ = E

 

   



     (6) 

where G, E and v denote the shear modulus, material Young’s modulus and Poisson’s ratio. 

Governing Equation  

The octagonal boom energy compositions are indispensable for the use of Hamilton’s principle, 
including the strain energy, the potential energy, and the kinetic energy, reading:  

  1 1
    / /

2 2

T T T

PV V V
U dV U dAdz T t t dV         ε σ U p U U                                               (7) 

where A, V and L are the section area, the volume and the length of the telescopic boom; p and ρ 
represent material density and the loading vector. To deduce the governing equation, Hamilton’s 
principle is applied as 

2
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1
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where ࢇࡸ ൌ ࢀ െ ࢁ െ  .is the Lagrangian, and t1 and t2 are the first and last times. Substituting Eq ࡼࢁ
(3)-(7) into (8) yields the governing equation of the octagonal boom, reading [9]: 

2 2/ 0T T T T T T T
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t dAdz dAdz dAdz         x H H x x H c Echx x H p

                                                
(9) 

Finite Element Implementation 

The quadratic functions are used to simulation the displacement with the second-order partial 
derivative in Eq. (8). 

       2 2 2 2 2 2
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where X and N are the vector of nodal displacement and the matrix shape function; l is the length of 
each element.  

Substituting Eq. (10) into (9) leads to the finite element formulation 

2 2/ t   m x kx f                                                                                                                       (11) 

,  ,  T T T T T T T

L A L A L A
dAdz dAdz dAdz       m N H H k N H c EcH f N H p                                                         (12) 

where m, k and f are the mass matrix, the stiffness matrix and the element force matrix respectively. 

Numerical Examples  

To validate the model, numerical examples are taken into account. Considering one boom, specific 
parameters are set as L = 4.2 m, h = 0.34 m, b = 0.28 m, a = 0.1 m, t = 0.03 m, E = 200GPa, ν = 0.3, 
ρ = 7830 Kg/m3. 

Case 1: A Fixed-free End Condition 

After checking of convergence of the proposed finite element, it is used to model a fixed-free boom 
for free vibration analysis considering actual working conditions of aerial work platform.  

Table 1. Comparison of The First 8 Natural Frequencies of Cantilever Octagonal Boom 

Mode Present mode [Hz] ANSYS shell [Hz] Relative errors [%] 
1st 24.244 24.221 0.09% 
2nd 30.407 30.349 0.19% 
3rd 133.480 133.740 -0.19% 
4th 159.270 166.510 -4.34% 
5th 166.470 167.910 -0.85% 
6th 172.490 172.390 0.06% 
7th 301.030 301.210 -0.06% 
8th 307.890 312.800 1.56% 

As shown in the Table 1, the first 8 natural frequencies obtained from the model are compared with 
the results from ANSYS shell theory. The first 8 natural frequencies of the cantilevered octagonal 
booms model are calculated with 48 over the cross-section(A) and 60 elements along the length(L) , 
while the ANSYS model is directly discretized into 1080 Shell 181 elements. We can find that the 
relative errors of natural frequencies between the present model and ANSYS shell theory is controlled 
within 5%.  

To further validate the versatility, Fig. 3 indicates the comparison of the modal shapes from 1th to 
8th to show the accuracy of describing three-dimensional behaviors. 
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Figure 3. Comparison of modal shapes (the light ones) of the cantilevered octagonal booms with ANSYS shell model. 

Case 2: Simplification of the Model 

Fig. 2 shows that 48 modes are employed to construct a one-dimensional model of the octagonal 
booms. This may lead our research to be cumbersome and ineffective. To simply the model and 
reduce the number of the generalized coordinates, the absolute values of the amplitudes of the modes 
shape from 1st to 8th are shown in Fig. 4. From these eight figures we can find only the generalized 
coordinates of 13th to 20th, 25th to 32th and 37th to 44th contribute to the change of the boom’s mode 
shapes. It is worth mentioning that these 32 generalized coordinates are caused by the application of 
unit displacement to the natural nodes of the in-plane, including the tangential(v), normal(w) and 
rotation(θ) components. Thus, it is reasonable to obtain a reduced set of generalized coordinates 
without affecting the accuracy of reproducing the three-dimensional deformation of thin-walled 
octagonal booms. 

 
Figure 4. Amplitudes of basis deformations of the first to eighth modals of the cantilevered thin-walled octagonal 

booms 

Summary 

In this paper, the deformation of the cross-section is taken into consideration to improve the accuracy 
of describing the vibration behaviors of aerial work platform. In the process, the cross-section is 
splited to the intermediate and natural nodes. Then section deformation modes are considered to 
approximate interpolations of nodal displacements through a polymorphic interpolation. Then the 
octagonal boom displacement field is approximated by the linear superposition of deformation modes. 
Applying Hamilton’s principle, the governing differential equation is derived, and then interpolated 
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to establish the corresponding finite element implementation. Specific examples showed that the 
present model is consistent with three-dimensional models with less computation and is of better 
accessibility. Besides, the examples also show that different generalized coordinates vary greatly in 
participating the structure vibration mode. Thus, furthermore studies will be invested in the future to 
reduce the number of generalized coordinates but without affecting the accuracy of the one-
dimensional model. 
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