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Abstract

In this work, we use a Mamdani fuzzy con-
troller based on fuzzy rules that represent
position and velocity of a particle for a free
mechanical vibration model. Here, we focus
on three major cases: the harmonic oscilla-
tor, the damped vibration, and the negative
damping case. This study combines classical
numerical methods for ordinary differential
equations and fuzzy rule-based systems to
describe the dynamical interaction between
the position and velocity. In this regard, we
propose a p-fuzzy system to study this phe-
nomenon. Computational simulations reveal
that the solution of the proposed p-fuzzy sys-
tem is similar to the corresponding analytic
solution of the classical free mechanical vi-
bration problems.

Keywords: Free mechanical vibrations,
fuzzy numbers, Mamdani fuzzy controller, p-
fuzzy systems.

1 Introduction

The study of vibrations is fundamental to comprehend
several physical phenomena and to design many struc-
tures such as computational design of engines, planes
or cars [5]. Considering the vibrations in the projects
of such structures helps to reduce costs and predict
possible problems related to noise or attrition. More-
over, for many applications are required approxima-
tions for the natural frequencies and damping ratios
[3].

In general, free mechanical vibrations models are given
by differential equations that describes the dynamics
of a particle restricted to physical conditions in a mass-
spring-damper system. Obtaining analytic solutions to
these problems requires prior experience and adequate
training in some specific area of knowledge, such as

differential and integral equation theory. However, if
the expert has an idea how the dynamics works in
terms of rules then she/he can simulate the dynamical
behavior of the underlying phenomenon by means of
a p-fuzzy system [2].

A p-fuzzy system can be viewed as a dynamic sys-
tem whose the function that describes the evolution
rule is given by a fuzzy rule-based systems (FRBS)
[2]. P -fuzzy systems were successfully applied to esti-
mate solutions to economic and biomathematic prob-
lems [10, 9].

In this work, we build a fuzzy Mamdani controller
based on fuzzy rules that describe the behavior of the
phase diagram of differential equations associated with
free mechanical vibrations. Based on the proposed
FRBS, we design p-fuzzy systems to model three free
mechanical vibrations problems. Specifically, we fo-
cus on the dynamics of harmonic oscillators, damped
vibrations, and negative damping cases.

2 Mathematical Background

2.1 Free mechanical vibrations

In a mass-spring-damper system, the differential equa-
tion is constructed using two physic laws. The first is
the Hooke’s law for linear springs and the Newton’s
second law of motion [6]. These systems are usually
represented in diagrams as in Fig. 1, where x(t) rep-
resent the position of a particle at the time t. Con-
sequently, we note that x′(t) and x′′(t) represent the
velocity and acceleration of this particle in a classical
mechanical vibration problem.

Here, we consider the following linear and homoge-
neous initial value problem (IVP) given by [8],

mx′′(t) + bx′(t) + kx(t) = 0 ,

x(0) = x0 ,

x′(0) = y0 .

(1)
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Figure 1: Free mechanical vibration diagram.

where m is the mass of a particle, b is the damping
coefficient, and k is the proportionality constant (stiff-
ness) of the spring [8].

The analytic solution of (1) is given by [8]:

x(t) = e−βt (C1cos(ωt) + C2sin(ωt)) (2)

where C1,C2 are constant related with the initial con-
ditions, β = − b

2m is related to the amplitude decay,

and ω =
√
4mk−b2
2m is known as the damped natural

frequency. For the undamped motion, that is, the
case where b = 0, the natural frequency is given by

ω0 =
√

k
m .

A special case of above differential equation occurs
when the damping coefficient is negative, i.e., b < 0,
which means that the damping term imparts energy
to the system [8]. In this case, we obtain unstable
solutions with oscillations of growing amplitudes [8].
Under certain conditions, some solid structures could
suffer the effect of negative damping. Consequently,
the amplitude response may increase, leading to struc-
tural instabilities which might cause serious damage
[1].

2.2 Fuzzy sets and p-fuzzy systems

A fuzzy subset of A of an universal set X is character-
ized by a function ϕA : X → [0, 1] called membership
function of A such that ϕA(x) represents the member-
ship degree of x in A [11]. For notation convenience,
we also use the symbol A(x) instead of ϕA(x).

Here, we focus on a particular class of fuzzy sets, called
fuzzy numbers. In particular, a trapezoidal fuzzy
number A, denoted by a quadruple (a;m;n; b), with
a,m, n, b ∈ R and a ≤ m ≤ n ≤ b, consists of a fuzzy

number whose membership function is given by [2]

A(x) =



x−a
m−a , if x ∈ [a,m),

1 , if x ∈ [m,n],

b−x
b−n , if x ∈ (n, b],

0 , otherwise.

(3)

In the case where m = n, we speak of triangular fuzzy
number and it is denoted by the symbol (a;m; b) in-
stead of (a;m;m; b) [2].

Fuzzy Rule-Based Systems (FRBS) have four compo-
nents: a fuzzification module, a fuzzy rule base, a fuzzy
inference method, and a defuzzification module [2, 7].

In the fuzzification module, real-valued inputs are
translated into fuzzy numbers of their respective uni-
verses. Expert knowledge plays an important role to
build the membership functions for each fuzzy set as-
sociated with the inputs [7].

Here, we focus on a fuzzy rule base given by a collec-
tion of fuzzy conditional rules of the form “if x1 is Ai1
and x2 is Ai2 then y is Bi”, for i = 1, . . . , r, where r is
the number of rules, and Aij and Bi, for i = 1, . . . , r
and j = 1, 2, are fuzzy sets that represent linguistic
(or fuzzy) terms and are called antecedents and con-
sequent of each fuzzy rule, respectively [2].

We use the Mamdani inference with canonical inclu-
sion fuzzifier method. In this case, for a given input
(x1, x2), the Mamdani inference produces as output a
fuzzy set B given, ∀y ∈ R, by [2]:

B(y) = max
i=1,...,r

min{Ai1(x1), Ai2(x2), Bi(y)}. (4)

Finally, the defuzzification module consist of a process
that allows us to represent a fuzzy set by a real value.
In this manuscript, we adopt the centroid scheme [7].

A partially fuzzy system or, for short, a p-fuzzy sys-
tem, is a dynamical system generated by ordinary dif-
ferential equations (ODEs) where the direction field is
given by FRBS based on an a priori partial knowl-
edge of the direction field. Furthermore, the state
variables and their variations are considered linguistic.
Thus, the state variables are correlated to their varia-
tions by means of fuzzy rules where the state variables
are the input and the variations are outputs. Since
in such methodologies, processes of defuzzification are
expected, the final solution of a p-fuzzy system is de-
terministic [2]. Here, we use p-fuzzy systems to deal
with autonomous initial value problems (IVPs) of the
form 

x′(t) = f(x, y) ,

y′(t) = g(x, y) ,

x(0) = x0 ,

y(0) = y0 .

(5)
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where the functions f and g are partially known. To
obtain the solution of the IVP (5) via a p-fuzzy system
or at least an approximation to it, without knowing
the field f and g explicitly, we take advantage of the
qualitative information available to design a fuzzy rule
base which represent the properties that characterize
the phenomenon [4]. Thus, the solution (x(t), y(t)) of
(5) can be estimated by a sequence (Xn, Yn) obtained
by applying a numerical methods to the associated p-
fuzzy system , such as the Euler or Runge Kutta meth-
ods [2]. In this work, we use the Euler method. More
precisely, we use the following formulas:

Xn+1 = Xn + h f(Xn, Yn) ,

Yn+1 = Yn + h g(Xn, Yn) ,
(6)

where h is the step (in time) and f(Xn, Yn) and
g(Xn, Yn) are the variations rates estimated by the
proposed FRBSs. Thus, we can rewrite (5) as follows:

x′(t) = FRBSf (x, y) ,

y′(t) = FRBSg(x, y) ,

x(0) = x0 ,

y(0) = y0 .

(7)

Note that, in general, a Mamdani fuzzy controller
yields a function f∗r (and g∗r ) where r denotes the num-
ber of rules in the fuzzy rule base. Thus, it seems rea-
sonable to assume that the adjusted function f∗r (and
g∗r ) approximates f (and g) when the number of data
r increases [4].

3 Solutions of Free Mechanical
Vibrations Problems via P-Fuzzy
Systems

Using the following changing of variables x1 = x(t)
and x2 = x′(t) in IVP (1), we obtain a first order
linear and autonomous system given by:

x′1 = x2,

x′2 = − k
mx1 −

b
mx2 ,

x1(0) = x0 ,

x2(0) = y0 .

(8)

Since the system (8) can be viewed as particular case
of the system (5), we can obtain a numerical solu-
tion for (8) by means of an associated p-fuzzy system.
In the next subsections, we present the corresponding
FRBSs and some computational simulations for free
mechanical vibrations models.

3.1 Fuzzy rule bases for free mechanical
vibrations models

Recall that in a p-fuzzy system, the vector fields are
given by FRBSs (see in Subsection 2.2). Here, we em-
ploy a p-fuzzy system of the form (7) that we use
to estimate the solution of the system (8). The an-
tecedents and consequents of the corresponding fuzzy
rules are linguistic terms associated respectively with
the input and output variabless. Here we use trape-
zoidal or triangular fuzzy numbers to represent this
linguistic terms.

For the free mechanical vibration model (8), both in-
put variables X and Y (position and velocity of a
particle, respectively) can be classified as “left” (A1

and B1), “middle left” (A2 and B2), “middle right”
(A3 and B3), and “right” (A4 and B4). Moreover, in
the output variables, the variations rates of the input
variables dX

dt and dY
dt , can assume the fuzzy linguistic

terms “high negative” (N1 and M1), “low negative”
(N2 and M2), “low positive” (N3 and M3), and “high
positive” (N4 and M4). Fig. 2 and Fig. 3 illustrate the
form and order in which the membership functions Ai
and Ni, i = 1, . . . , 4, are adjusted. The membership
function of Bi and Mi are adjusted in a similar form
of Ai and Ni, for i = 1, . . . , 4, respectively.
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Figure 2: Antecedents of position (X) for the free me-
chanical vibration p-fuzzy model.

We elaborate a fuzzy rule-based system based on the
differential equations for the free mechanical vibration
model given as in (8). Here, we consider three cases:
the harmonic oscillator (b = 0), the damper vibra-
tion (b > 0), and negative damping (b < 0). Roughly
speaking, our strategy to obtain fuzzy rules in all cases
is to analyze the variation rates of one variable con-
sidering the other variable fixed. For example, in the
harmonic oscillator case (b = 0), the variations rates
x′1 and x′2 depend on the values of x2 and −x1, respec-
tively. Similar considerations can be established with
respect to other two damping cases (b 6= 0). These
assumptions can be translated into a set of fuzzy rules
that play the role of a direction field.
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Figure 3: Consequent of position (dXdt ) for the free
mechanical vibration p-fuzzy model.

Fig. 4, Fig. 5, and Fig. 6 exhibit the graphical repre-
sentations of the obtained fuzzy rule base where the
arrows represent the direction and magnitude of the
variation rates, that is, the arrow on the right/up
(left/down) side indicates positive (negative) varia-
tions and the length of the arrow indicates the magni-
tude of these variations.

Figure 4: Graphic representation of the fuzzy rules as
direction vectors for harmonic oscillator case (b = 0).

Fuzzy rule bases for free mechanical vibration mod-
els are established from the graphical interpretation of
Fig. 4, Fig. 5, and Fig. 6 for all cases. Here, we use
the symbols Ẋ = dX

dt and Ẏ = dY
dt for the variational

rates in the fuzzy rules.

Firstly, we construct a fuzzy rule base for the harmonic
oscillator case (b = 0) consisting of 16 fuzzy rules of
the type:

r1: If X is A1 and Y is B1 then Ẋ is N1 and Ẏ is M4.

r2: If X is A2 and Y is B1 then Ẋ is N1 and Ẏ is M3.
...

...
...

r8: If X is A4 and Y is B2 then Ẋ is N2 and Ẏ is M1.

r9: If X is A1 and Y is B3 then Ẋ is N3 and Ẏ is M4.

Figure 5: Graphic representation of the fuzzy rules as
direction vectors for damped vibration case (b > 0).

Figure 6: Graphic representation of the fuzzy rules as
direction vectors for negative damping case (b < 0).

...
...

...

r15: If X is A3 and Y is B4 then Ẋ is N4 and Ẏ is M2.

r16: If X is A4 and Y is B4 then Ẋ is N4 and Ẏ is M1.

Secondly, using Figure 5, we construct a fuzzy rule
base for the damped case where b > 0, containing 16
fuzzy rules of the type:

r1: If X is A1 and Y is B1 then Ẋ is N1 and Ẏ is M4.

r2: If X is A2 and Y is B1 then Ẋ is N1 and Ẏ is M4.

...
...

...

r8: If X is A4 and Y is B2 then Ẋ is N2 and Ẏ is M2.

r9: If X is A1 and Y is B3 then Ẋ is N3 and Ẏ is M3.

...
...

...

r15: If X is A3 and Y is B4 then Ẋ is N4 and Ẏ is M1.

r16: If X is A4 and Y is B4 then Ẋ is N4 and Ẏ is M1.
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Finally, we construct a fuzzy rule base with 16 fuzzy
rules for the negative damping case where b < 0. These
fuzzy rules are graphically represented in Fig. 6. Next,
we present some examples of the obtained fuzzy rules:

r1: If X is A1 and Y is B1 then Ẋ is N1 and Ẏ is M3.

r2: If X is A2 and Y is B1 then Ẋ is N1 and Ẏ is M2.

...
...

...

r8: If X is A4 and Y is B2 then Ẋ is N2 and Ẏ is M1.

r9: If X is A1 and Y is B3 then Ẋ is N3 and Ẏ is M4.

...
...

...

r15: If X is A3 and Y is B4 then Ẋ is N4 and Ẏ is M3.

r16: If X is A4 and Y is B4 then Ẋ is N4 and Ẏ is M2.

Once the fuzzy rule bases are established, we use the
Mamdani method (in the inference module) and the
centroid as the defuzzification method. Fig. 7 presents
the scheme of the FRBS used in this work.

Figure 7: Fuzzy rule-based system for the free mechan-
ical vibrations p-fuzzy models.

3.2 Results

We use the proposed p-fuzzy system to simulate the
dynamic behavior of the position variable x1(t) = x(t).
We compare the obtained solution with the analytic
solution given by Eq. (2) for the corresponding free
mechanical vibration problem.

3.2.1 Harmonic oscillator solution via
p-fuzzy system

In this first case, we consider the following IVP in
t ∈ [0, π2 ] given by

1
8x
′′(t) + 16x(t) = 0 ,

x(0) = 1
2 ,

x′(0) =
√

2 .

(9)

Fig. 8 presents both p-fuzzy and analytic solutions of
system (9) that represents a harmonic oscillator. For
this case, with b = 0, we can observe that the two
solutions are qualitative and quantitative similar.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.6

-0.4

-0.2

0
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0.6

P-fuzzy Solution
Analytic Solution

Figure 8: P -fuzzy and analytic solutions of IVP (9).

3.2.2 Damped vibrations solution via p-fuzzy
system

In this second case, we consider the following IVP in
t ∈ [0, 25] given by


3x′′(t) + x′(t) + 2x(t) = 0 ,

x(0) = 1 ,

x′(0) = 0 .

(10)

Fig. 9 presents both p-fuzzy and analytic solutions of
system (10) which describes a damped vibration with
b = 1. For this case, we can observe that the both
solutions are qualitative and quantitative similar.
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P-fuzzy Solution
Analytic Solution

Figure 9: P -fuzzy and analytic solutions of IVP (10).
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3.2.3 Negative damping solution via p-fuzzy
system

In this third case, we consider the following IVP in
t ∈ [0, 15] given by

3x′′(t)− x′(t) + 2x(t) = 0 ,

x(0) = 1 ,

x′(0) = 0 .

(11)

Fig. 10 exhibits both p-fuzzy and analytic solutions of
system (11). For this case, with b = −1, we can note
that both solutions are qualitative and quantitative
similar, including unstable negative damping behavior.
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Figure 10: P -fuzzy and analytic solutions of IVP (11).

4 Concluding Remarks

The main contribution of this work is to present a
p-fuzzy system that model free mechanical vibration
problems.

Solutions obtained by our approach are (quantitative
and qualitative) similar to the ones produced using dif-
ferential equation theory. The solution yielded for the
harmonic oscillator case is presented in Fig. 8. The
solution for the a damped vibrations problem is pre-
sented in Fig. 9. It is worth noting that the p-fuzzy
system was capable to capture the nature of the nega-
tive damping case, producing a unstable solution sim-
ilar to the analytic solution as we can see in Fig. 10.

In addition, note that our proposal can be used by any
person who is somehow related to physics and does not
require previous experience with differential equations.

Finally, it is worth noting that the use of the p-fuzzy
system is based on universal approximation capability,
which means that it is a good estimator of theoretical

problems.
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