
An approach to vocabulary expansion for neural network language
model by means of hierarchical clustering

Dudarin Pavel and Yarushkina Nadezhda
Informational Systems, Faculty of Informational Systems and Technology

Ulyanovsk State Technical University, Severny Venetz st.32
p.dudarin@ulstu.ru, jng@ulstu.ru

Abstract

Neural network language models become the
main tool to solve tasks in NLP field. These
models already have shown state-of-the-art
results in classification, translation, named
entity recognition and so on. Pre-trained
models are distributed freely in the internet,
and could be reused with help of transfer
learning techniques. However, the real life
problem’s domain could differ from the ori-
gin domain which the network was trained.
In this paper an approach to vocabulary ex-
pansion for neural network language model
by means of hierarchical clustering is pro-
posed. This technique allows to adopt pre-
rained language model to a different domain.
Firstly, tokens from the language model are
hierarchically clustered. Then new words
from problem’s domain are matched to the
tokens accordingly obtained hierarchy. In the
experimental part the proposed approach is
demonstrated on the slightly modified ULM-
FiT language model.

Keywords: NLP, Language model, Neural
Network, RNN, ULMFiT, Clustering, Fuzzy
graph clustering, Word-to-vec

1 Introduction

Natural language processing (NLP) nowadays is a
quickly developing area. NLP finds more and more
new fields of application, for example in software anal-
ysis [16] and nutrition production [19]. Traditionally
NLP tasks deal with long text collected in data sets,
there statistic based method could be used. However,
with the internet and social media development text
tend to become shorter and shorter. A few years ago
short text analysis was almost impossible, and only
few papers were dedicated to study this problem [5, 3].

Nowadays, processing short texts is becoming a trend
[7] in information retrieval [14]. Since the text has
rarely external information, it is more challenging than
document [20]. In order to solve this task different
clustering techniques are used [3, 22]. Each cluster-
ing procedure needs a similarity measure [17], and the
most used technique to obtain this measure in NLP
tasks is word2vec [15].

Although the word embedding approach has shown
good efficiency [2], lately an approach of construction
neural network language models get a leading position
in NLP benchmarks [21], almost every state-of-the-art
results are obtaining by means of neural networks. But
the process of neural network learning is quite long and
computationally expensive.

Besides there are a lot of task in specific domains where
there is no opportunity to teach special neural net-
work. In this case the idea of transfer learning [11]
looks very promising. Authors of ULMFiT propose
using their universal architecture to train language
model and then to tune them for specific NLP tasks.
But in ULMFiT the tokens list is limited, authors rec-
ommend using up to 60 000 tokens. And as long as
different word forms are treated as different tokens,
ULMFiT’s vocabulary is even more limited. On the
contrary, modern word embedding models [12] have
250-400 thousand of lemmas. Word embedding tech-
nique being combined with thesaurus could demon-
strate even higher performance[13]. In case of Russian
language with its huge possible word forms language
model approach allows to construct general purpose
neural networks like casual phases generator only. And
does not allow to include specific terms, neologism,
swear words, rare used words and so on. In ELMo
[4] and BERT [6] words are split into parts and then
fed to neural network. But these models take a lot
of calculation resources and could be afforded by huge
corporations like Google. There are some multilingual
pre-trained ELMo [10] and BERT models. But as for
now they demonstrate very poor performance for Rus-

11th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2019)

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Atlantis Studies in Uncertainty Modelling, volume 1

614

sian language. For example ’wish you a Merry Christ-
mas’ really common phrase without double meaning
could not be continued correctly by available models.

In this paper an approach to customization of pre-
trained neural network language model to specific do-
main is proposed. This technique allows to process
word outside the tokens list and thus to get benefits
from transfer learning.

The rest of this paper is organized as follows. In sec-
tion 2 the detailed technique description is presented.
Section 3 shows an experimental results. And section
4 concludes the paper.

2 Language Model Customization

General idea of proposed approach is to add an extra
layer of words pre-processing before the neural network
language model (Figure 1).

Figure 1: Additional pre-processing layer

This layer consists of two part: hierarchical classifier
that groups words from neural network vocabulary and
matching algorithm that matches new words to linear
combination of words from vocabulary new word =
weight1 ∗ word1 + ...+ weightN ∗ wordN .

2.1 Tokens Hierarchical Clustering

The first layer of neural network language model is
an embedding layer which transforms one-hot encoded
vectors into n-dimensional vectors of the embedding
vectors space. Each coordinate of one-hot vector ref-
erences to a word in a vocabulary of language model.

Lets define Wlm - a set of words included in tokens
list of neural network. The task is to organize words
from tokens list into a tree, where leaf nodes contain
single word wi ∈ Wlm, and other nodes are clusters
that include all the words below in the hierarchy wkj ∈
Ck ⊂Wlm. |Wlm| = N .

This task could be completed by performing procedure
which is a hierarchical modification[9] of ε−clustering
[18, 1]. This procedure needs to be provided with
a similarity measure for objects, let denote it as µ.
There are a lot of pre-trained word embedding mod-
els for each language. This model provide a vec-
tor for each word and than the Euclidean or Man-
hattan distance could be calculated. In this paper

the ’ruwikiruscorpora upos skipgram 300 2 2019’ 1

model was used.

One of the main advantages of graph based approach
is its ability to be interpreted by human. The classifier
could be easily modified by experts to add information
domain specifics [8]. At least all the words that are not
from domain vocabulary could be cut of the classifier.
On the Figure 2 a part of sample classifier is shown.
This sub-tree consist of two main branches dedicated
to software and hardware installation process. Each
level has a number (ε) that indicates the step of hi-
erarchical clustering procedure when these level was
obtained and it means that all the branches on this
level has mutual similarity less than ε.

Figure 2: Hierarchical clustering sub-tree sample

Thus a hierarchical classifier with additional layer in-
formation could be obtained.

2.2 Specific Domain Words Matching

The task of the matching step is to construct vectors
for words from specific domain in order they could
be processed by pre-trained neural network. These
vectors should have N components, where N equals to
amount of inputs of neural network N = |Wlm| .

For each word w there are two possible cases. The
word is already included into language model tokens
list w = wi ∈ Wlm and in this case corresponding
vector v = (0, 0, ..., 1, 0, ..., 0), where component with 1
has i index. Another case when word w 6∈Wlm. In this
case there are some possible strategies to get a vector
form. The first one, and the most evident, is to replace
a given word with the most similar one according to
similarity measure µ. Means, to choose i, µ(w,wi) =
max(w,wj)∀j ∈ [1, N]. This strategy does not require
any classifier, but it is not efficient when there are some
equidistant words in the tokens list, especially when
they are significantly differ in their semantic meaning.
In order to have an alternative way of matching, in the
experimental part the first strategy also included.

In general case proposed technique is following:

1. If max(w,wj) = µ(w,wi) > 0, 92 ∀j ∈ [1, N] then

1The model was downloaded from open resource https :
//rusvectores.org/ru/models

2The value ε = 0, 9 was obtained by experimental way

615

v = (0, 0, ..., 1, 0, ..., 0), with 1 on the i-th place.

2. Start with ε = 0, 9 and find all the words Wnn =
{wj |µ(w,wj) >= ε, j ∈ [1, N]}. If |Wnn| = 0 then
set ε = ε− δε. In this paper δε = 0, 05, according
to hierarchical clustering procedure specifics.

3. Get all the clusters Cnn = {cj | ∃i wi ∈ Wnn} i.e.
all the parent nodes in classifier for leaf nodes in
Wnn.

4. Start with layer l = 0, 9 and get all nodes from
this layer Ll = {cj | cj ∈ Cnn & layer(cj) = l}. If
|Ll| > 2 3 then change l = l + δl and move to
the previous step. In this paper δl has been cho-
sen as 0,05, according to hierarchical clustering
procedure specifics.

5. For each node (cluster) define a weight according
the distance to the cluster center. weight =
µ(w, cluster centeri) / |

∑
j∈Ll

µ(w, cluster centerj)|

6. For each child node define weight the same as at
the previous step and multiply to parent’s weight
weight = parentweight ∗ childrenweight.

7. Stop when all the leaf nodes get weights.
All the other weights are set to 0
weighti = 0∀ i 6∈ Wnn As a result
v = (weight1, weight2, weight3, ..., weightN)

This algorithm is illustrated on Figure 3. Firstly the
similarity of word ’mount’ to other words is calculated.
The most similar words ’install’, ’set up’ and ’plug-in’
were detected. Then layer by layer from the bottom to
the top parent nodes are detected, until only 2 nodes
left. Next, top-to-bottom process starts. Based on the
distance to the cluster centers (0.8 and 0.71), node
weights are calculated 0.53 and 0.47 respectively. And
finally, weights for children nodes of ’cluster 3’ are cal-
culated. Thus a vector for word ’mount’ will be (0, 0,
0.53, 0, 0.24, 0.23, 0, 0, ...).

Figure 3: Matching process sample for word ’mount’

Thus each word from the domain is converted into vec-
tors in N-dimensional vector space.

and could differ from model to model.
3this threshold is heuristic and need to be surveyed more

thoroughly in future studies

Besides even words that are present in language model
token list could be re-matched to another words or set
of words. This could be useful in case of word’s mean-
ing is changed significantly in the domain. For exam-
ple: ’mount’, ’branch’, ’bug’ in software development
domain.

3 Experiment results

For experimental purposes pre-trained neural network
language model for Russian language with architecture
ULMFiT has been chosen 4. This model has been
trained on news portal (lenta.ru) and has perplexity
36,23.

All the most popular neural network language models
take as an input sequence of words, to be more specific
- sequence of words indexes in tokens list. This make
difficult to use custom input vectors with pre-trained
neural network. In this paper hard code solution was
used: the ’fastai’ library has been modified to change
not used input components into hard coded vectors.

To show the technique some common phrases from de-
velopers chats is used:

1. ’who can mount a new hard drive?’

2. ’this part has a bug you need to fix it’

3. ’this abstract class does not satisfy to this inter-
face’

The chosen language model does include ’mount’,
’bug’ in common meaning and does not include word
’interface’ in its tokens list. The aim is to be able
to proceed this sentences with pre-trained neural net-
work.

The first step is to construct a hierarchical classifier.
The input layer of the current network has 60 000 neu-
rons. The resulting hierarchy has about 80 000 nodes,
60 levels. The part of hierarchy is shown on Figure 2.

The second step is to construct vectors for words that
are absent in tokens list. Word ’mount’ is related to
words ’install’, ’set up’ and ’plug-in’. This case is
shown on Figure 3. For the other two words:

1. ’bug’: ’failure’, ’error’, ’lack’

2. ’interface’: ’structure’, ’rule’, ’protocol’

Then the sentences could be processed by neural net-
work language model. The first 3-5 generated words
has been taken as an output result:

4https://github.com/ppleskov/Russian-Language-
Model

616

1. Input: ’who can mount a new hard drive?’. Out-
put: ’server has processor core’

2. Input: ’this part has a bug you need to fix it’.
Output: ’patch will be coming soon ’

3. Input: ’this class could not be inherited from this
interface’. Output: ’protocol is failed’

The results below were generated when one the most
similar word has been used instead of vector calcula-
tion.

1. Input: ’who can mount a new hard drive?’. Out-
put: ’trip will be long and pleasant’

2. Input: ’this part has a bug you need to fix it’.
Output: ’anti insect service’

3. Input: ’this class could not be inherited from this
interface’. Output: ’the whole building is a her-
itage’

Neural network output in first two cases uses the com-
mon word meanings and produces wrong context. In
the last case the word ’interface’ were just ignored and
the context produced was based on word ’inherited’
only.

4 Conclusion

In this paper an attempt to apply transfer learning
technique to special domains was made. The proposed
approach allows to use not learned words with pre-
trained neural network language model. It is impor-
tant in domains with insufficient amount of texts to
train custom language model or when the calculation
resources are limited. Also this technique could be
used to prototype and check ideas (hypothesis) before
starting to teach custom language model.

The results shows effectiveness of proposed approach
but more thorough experiments need to be done. Fur-
ther studies will involve comparison of different neu-
ral network architectures within proposed approach,
searching a way of fine tuning the language model and
comparison of effectiveness in different NLP bench-
marks. Besides it is important to develop extension
to existing neural network frameworks to support not
only a custom head but custom tails also.

Acknowledgement

The work was supported by the Russian Foundation
for Basic Research (Projects No. 17-07-00973, No. 18-
47-730019).

References

[1] R. A., Fuzzy graphs, Fuzzy Sets and Their Appli-
cations to Cognitive and Decision Processes. Aca-
demic Press, New York. pp. 77–95.

[2] N. Arefyev, P. Ermolaev, A. Panchenko, How
much does a word weigh? weighting word
embeddings for word sense induction, CoRR
abs/1805.09209.

[3] D. P. Avendaño, H. Jiménez-Salazar, P. Rosso,
Clustering abstracts of scientific texts using the
transition point technique, in: Computational
Linguistics and Intelligent Text Processing, 7th
International Conference, CICLing 2006, Mexico
City, Mexico, February 19-25, 2006, Proceedings,
2006, pp. 536–546.
URL https://doi.org/10.1007/11671299 55

[4] W. Che, Y. Liu, Y. Wang, B. Zheng, T. Liu,
Towards better UD parsing: Deep contextual-
ized word embeddings, ensemble, and treebank
concatenation, in: Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, Association
for Computational Linguistics, Brussels, Belgium,
2018, pp. 55–64.
URL www.aclweb.org/anthology/K18-2005

[5] D. Cohn, R. Caruana, A. Mccallum, Semi-
supervised clustering with user feedback, Tech.
rep. (2003).

[6] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova,
Bert: Pre-training of deep bidirectional trans-
formers for language understanding, arXiv
preprint arXiv:1810.04805.

[7] P. Dudarin, A. Pinkov, N. Yarushkina, Methodol-
ogy and the algorithm for clustering economic an-
alytics object. Automation of Control Processes,
in: Automation of Control Processes, Vol. 47, 1,
RGGU, Ulyanovsk, Russia, 2017, pp. 591–604.

[8] P. Dudarin, M. Samokhvalov, N. Yarushkina, An
approach to feature space construction from clus-
tering feature tree, in: S. O. Kuznetsov, G. S.
Osipov, V. L. Stefanuk (Eds.), Artificial Intelli-
gence, Springer International Publishing, Cham,
2018, pp. 176–189.

[9] P. V. Dudarin, N. G. Yarushkina, An approach
to fuzzy hierarchical clustering of short text
fragments based on fuzzy graph clustering, in:
A. Abraham, S. Kovalev, V. Tarassov, V. Snasel,
M. Vasileva, A. Sukhanov (Eds.), Proceedings
of the Second International Scientific Conference

617

“Intelligent Information Technologies for Indus-
try” (IITI’17), Springer International Publishing,
Cham, 2018, pp. 295–304.

[10] M. Fares, A. Kutuzov, S. Oepen, E. Velldal, Word
vectors, reuse, and replicability: Towards a com-
munity repository of large-text resources, in: Pro-
ceedings of the 21st Nordic Conference on Com-
putational Linguistics, Association for Computa-
tional Linguistics, Gothenburg, Sweden, 2017, pp.
271–276.
URL www.aclweb.org/anthology/W17-0237

[11] J. Howard, S. Ruder, Universal language model
fine-tuning for text classification, in: Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), Association for Computational Linguistics,
2018, pp. 328–339.
URL http://aclweb.org/anthology/P18-1031

[12] A. Kutuzov, E. Kuzmenko, WebVectors: A
Toolkit for Building Web Interfaces for Vector
Semantic Models, Springer International Publish-
ing, Cham, 2017, pp. 155–161.

[13] N. Loukachevitch, E. Parkhomenko, Recognition
of multiword expressions using word embeddings,
in: S. O. Kuznetsov, G. S. Osipov, V. L. Ste-
fanuk (Eds.), Artificial Intelligence, Springer In-
ternational Publishing, Cham, 2018, pp. 112–124.

[14] C. D. Manning, P. Raghavan, H. Schütze, Intro-
duction to Information Retrieval, Cambridge Uni-
versity Press, New York, NY, USA, 2008.

[15] T. Mikolov, K. Chen, G. S. Corrado, J. Dean, Effi-
cient estimation of word representations in vector
space, CoRR abs/1301.3781.

[16] Y. Nadezhda, G. Gleb, D. Pavel, S. Vladimir, An
approach to similar software projects searching
and architecture analysis based on artificial in-
telligence methods, in: A. Abraham, S. Kovalev,
V. Tarassov, V. Snasel, A. Sukhanov (Eds.), Pro-
ceedings of the Third International Scientific Con-
ference “Intelligent Information Technologies for
Industry” (IITI’18), Springer International Pub-
lishing, Cham, 2019, pp. 341–352.

[17] A. Panchenko, P. Romanov, O. Morozova,
H. Naets, A. Philippovich, A. Romanov, C. Fa-
iron, Serelex: Search and visualization of se-
mantically related words, in: P. Serdyukov,
P. Braslavski, S. O. Kuznetsov, J. Kamps,
S. Rüger, E. Agichtein, I. Segalovich, E. Yil-
maz (Eds.), Advances in Information Retrieval,
Springer Berlin Heidelberg, Berlin, Heidelberg,
2013, pp. 837–840.

[18] T. Y. Raymond, S. Bang, Fuzzy relation, fuzzy
graphs and their applications to clustering anal-
ysis, Fuzzy Sets and their Applications to Cog-
nitive and Decision Pro-cesses. Academic Press.
Pages 125-149.

[19] N. Shelekhova, V. Polyakov, E. Serba, S. Tamara,
Prospects of application it-technologies in food in-
dustry, Nutrition industry 8 (2018) 30–33.

[20] J. Tang, X. Wang, H. Gao, X. Hu, H. Liu, En-
riching short text representation in microblog for
clustering, Frontiers of Computer Science 6 (1)
(2012) 88–101.
URL doi.org/10.1007/s11704-011-1167-7

[21] J. Xu, B. Xu, S. Zheng, G. Tian, J. Zhao, Self-
taught convolutional neural networks for short
text clustering, Neural networks : the official jour-
nal of the International Neural Network Society
88 (2017) 22–31.

[22] Q. Zhao, M. Rezaei, H. Chen, P.: Keyword clus-
tering for automatic categorization, in: In: 2012
21st International Conference on Pattern Recog-
nition (ICPR). IEEE (2012, 2012.

618

