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ABSTRACT
With advanced technology in medicine and biology, data sets containing information could be huge and complex that some-
times are difficult to handle. Dynamic computing is an efficient approach to solve some problems. Since multigranulation rough
sets were proposed, many algorithms have been designed for updating approximations in multigranulation rough sets, but they
are not efficient enough in terms of computational time. The purpose of this study is to further reduce the computational time
of updating approximations in multigranulation rough sets. First, searching regions in data sets for updating approximations
in multigranulation rough sets are shrunk. Second, matrix-based approaches for updating approximations in multigranula-
tion rough set are proposed. The incremental algorithms for updating approximations in multigranulation rough sets are then
designed. Finally, the efficiency and validity of the designed algorithms are verified by experiments.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Since the rough set [1,2] was proposed by Pawlak in 1982, it has
been widely used in various fields such as pattern recognition
[3–10], machine learning [11,12], image processing [11,13–19],
decision-making [20–22], data mining, and so on. A lot of exten-
sions have been proposed to extend its application including
covering based rough sets [23], variable precision rough sets [24],
probabilistic rough sets [18], fuzzy rough sets [9,13,25,26], fuzzy
variable precision rough sets [27], and so on.

Qian et al. proposed multigranulation rough sets (MGRSs) based
on multiple equivalence relation in 2010, which include optimistic
MGRSs and pessimistic MGRSs. In recent years, manymodels have
been proposed based on two decision strategies: “Seeking com-
mon ground while reserving differences” and “Seeking common
ground with eliminating differences.” For example, by populariz-
ing the binary relation from equivalence relation to neighborhood
relation, Lin et al. proposed neighborhood MGRSs. Lots of stud-
ies focus on deriving models by the same decision strategy. Huang
et al. proposed intuitionistic fuzzyMGRSs [28]. Feng et al. proposed
variable precision multigranulation decision-theoretic fuzzy rough
sets [29]. Li et al. proposed three-way cognitive concept learning via
multi-granularity [30]. There are research on MGRSs and their rel-
ative models, such as MGRSs theory over two universe [31], a com-
parative study of MGRSs and concept lattices via rule acquisition
[32], and so on.

*Corresponding author. Email: jinjinlimnu@126.com

In an information explosion era, approximation computing
becomes more and more difficult: the size of the data sometimes is
too huge to handle, the structure of the data becomes more com-
plex, and the granular structures often increase or decrease. The
issue of computing and updating approximations in MGRSs and
their derived models attracts much research interest. These stud-
ies are often categorized into four classes by scholars, namely, how
to update approximations while varying attributes [33,34], how to
update approximations while varying attribute values [35,36], how
to update approximations while varying decision attribute values
[33,37], and how to update approximations while varying object set
[38,39].

No matter what variation is, there always exist two means to
determine the relation between two sets: set operation or matrix
product. By this viewpoint, we can classify those studies into two
categories. One is based on set operation. Scholars use set opera-
tion to determinewhether a set is contained in another set or not, or
whether their intersection is empty or not (see Chuan Luo [20,21],
Wenhao Shu [40], Guangming Lang [41],Mingjie Cai [42],WeiWei
[43], Xin Yang [44], etc.). When granules sizes are generally big, set
operation is a time-consuming way because of its searching strat-
egy: when we compute the intersection of two sets, we must con-
firm whether every object in a set is in another set or not. In the
extreme case, when the two sets are both U (all samples are in one
data set), then the time complexity of computing the intersection
of them is |U|2. The other is based on matrix. These studies are
mostly based on matrix product or other operations. Scholars often
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change a set into a binary matrix, and then design algorithms based
on properties of binary matrix (see Jingqian Wang [45], Chengxi-
ang Hu [46], Yanyong Huang [47] Yunge Jing [48], etc.). Although
the time complexity of determining the relation between two sets
via matrix approach is a constant, they often consider all the objects
in the universe without filtering.

We attempt to combine the two approaches to derive new
approaches to overcome their defect. In other words, we concen-
trate on which part of the universe does not need to be considered
while computing and updating approximations in MGRS. At the
same time, we determine the relation between two sets by matrix
product.Why we try to propose the approaches? Because in real life
application, it is common to add and delete attributes when there
is some new information and some expired information. Differ-
ent granular structures have a great influence on approximations in
MGRS, thus different granular structures induce different decision-
making processes. Moreover, adding and deleting attributes exists
in the whole attribute reduction process. In decision-making and
attribute reduction process, calculating approximations of decisions
is an important and necessary step, so it is important to com-
pute approximations based on approximations we have computed,
that is, updating approximations. We need to proposed approaches
for updating approximations because that updating approximations
could be more efficient than compute the approximations again.

The purpose of this paper is to derive algorithms for updating
approximations while adding and deleting attributes. First, search-
ing region while updating approximations in MGRS need to be
shrunk. A shrunk searching region can reduce the executing time
of the algorithms. Second, matrix-based approaches for updating
approximations need to be proposed to make algorithms more
efficient.

The rest of this paper is organized as follows: Some basic con-
cepts of rough set and MGRS are introduced in Section 2, and so is
matrix-based static algorithm to calculate approximation inMGRS.
In Section 3, dynamic approaches for updating approximations in
MGRS while adding and deleting attributes are proposed. Several
algorithms are proposed in Section 4. Experimental evaluations are
conducted in Section 5 to verify the efficiency and validity of the
algorithms that we designed. Finally, some conclusions and future
work are given in Section 6.

2. PRELIMINARIES

In this section, we review some main concepts in MGRSs as well as
static algorithm for computing approximations in MGRS.

2.1. Multigranulation Rough Sets

In the past few years, many extensions of MGRSs [49] have been
proposed. Since MGRS are our basic model, we review the main
results in this subsection.

Definition 1. [1] Let IS =
(
U,AT,VAT, f

)
be an information sys-

tem, where U = {x1, x2,⋯ , xn} is a nonempty finite set of objects
called the universe. A = {a1, a2,⋯ , ar} is a nonempty finite set of
attributes. The element A ∈ AT is called an attribute set. VAT =
∪A∈ATVA is a domain of attribute values, where VA is the domain

of attribute set A. f ∶ U × AT → V is a decision function such that
f(x,A) ∈ VA, ∀A ∈ AT, x ∈ U.

Definition 2. [49] Let IS =
(
U,AT,VAT, f

)
be an information sys-

tem, where Ak ∈ AT for any k ∈ {1, 2,⋯ ,m}. For any X ⊆ U, the
optimistic multigranulation lower and upper approximations of X
are denoted by∑m

k=1 A
O
k (X) and∑m

k=1 A
O
k (X), respectively.

m

∑
k=1

AO
k (X) = {x ∈ U| [x]A1 ⊆ X ∨⋯ ∨ [x]Am

⊆ X} . (1)

m

∑
k=1

AO
k (X) =∼

m

∑
k=1

AO
k (∼ X) , (2)

where [x]Ak
is the equivalence class of x in terms of the attribute set

Ak, ∼ X is the complement of the set X.

Theorem1. [50] Let IS =
(
U,AT,VAT, f

)
be an information system,

where Ak ∈ AT for any k ∈ {1, 2,⋯ ,m}. For any X ⊆ U, since
[x]Ak

⊆ X, we have x ∈ X. The following result holds.

m

∑
k=1

AO
k (X) = {x ∈ X| [x]A1 ⊆ X ∨⋯ ∨ [x]Am

⊆ X} . (3)

Theorem 2. [49] Let IS =
(
U,AT,VAT, f

)
be an information sys-

tem, where Ak ∈ AT for any k ∈ {1, 2,⋯ ,m}. For any X ⊆ U, the
optimistic multigranulation upper approximation of X is denoted by
∑m

k=1 A
O
k (X), we have

m

∑
k=1

AO
k (X)

= {x ∈ U| [x]A1 ∩ X ≠ ∅ ∧⋯ ∧ x ∈ U| [x]Am
∩ X ≠ ∅} .

(4)

Definition 3. [49] Let IS =
(
U,AT,VAT, f

)
be an information sys-

tem, where Ak ∈ AT for any k ∈ {1, 2,⋯ ,m}. For any X ⊆ U, the
pessimistic multigranulation lower and upper approximation of X
are denoted by∑m

k=1 A
P
k (X) and∑

m
k=1 A

P
k (X), respectively.

m

∑
k=1

AP
k (X) = {x ∈ U| [x]A1 ⊆ X ∧⋯ ∧ [x]Am

⊆ X} . (5)

m

∑
k=1

AP
k (X) =∼

m

∑
k=1

AP
k (∼ X) . (6)

Theorem3. [50] Let IS =
(
U,AT,VAT, f

)
be an information system,

where Ak ∈ AT for any k ∈ {1, 2,⋯ ,m}. For any X ⊆ U, since
[x]Ak

⊆ X, we have x ∈ X. The following result holds.

m

∑
k=1

AO
k (X) = {x ∈ X| [x]A1 ⊆ X ∧⋯ ∧ [x]Am

⊆ X} . (7)

Theorem 4. [49] Let IS =
(
U,AT,VAT, f

)
be an information sys-

tem, where Ak ∈ AT for any k ∈ {1, 2,⋯ ,m}. For any X ⊆ U, the
Pdf_Folio:856
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optimistic multigranulation upper approximation of X is denoted by
∑m

k=1 A
O
k (X), we have

m

∑
k=1

AP
k (X) = {x ∈ U| [x]A1 ∩ X ≠ ∅ ∨ [x]A2 ∩ X ≠ ∅∨

⋯ ∨ [x]Am
∩ X ≠ ∅} .

(8)

2.2. Matrix-Based Algorithm for Computing
Approximations in MGRSs

Definition 4. [51] Let U = {x1, x2,⋯ , xn}. For any X ⊆ U, the
matrix representation ofX is denoted byV(X) = [v1(X),⋯ , vn(X)],
where

vi (X) = {1 xi ∈ X
0 xi ∉ X

i ∈ {1, 2,⋯ , n} .

Lemma 5. [52] Let U = {x1, x2,⋯ , xn} .∀X,Y ⊆ U, if Y ⊆ X, then

V (Y) ⋅ V t (∼ X) = 0,

“T” denotes the transpose operation, and “.” is matrix product.

Example 1. Let IS =
(
U,AT,VAT, f

)
be an information system, as

shown in Table 1, whereU = {x1, x2, x3, x4, x5, x6} , B = A∪ d, and
A = {a1, a2, a3}. LetX = {x2, x4, x5}. According to Definition 4 , we
have V (X) = [0, 1, 0, 1, 1, 0]. Suppose Y = {x2, x4}, then V (Y) =
[0, 1, 0, 1, 0, 0]. Obviously,Y ⊆ X.V (∼ X) = [1, 0, 1, 0, 0, 1],V (Y)⋅
V t (∼ X) = [0, 1, 0, 1, 0, 0] ⋅ [1, 0, 1, 0, 0, 1]t = 0.
Definition 5. [53] Let IS =

(
U,AT,VAT, f

)
be an information

system, where Ak ∈ AT for any k ∈ {1, 2,⋯ ,m}. For any X ⊆
U, the lower approximation character sets of X in MGRS can be
calculated as

ILAk
(X) = ∪ {[x]Ak

| [x]Ak
⊆ X ∧ x ∈ X} , ∀k = 1, 2,⋯ ,m. (9)

Lemma 6. [53] Let IS =
(
U,AT,VAT, f

)
be an information system,

where Ak ∈ AT for any k ∈ {1, 2,⋯ ,m}. For any X ⊆ U, the pes-
simistic and optimistic lower approximations in MGRS can be calcu-
lated by

m

∑
k=1

AP
k (X) = ∩m

k=1IUAk
(X) ,

m

∑
k=1

AO
k (X) = ∪m

k=1IUAk
(X) .

(10)

Example 2. (Continuation of Example 1) Suppose A1 = a1, A2 =
a2,A3 = a3, by Definition 5, we have

Table 1 A decision information system.

U a1 a2 a3 d
x1 1 1 2 3
x2 2 3 3 3
x3 1 1 2 2
x4 2 2 3 2
x5 1 2 1 2
x6 1 1 1 3

V
(
[x2]A1

)
⋅ V t (∼ X) = V

(
[x4]A1

)
⋅ V t (∼ X) = 0,

V
(
[x5]A1

)
⋅ V t (∼ X) ≠ 0,V

(
ILA1 (X)

)
= [0, 1, 0, 1, 0, 0] ;

V
(
[x2]A2

)
⋅ V t (∼ X) = 0,

V
(
[x4]A2

)
⋅ V t (∼ X) = V

(
[x5]A2

)
⋅ V t (∼ X) = 0,

V
(
ILA2 (X)

)
= [0, 1, 0, 1, 1, 0] ;

V
(
[x2]A3

)
⋅ V t (∼ X) = V

(
[x4]A3

)
⋅ V t (∼ X) = 0,

V
(
[x5]A3

)
⋅ V t (∼ X) ≠ 0,V

(
ILA3 (X)

)
= [0, 1, 0, 1, 0, 0] .

By Lemma 6,

V
⎛⎜⎜⎝

m

∑
k=1

AP
k (X)

⎞⎟⎟⎠ = ∧m
k=1V

(
∩m
k=1ILAk

(X)
)

= V
(
ILA1 (X)

)
∧ V

(
ILA2 (X)

)
∧ V

(
ILA3 (X)

)
= [0, 1, 0, 1, 0, 0] ∧ [0, 1, 0, 1, 1, 0] ∧ [0, 1, 0, 1, 0, 0]
= [0, 1, 0, 1, 0, 0] .

By Definition 4,

m

∑
k=1

AP
k (X) = {x2, x4} .

V
⎛⎜⎜⎝

m

∑
k=1

AO
k (X)

⎞⎟⎟⎠ = ∨m
k=1V

(
ILAk

(X)
)

= V
(
ILA1 (X)

)
∨ V

(
ILA2 (X)

)
∨ V

(
ILA3 (X)

)
= [0, 1, 0, 1, 0, 0] ∨ [0, 1, 0, 1, 1, 0] ∨ [0, 1, 0, 1, 0, 0]
= [0, 1, 0, 1, 0, 0] .

By Definition 4,∑m
k=1 A

O
k (X) = {x2, x4, x5} .

Definition 6. [53] Let IS =
(
U,AT,VAT, f

)
be an information

system, where Ak ∈ AT for any k ∈ {1, 2,⋯ ,m}. For any X ⊆ U,
the upper approximation character sets of X in MGRS can be
defined as

IUAk
(X) = ∪ {[x]Ak

|x ∈ X} , ∀k = 1, 2,⋯ ,m. (11)

Lemma 7. [53] Let IS =
(
U,AT,VAT, f

)
be an information system,

where Ak ∈ AT for any k ∈ {1, 2,⋯ ,m}. For any X ⊆ U, the pes-
simistic and optimistic upper approximations can be calculated by

m

∑
k=1

AO
k (X) = ∩m

k=1IUAk
(X) ,

m

∑
k=1

AP
k (X) = ∩m

k=1IUAk
(X) .

(12)
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Example 3. Continuation of Example 2. From Table 1, we have

V
(
[x2]A1

)
= V ([x4])A1 = [0, 1, 0, 1, 0, 0] ,

V
(
[x5]A1

)
= [1, 0, 1, 0, 1, 1] ;

V
(
[x2]A2

)
= [0, 1, 0, 0, 0, 0] ,

V
(
[x4]A2

)
= V

(
[x5]A2

)
= [0, 0, 0, 1, 1, 0] ;

V
(
[x2]A3

)
= V

(
[x4]A2

)
= [0, 1, 0, 1, 0, 0] ,

V
(
[x5]A3

)
= [0, 0, 0, 0, 1, 1] .

By Definition 6,

V
(
IUA1 (X)

)
= V

(
[x2]A1

)
∨ V

(
[x4]A1

)
∨ V

(
[x5]A1

)
= [1, 1, 1, 1, 1, 1] ,

V
(
IUA2 (X)

)
= V

(
[x2]A2

)
∨ V

(
[x4]A2

)
∨ V

(
[x5]A2

)
= [0, 1, 0, 1, 1, 0] ,

V
(
IUA3 (X)

)
= V ([x2]A3) ∨ V

(
[x4]A3

)
∨ V

(
[x5]A3

)
= [0, 1, 0, 1, 1, 1] .

By Lemma 7,

m

∑
k=1

AO
k (X) = V

(
∩m
k=1IUAk

(X)
)

= V
(
IUA1 (X)

)
∧ V

(
IUA2 (X)

)
∧ V

(
IUA3 (X)

)
= [1, 1, 1, 1, 1, 1] ∧ [0, 1, 0, 1, 1, 0] ∧ [0, 1, 0, 1, 1, 1]
= [0, 1, 0, 1, 1, 0] .

By Definition 4,

m

∑
k=1

AP
k (X) = {x2, x3, x4} .

V
⎛⎜⎜⎝

m

∑
k=1

AP
k (X)

⎞⎟⎟⎠ = ∨m
k=1V

(
IUAk

(X)
)

= V
(
IUA1 (X)

)
∨ V

(
IUA2 (X)

)
∨ V

(
IUA3 (X)

)
= [1, 1, 1, 1, 1, 1] ∨ [0, 1, 0, 1, 1, 0] ∨ [0, 1, 0, 1, 1, 1]
= [1, 1, 1, 1, 1, 1] .

By Definition 4,

m

∑
k=1

AO
k (X) = U.

Algorithm 1 [53] is a matrix-based algorithm for computing
approximations in MGRS. The total time complexity of the algo-
rithm is O

(
m|X||U|

)
. Steps 3–6 are to calculate ILAk

and IUAk

(k ∈ {1, 2,⋯ ,m})whose time complexity isO
(
m|X||U|

)
. Steps 17–

22 are to compute the approximations of MGRS whose time com-
plexity is O

(
m|U|

)
.

Algorithm 1: Matrix-based algorithm for computing approximations in
MGRS
Require: (1) An information system IS =

(
U,AT,VAT, f

)
(2) A

target concept X ⊆ U(3) Equivalence classes [x]Ak
, x ∈ U, k ∈

{1, 2,⋯ ,m}.
Ensure: Approximations in MGRS.
1: n ← |U|
2: m ← |X|
3: for i = 1 → n do
4: for k = 1 → m do
5: for j = 1 → n do
6: if vi (X) = 1 ∧ V t (∼ (X)) ⋅ V

(
[xi]Ak

)
= 0 then vi

(
ILAk

)
= 1

7: end if
8: if vi (X) = 1 ∧ vj

(
[xi]Ak

)
= 1 then vj

(
IUAk

)
= 1

9: end if
10: end for
11: end for
12: end for
13: V

(
∑m

k=1 A
O
k (X)

)
← V

(
IUA1

)
14: V

(
∑m

k=1 A
P
k (X)

)
← V

(
IUA1

)
15: V

(
∑m

k=1 A
P
k (X)

)
← V

(
ILA1

)
16: V

(
∑m

k=1 A
P
k (X)

)
← V

(
ILA1

)
17: for k = 2 → m do
18: V

(
∑m

k=1 A
O
k (X)

)
← V

(
∑m

k=1 A
O
k (X)

)
∨ V

(
ILAk

)
19: V

(
∑m

k=1 A
O
k (X)

)
← V

(
∑m

k=1 A
O
k (X)

)
∧ V

(
IUAk

)
20: V

(
∑m

k=1 A
P
k (X)

)
← V

(
∑m

k=1 A
P
k (X)

)
∧ V

(
ILAk

)
21: V

(
∑m

k=1 A
P
k (X)

)
← V

(
∑m

k=1 A
P
k (X)

)
∨ V

(
IUAk

)
22: end for
23: Return ∑m

k=1 A
O
k (X) ,∑m

k=1 A
O
k (X), ∑m

k=1 A
P
k (X) and

∑m
k=1 A

P
k (X)

3. MATRIX-BASED DYNAMIC
APPROACHES FOR UPDATING
APPROXIMATIONS IN MGRS WHILE
ADDING AND DELETING ATTRIBUTES

3.1. Matrix-Based Dynamic Approaches for
Updating Approximations While Adding
Attributes

In this subsection, we present matrix-based dynamic approaches
for updating approximations in MGRS, while adding attributes,
let IS t =

(
U,AT t,VAT t , f t

)
be an information system at time t,

IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information system at time

t + 1, and for all At
k ∈ AT t (k ⩽ m), exists At+1

k ∈ AT t+1, such
that At

k ⊆ At+1
k for any k ∈ {1, 2,⋯ ,m}. Also, for all x ∈ U, we

denote equivalence class of x at time t by [x]tAk
. Denote equivalence

class of x at time t+1 by [x]t+1Ak
. Denote pessimistic lower and upper

approximations ofX by∑m
k=1 A

t+1
k

P
(X) and∑m

k=1 A
t+1
k

P
(X) at time
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t+ 1, respectively. Denote pessimistic lower and upper approxima-

tions of X by∑m
k=1 A

t
k
O (X) and∑m

k=1 A
t
k

O
(X) at time t + 1, respec-

tively. Denote optimistic lower and upper approximations of X by

∑m
k=1 A

t+1
k

O
(X) and∑m

k=1 A
t+1
k

O
(X) at time t, respectively. Denote

optimistic lower and upper approximations ofX by∑m
k=1 A

t+1
k

O
(X)

and∑m
k=1 A

t+1
k

O
(X) at time t + 1, respectively.

Lemma 8. [46] Let IS t =
(
U,AT t,VAT t , f t

)
be an information sys-

tem at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information

system at time t + 1. For any X ⊆ U, the following results hold:

1. ∑m
k=1 A

t
k
O (X) ⊆ ∑m

k=1 A
t+1
k

O
(X) ;

2. ∑m
k=1 A

t
k

O
(X) ⊇ ∑m

k=1 A
t+1
k

O
(X) .

Lemma 9. [46] Let IS t =
(
U,AT t,VAT t , f t

)
be an information sys-

tem at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information

system at time t + 1. For any X ⊆ U, the following results hold:

1. ∑m
k=1 A

t
k
P (X) ⊆ ∑m

k=1 A
t+1
k

P
(X) ;

2. ∑m
k=1 A

t
k

P
(X) ⊇ ∑m

k=1 A
t+1
k

P
(X) .

Lemmas 8 and 9 indicate the relations of lower and upper
approximations in MGRS between time t and time t + 1. However,
Lemmas 8 and 9 are not clear enough for updating approximation
in MGRS. The following theorem provides accurate approaches for
updating approximations in MGRS from time t to t + 1.
Theorem10. Let IS t =

(
U,AT t,VAT t , f t

)
be an information system

at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information system

at time t + 1. For any X ⊆ U, we have

i. If Δ∑m
k=1 Ak

O (X) = {x|∃k ∈ {1, 2,⋯ ,m} ,

[x]t+1Ak
⊆ X ∧ x ∈ ∑m

k=1 A
t
k

P
(X) –∑m

k=1 A
t
k
P (X)}, then

∑m
k=1 A

t+1O
k (X) = ∑m

k=1 A
t
k
O (X) ∪ Δ∑m

k=1 Ak
O (X)

ii. If Δ∑m
k=1 Ak

O
(X) = {x|∃k ∈ {1, 2,⋯ ,m ,

[x]t+1Ak
∩ X = ∅ ∧ x ∈ ∑m

k=1 A
t
k

P
(X) –∑m

k=1 A
t
k
P (X)} , then

∑m
k=1 A

t+1
k

O
(X) = ∑m

k=1 A
t
k

O
(X) – Δ∑m

k=1 Ak
O
(X)

iii. If Δ∑m
k=1 Ak

P (X) = {x|∀k ∈ {1, 2,⋯ ,m} ,

[x]t+1Ak
⊆ X ∧ x ∈ ∑m

k=1 A
t
k

P
(X) –∑m

k=1 A
t
k
P (X)} , then

∑m
k=1 A

t+1
k

P
(X) = ∑m

k=1 A
tP
k (X) ∪ Δ∑m

k=1 Ak
P (X)

iv. If Δ∑m
k=1 Ak

P
(X) = {x|∀k ∈ 1, 2,⋯ ,m} ,

[x]t+1Ak
∩ X = ∅ ∧ x ∈ ∑m

k=1 A
t
k

P
(X) –∑m

k=1 A
t
k
P (X)} , then

∑m
k=1 A

t+1
k

P
(X) = ∑m

k=1 A
t
k

P
(X) – Δ∑m

k=1 Ak
P
(X) .

Proof.

i. • If x ∈ ∑m
k=1 A

t
k
P (X), x ∈ ∑m

k=1 A
t
k
P (X) ⇔ [x]tAk

⊆ X,

since we have ∀y ∈ [x]tAk
, [y]t+1Ak

⊆ [x]tAk
, [x]tAk

⊆ X ⇔

[x]t+1Ak
⊆ X ⇔ x ∈ ∑m

k=1 A
t+1
k

O
(X).

• If x ∈ ∑m
k=1 A

t
k

P
(X) –∑m

k=1 A
t
k
P (X),

[x]t+1Ak
⊆ X ⇔ x ∈ ∑m

k=1 A
t+1
k

P
(X).

• If x ∈ U –∑m
k=1 A

t+1
k

P
(X), from Definition 2, [x]tAk

⊈ X,

since we have ∀y ∈ [x]tAk
, [y]t+1Ak

⊆ [x]tAk
⇔ [x]t+1Ak

⊈ X ⇔

x ∉ ∑m
k=1 A

t+1
k

P
(X).

• From the above, we have
∑m

k=1 A
t+1
k

O
(X) = ∑m

k=1 A
t
k
O (X) ∪ Δ∑m

k=1 Ak
O (X).

ii. • If x ∈ ∑m
k=1 A

t
k
P (X), x ∈ ∑m

k=1 A
t
k
P (X) ⇔

∀k ∈ {1, 2,⋯ ,m} , [x]tAk
⊆ X, Since we have

∀y ∈ [x]tAk
, [y]t+1Ak

⊆ [x]tAk
, then

∀k ∈ {1, 2,⋯ ,m} , [x]tAk
⊆ X ⇔ ∀k ∈

{1, 2,⋯ ,m} , [x]t+1Ak
⊆ X ⇔ x ∈

∑m
k=1 A

t+1
k

P
(X) ⊆ ∑m

k=1 A
t+1
k

O
(X), thus we have

x ∈ ∑m
k=1 A

t
k
P (X) ⇔ x ∈ ∑m

k=1 A
t+1
k

O
(X).

• If x ∈ ∑m
k=1 A

t
k

P
(X) –∑m

k=1 A
t
k
P (X), ∀k ∈ {1, 2,⋯ ,m} ,

[x]t+1Ak
∩ X = ∅ ⇔ x ∉ ∑m

k=1 A
t+1
k

O
(X).

• If x ∈ U –∑m
k=1 A

t
k

P
(X), from Theorem 2, x ∈

U –∑m
k=1 A

t+1
k

P
(X) ⇔ ∀k ∈ {1, 2,⋯ ,m} , [x]tAk

∩ X = ∅.

Since ∀y ∈ [x]tAk
,∀k ∈ {1, 2,⋯ ,m} , [y]t+1Ak

⊆ [x]tAk
,

[x]tAk
∩ X = ∅ ⇔ x ∉ ∑m

k=1 A
t+1
k

P
(X).

• From the above, we have
∑m

k=1 A
t+1
k

O
(X) = ∑m

k=1 A
t
k

O
(X) – Δ∑m

k=1 Ak
O
(X).

iii. It is similar to i.

iv. It is similar to ii.

Example 4. (Continuation of Example 1) Suppose At
1 = a1, At

2 =
a2; At+1

1 = {a1, a3}, At+1
2 = {a2, a3}, X = {x2, x3, x4} , thus we have

[x1]tA1 = [x3]tA1 = [x5]tA1 = [x6]tA1
= {x1, x3, x5, x6} ,

[x2]tA1 = [x4]tA1 = {x2, x4}

[x1]t+1A1
= [x3]t+1A1

= {x1, x3} ,

[x2]t+1A1
= [x4]t+1A1

= {x2, x4} ,

[x5]t+1A1
= [x6]t+1A1

= {x5, x6} .
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[x1]tA2 = [x3]tA2 = [x6]tA2 = {x1, x3, x6} ,

[x2]tA2 = {x2} ;

[x4]tA2 = [x5]tA2 = {x4, x5} ;

[x1]t+1A2
= [x3]t+1A2

= {x1, x3} ,

[x2]t+1A2
= {x2} , [x4]t+1A2

= {x4} ,

[x5]t+1A2
= {x5} , [x6]t+1A2

= {x6} .

From Definitions 2 and 3 we have

2
∑
k=1

At
k

O

(X) = {x2, x4} ,
2
∑
k=1

At
k

O

(X) = U.

2
∑
k=1

At
k

P

(X) = {x2} ,
2
∑
k=1

At
k

P

(X) = U.

By Theorem 10, we have

2
∑
k=1

At
k

P

(X) –
2
∑
k=1

At
k

P

(X) = {x1, x3, x4, x5, x6} .

Since

[x1]t+1A1
⊈ X, [x3]t+1A1

⊈ X, [x4]t+1A1
⊆ X,

[x5]t+1A1
⊈ X, [x6]t+1A1

⊈ X;

[x1]t+1A2
⊈ X, [x3]t+1A2

⊈ X, [x4]t+1A2
⊆ X,

[x5]t+1A2
⊈ X, [x6]t+1A2

⊈ X.

[x1]t+1A1
∩ X ≠ ∅, [x3]t+1A1

∩ X ≠ ∅, [x4]t+1A1
∩ X ≠ ∅,

[x5]t+1A1
∩ X = ∅, [x6]t+1A1

∩ X = ∅;

[x1]t+1A2
∩ X ≠ ∅, [x3]t+1A2

∩ X ≠ ∅, [x4]t+1A2
∩ X ≠ ∅,

[x5]t+1A2
∩ X = ∅, [x6]t+1A2

∩ X = ∅.

Thus we have

2
∑
k=1

At+1
k

O

(X) =
2
∑
k=1

At
k

O

(X) ∪ {x4} = {x2, x4} ;

2
∑
k=1

At+1
k

O

(X) =
2
∑
k=1

At
k

O

(X) – {x5, x6}

= {x1, x2, x3, x4} .
2
∑
k=1

At+1
k

O

(X) =
2
∑
k=1

At
k

P

(X) ∪ {x4} = {x2, x4} ,

2
∑
k=1

At+1
k

P

(X) =
2
∑
k=1

At
k

P

(X) – {x5, x6}

= {x1, x2, x3, x4} .

Definition 7. Let IS t =
(
U,AT t,VAT t , f t

)
be an information sys-

tem at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information

system at time t + 1. For any X ⊆ U, the dynamic lower approxi-
mation character sets of X in MGRS while adding attributes can be
defined as

ΔILAk
(X) = ∪

⎧⎪
⎨⎪
⎩

[x]Ak
| [x]t+1Ak

⊆ X

∧x ∈
m

∑
k=1

At
k

P

(X) –
m

∑
k=1

At
k

P

(X)} , ∀k = 1, 2,⋯ ,m.

Definition 8. Let IS t =
(
U,AT t,VAT t , f t

)
be an information sys-

tem at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information

system at time t + 1. For any X ⊆ U, the dynamic upper approxi-
mation character sets of X in MGRS while adding attributes can be
defined as

ΔIUAk
(X) = ∪

⎧⎪
⎨⎪
⎩

[x]t+1Ak
| [x]t+1Ak

∩ X = ∅

∧x ∈
m

∑
k=1

At
k

P

(X) –
m

∑
k=1

At
k

P

(X)} , ∀k = 1, 2,⋯ ,m.

Example 5. (Continuation of Example 4)

ΔILA1 (X) = ∪
⎧
⎨
⎩
[x]A1 | [x]t+1A1

⊆ X

∧x ∈
2
∑
k=1

At
2

P

(X) –
2
∑
k=1

At
1

P

(X)
⎫
⎬
⎭
= {x4} ,

ΔILA2 (X) = ∪
⎧⎪
⎨⎪
⎩

[x]A2 | [x]t+1A2
⊆ X

∧x ∈
2
∑
k=1

At
2

P

(X) –
2
∑
k=1

At
2

P

(X)
⎫
⎬
⎭
= {x4} ;

ΔIUA1 (X) = ∪
⎧
⎨
⎩
[x]t+1A1

| [x]t+1A1
∩ X = ∅,

x ∈
2
∑
k=1

At
k

P

(X) –
2
∑
k=1

At
k

P

(X)
⎫
⎬
⎭
= {x5, x6} ,

ΔIUA2 (X) = ∪
⎧
⎨
⎩
[x]t+1A2

| [x]t+1A2
∩ X = ∅,

x ∈
2
∑
k=1

At
k

P

(X) –
2
∑
k=1

At
k

P

(X)
⎫
⎬
⎭
= {x5, x6} .
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Theorem11. Let IS t =
(
U,AT t,VAT t , f t

)
be an information system

at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information system

at time t + 1. For any X ⊆ U, we have

i. Δ∑m
k=1 Ak

O (X) = ∪ {ΔILAk
(X) |k = 1, 2,⋯ ,m}.

ii. Δ∑m
k=1 Ak

O
(X) = ∩ {ΔIUAk

(X) |k = 1, 2,⋯ ,m}.

iii. Δ∑m
k=1 Ak

P (X) = ∩ {ΔILAk
(X) |k = 1, 2,⋯ ,m}.

iv. Δ∑m
k=1 Ak

P
(X) = ∪ {ΔIUAk

(X) |k = 1, 2,⋯ ,m}.

Proof. This theorem can be easily obtained by Theorem 10 and
Definitions 7 and 8.

By Theorem 11 we can easily obtain a matrix-based approach for
updating approximations in MGRS while adding attributes.

Corollary 12. Let IS t =
(
U,AT t,VAT t , f t

)
be an information sys-

tem at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information

system at time t + 1. For any X ⊆ U, we have

i. V
(
∑m

k=1 A
t+1
k

O
(X)

)
= V

(
∑m

k=1 A
t
k
O (X)

)
∨(

∨m
k=1V

(
ΔILAk

(X)
))

,

ii. V
(
∑m

k=1 A
t+1
k

O
(X)

)
= V

(
∑m

k=1 A
t
k

O
(X)

)
∧ ∼(

∨m
k=1V

(
ΔIUAk

(X)
))

,

iii. V
(
∑m

k=1 A
t+1
k

P
(X)

)
= V

(
∑m

k=1 A
t
k
P (X)

)
∨(

∧m
k=1V

(
ΔILAk

(X)
))

,

iv. V
(
∑m

k=1 A
t+1
k

P
(X)

)
= V

(
∑m

k=1 A
t
k

P
(X)

)
∧ ∼(

∧m
k=1V

(
ΔILAk

(X)
))

.

Proof. This corollary is the matrix representation of Theorem 10.

Example 6. (Continuation of Example 5)

1. V
(
∑2

k=1 A
t+1
k

O
(X)

)
= V

(
∑2

k=1 A
t
k
O
(X)

)
∨(

∨2k=1V
(
ΔILAk

(X)
))

[0, 1, 0, 1, 0, 0] ∨ [0, 0, 0, 1, 0, 0] = [0, 1, 0, 1, 0, 0] ,

2. V
(
∑2

k=1 A
t+1
k

O
(X)

)
= V

(
∑2

k=1 A
t
k

O
(X)

)
∧ ∼(

∨2k=1V
(
ΔIUAk

(X)
))

[1, 1, 1, 1, 1, 1] ∧ [1, 1, 1, 1, 0, 0] = [1, 1, 1, 1, 0, 0] ,

3. V
(
∑2

k=1 A
t+1
k

P
(X)

)
= V

(
∑2

k=1 A
t
k
P
(X)

)
∨(

∧2k=1V
(
ΔILAk

(X)
))

[0, 1, 0, 1, 0, 0] ∨ [0, 0, 0, 1, 0, 0] = [0, 1, 0, 1, 0, 0] ,

4. V
(
∑2

k=1 A
t+1
k

P
(X)

)
= V

(
∑2

k=1 A
t
k

P
(X)

)
∧ ∼(

∧2k=1V
(
ΔIUAk

(X)
))

[1, 1, 1, 1, 1, 1] ∧ [1, 1, 1, 1, 0, 0] = [1, 1, 1, 1, 0, 0] .

From Definition 4 we have that ∑2
k=1 A

t+1
k

O
(X) = {x2, x4},

∑2
k=1 A

t+1
k

O
(X) = {x1, x2, x3, x4}; ∑2

k=1 A
t+1
k

P
(X) = {x2, x4},

∑2
k=1 A

t+1
k

P
(X) = {x1, x2, x3, x4}.

3.2. Matrix-Based Dynamic Approaches for
Updating Approximations While
Deleting Attributes

In this section, we present matrix-based dynamic approaches
for updating approximations in MGRS, while deleting attributes,
let IS t =

(
U,AT t,VAT t , f t

)
be an information system at time t,

IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information system at time

t + 1, and for all At
k ∈ AT t (k ⩽ m), exists At+1

k ∈ AT t+1, such
that At+1

k ⊆ At
k for any k ∈ {1, 2,⋯ ,m}. Also, for all x ∈ U,

we denote equivalence classof x at time t by [x]tAk
. Denote equiv-

alence class of x at time t + 1 by [x]t+1Ak
. Denote pessimistic lower

and upper approximations of X by∑m
k=1 A

t
k
P (X) and∑m

k=1 A
t
k

P
(X)

at time t, respectively. Denote pessimistic lower and upper approx-

imations of X by∑m
k=1 A

t+1
k

P
(X) and∑m

k=1 A
t+1
k

P
(X) at time t+ 1,

respectively. Denote optimistic lower and upper approximations of

X by∑m
k=1 A

t
k
O (X) and∑m

k=1 A
t
k

O
(X) at time t, respectively. Denote

optimistic lower and upper approximations ofX by∑m
k=1 A

t+1
k

O
(X)

and ∑m
k=1 A

t+1
k

O
(X) at time t + 1, respectively. According to [46],

we have the following results in this section:

Lemma 13. [46] Let IS t =
(
U,AT t,VAT t , f t

)
be an information

system at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information

system at time t + 1. For any X ⊆ U, the following results hold:

1. ∑m
k=1 A

t+1
k

O
(X) ⊆ ∑m

k=1 A
t
k
O (X) ;

2. ∑m
k=1 A

t
k

O
(X) ⊆ ∑m

k=1 A
t+1
k

O
(X) .

Lemma 14. [46] Let IS t =
(
U,AT t,VAT t , f t

)
be an information

system at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information

system at time t + 1. For any X ⊆ U, the following results hold:

1. ∑m
k=1 A

t+1
k

P
(X) ⊆ ∑m

k=1 A
t
k
P (X) ;

2. ∑m
k=1 A

t
k

P
(X) ⊆ ∑m

k=1 A
t+1
k

P
(X) .

Pdf_Folio:861



862 P. Yu et al. / International Journal of Computational Intelligence Systems 12(2) 855–872

Lemmas 13 and 14 indicate the relation of lower and upper approx-
imations in MGRS between time t and time t + 1. However, Lem-
mas 13 and 14 are not clear enough for updating approximation
in MGRS. The following theorem provides accurate approaches for
updating approximations in MGRS from time t to t + 1:
Theorem15. Let IS t =

(
U,AT t,VAT t , f t

)
be an information system

at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information system

at time t + 1. For any X ⊆ U, we have

i. If ∇∑m
k=1 Ak

O (X) = {x|∀k ∈ {1, 2,⋯ ,m} , [x]t+1Ak
⊈

X ∧ x ∈ ∑k=1
m At

k

O
(X) ∪

(
U –∑k=1

m At
k

O
(X)

)
} , then

∑m
k=1 A

t+1
k

O
(X) =∑k=1

m At
k

O
(X) –∇∑k=1

m Ak
O
(X) .

ii. If ∇∑m
k=1 Ak

O
(X) = {x|∀k ∈ {1, 2,⋯ ,m} , [x]t+1Ak

∩ X ≠

∅ ∧ x ∈ ∑k=1
m At

k

O
(X)∪

(
U –∑k=1

m At
k

O
(X)

)
}, then

∑m
k=1 A

t+1
k

O
(X) =∑m

k=1 A
t
k

O
(X) ∪ ∇∑m

k=1 Ak
O
(X) .

iii. ∇∑m
k=1 Ak

P (X) = {x|∃k ∈ {1, 2,⋯ ,m} , [x]t+1Ak
⊈

X ∧ x ∈ ∑k=1
m At

k

O
(X)∪

(
U –∑k=1

m At
k

O
(X)

)
}, then

∑m
k=1 A

t+1
k

P
(X) =∑k=1

m At
k

P
(X) –∇∑k=1

m Ak
P
(X) .

iv. If ∇∑m
k=1 Ak

P
(X) = {x|∃k ∈ {1, 2,⋯ ,m} , [x]t+1Ak

∩ X ≠

∅ ∧ x ∈ ∑k=1
m At

k

O
(X)∪

(
U –∑k=1

m At
k

O
(X)

)
}, then

∑m
k=1 A

t+1
k

P
(X) =∑k=1

m At
k

P
(X) ∪ ∇∑k=1

m Ak

P
(X).

Proof.

i. By Lemma 13 we have∑m
k=1 A

t+1
k

O
(X) ⊆ ∑m

k=1 A
t
k
O (X) , thus

we have ∀x ∈ ∑m
k=1 A

t
k
O (X) , [x]t+1Ak

⊆ X ⇔ x ∈

∑m
k=1 A

t+1
k

O (X) , in other words,∀x ∈ ∑m
k=1 A

t
k
O (X) , [x]t+1Ak

⊈

X ⇔ x ∉ ∑m
k=1 A

t+1
k

O
(X) .

ii. By Lemma 13 we have∑m
k=1 A

t
k

O
(X) ⊆ ∑m

k=1 A
t+1
k

O
(X) , thus

we have ∀k ∈ {1, 2,⋯ ,m} , ∀x ∈ U –∑m
k=1 A

t
k
O (X), [x]t+1Ak

∩

X ≠ ∅ ⇔ x ∈ ∑m
k=1 A

t+1
k

O
(X) .

iii. It is similar to i.

iv. It is similar to ii.

Example 7. (Continuation of Example 1) Suppose At
1 = {a1, a2},

At
2 = {a2, a3}; At+1

1 = {a2}, At+1
2 = {a3}, X = {x2, x3, x4} , thus we

have

[x1]tA1 = [x3]tA1 = [x6]tA1 = {x1, x3, x6} ,

[x2]tA1 = {x2} , [x4]tA1 = {x4} , [x5]tA1 = {x5} ;

[x1]t+1A1
= [x3]t+1A1

= [x6]t+1A1
= {x1, x3, x6} ,

[x2]t+1A1
= {x2} . [x4]t+1A1

= [x5]t+1A1
= {x4, x5} .

[x1]tA2 = [x3]tA2 = {x1, x3} , [x2]tA2 = {x2} ,

[x4]tA2 = {x4} , [x5]tA2 = {x5} , [x6]tA2 = {x6} ;

[x1]t+1A2
= [x3]t+1A2

= {x1, x3} ,

[x2]t+1A2
= [x4]t+1A2

= {x2, x4} ;

[x5]t+1A2
= [x6]t+1A2

= {x5, x6} .

From Definitions 2 and 3 we have

2
∑
k=1

At
k

O

(X) = {x2, x4} ,
2
∑
k=1

At
k

O

(X) = {x1, x2, x3, x4} .

2
∑
k=1

At
k

P

(X) = {x2} ,
2
∑
k=1

At
k

P

(X) = {x1, x2, x3, x4, x6} .

By Theorem 15, we have

2
∑
k=1

At
k

O

(X) ∪
⎛⎜⎜⎜⎝U –

2
∑
k=1

At
k

O

(X)
⎞⎟⎟⎟⎠ = {x2, x4, x5, x6} .

Since

[x2]t+1A1
⊆ X, [x4]t+1A1

⊈ X, [x5]t+1A1
⊈ X, [x6]t+1A1

⊈ X.

[x2]
t+1
A2

⊆ X, [x4]t+1A2
⊆ X, [x5]t+1A2

⊈ X, [x6]t+1A2
⊈ X.

[x2]
t+1
A1

∩ X ≠ ∅, [x4]t+1A1
∩ X ≠ ∅, [x5]t+1A1

∩ X ≠ ∅,

[x6]
t+1
A1

∩ X ≠ ∅.

[x2]
t+1
A2

∩ X ≠ ∅, [x4]t+1A2
∩ X ≠ ∅, [x5]t+1A2

∩ X = ∅,

[x6]
t+1
A2

∩ X = ∅.

Thus we have

2
∑
k=1

At+1
k

O

(X) =
2
∑
k=1

At
k

O

(X) – {x5, x6} = {x2, x4} ;

2
∑
k=1

At+1
k

O

(X) =
2
∑
k=1

At
k

O

(X) ∪ {x2, x4}

= {x1, x2, x3, x4} .
2
∑
k=1

At+1
k

P

(X) =
2
∑
k=1

At
k

P

(X) – {x4, x5, x6} = {x2} ,

2
∑
k=1

At+1
k

P

(X) =
2
∑
k=1

At
k

P

(X) ∪ {x2, x4, x5, x6} = U.
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Definition 9. Let IS t =
(
U,AT t,VAT t , f t

)
be an information sys-

tem at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information

system at time t + 1. For any X ⊆ U, the dynamic upper approx-
imation character sets of X in MGRS while deleting attributes can
be defined as

∇IUAk
(X) = ∪{ [x]t+1Ak

| [x]t+1Ak
⊈ X ∧ x ∈

m

∑
k=1

At
k

O

(X)

∪
⎛⎜⎜⎝U –

m

∑
k=1

At
k

O

(X)
⎞⎟⎟⎠} , ∀k = 1, 2,⋯ ,m.

(13)

Definition 10. Let IS t =
(
U,AT t,VAT t , f t

)
be an information sys-

tem at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information

system at time t + 1. For any X ⊆ U, the dynamic lower approx-
imation character sets of X in MGRS while deleting attributes can
be defined as

∇IUAk
(X) = ∪{ [x]t+1Ak

| [x]t+1Ak
∩ X ≠ ∅ ∧ x ∈

m

∑
k=1

At
k

O

(X)

∪
⎛⎜⎜⎝U –

m

∑
k=1

At
k

O

(X)
⎞⎟⎟⎠} , ∀k ∈ {1, 2,⋯ ,m} .

(14)

Example 8. (Continuation of Example 7)

ILA1 (X) = ∪{ [x]A1 | [x]t+1A1
⊈ X ∧ x ∈

m

∑
k=1

At
k

O

(X)

∪
⎛⎜⎜⎝U –

m

∑
k=1

At
k

O

(X)
⎞⎟⎟⎠} = {x4, x5, x6} .

∇ILA2 (X) = ∪{ [x]A2 | [x]t+1A2
⊆ X ∧ x ∈

m

∑
k=1

At
k

O

(X)

∪
⎛⎜⎜⎝U –

m

∑
k=1

At
k

O

(X))
⎞⎟⎟⎠} = {x5, x6} .

∇IUA1 (X) = ∪{ [x]A1 | [x]t+1A1
∩ X = ∅ ∧ x ∈

m

∑
k=1

At
k

O

(X)

∪
⎛⎜⎜⎝U –

m

∑
k=1

At
k

O

(X)
⎞⎟⎟⎠} = {x2, x4, x5, x6} .

∇IUA2 (X) = ∪{ [x]A1 | [x]t+1A2
∩ X = ∅ ∧ x ∈

m

∑
k=1

At
k

O

(X)

∪
⎛⎜⎜⎝U –

m

∑
k=1

At
k

O

(X)
⎞⎟⎟⎠} = {x2, x4} .

Theorem16. Let IS t =
(
U,AT t,VAT t , f t

)
be an information system

at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information system

at time t + 1. For any X ⊆ U, we have

• ∇∑m
k=1 A

P
k (X) = ∪ {∇ILAk

(X) |k = 1, 2,⋯ ,m} ,

• ∇∑m
k=1 Ak

P
(X) = ∪ {∇IUAk

(X) |k = 1, 2,⋯ ,m} ,

• ∇∑m
k=1 Ak

O (X) = ∩ {∇ILAk
(X) |k = 1, 2,⋯ ,m} ,

• ∇∑m
k=1 Ak

O
(X) = ∩ {∇IUAk

(X) |k = 1, 2,⋯ ,m} .

Proof. This theorem can be easily obtained by Theorem 15 and Def-
initions 9 and 10.

By Theorem 16 we can easily obtain matrix-based approaches for
updating approximations in MGRS while adding attributes.

Corollary 17. Let IS t =
(
U,AT t,VAT t , f t

)
be an information sys-

tem at time t, IS t+1 =
(
U,AT t+1,VAT t+1 , f t+1

)
be an information

system at time t + 1. For any X ⊆ U, we have

• V
(
∑m

k=1 A
t+1
k

O
(X)

)
= V

(
∑m

k=1 A
t
k
O (X)

)
∧ ∼(

∧m
k=1V

(
∇ILAk

(X)
))

,

• V
(
∑m

k=1 A
t+1
k

O
(X)

)
= V

(
∑m

k=1 A
t
k

O
(X)

)
∨(

∧m
k=1V

(
∇IUAk

(X)
))

.

• V
(
∑m

k=1 A
t+1
k

P (X)
)
= V

(
∑m

k=1 A
t
k
P (X)

)
∧ ∼(

∧m
k=1V

(
∇ILAk

(X)
))

,

• V
(
∑m

k=1 A
t+1
k

P
(X)

)
= V

(
∑m

k=1 A
t
k

P
(X)

)
∨(

∨m
k=1V

(
∇IUAk

(X)
))

.

Proof. This corollary is the matrix representation of Theorem 15.

Example 9. (Continuation of Example 8)

i. V
(
∑2

k=1 A
t+1
k

O
(X)

)
= V

(
∑2

k=1 A
t
k
O
(X)

)
∧ ∼(

∧2k=1V
(
∇ILA2 (X)

))
= [0, 1, 0, 1, 0, 0] ∧ [1, 1, 1, 1, 0, 0]
= [0, 1, 0, 1, 0, 0] ,

ii. V
(
∑2

k=1 A
t+1
k

O
(X)

)
= V

(
∑2

k=1 A
t
k

O
(X)

)
∨(

∧2k=1V
(
∇IUAk

(X)
))

= [1, 1, 1, 1, 0, 0] ∨ [1, 1, 0, 0, 0, 0]
= [1, 1, 1, 1, 0, 0] .

iii. V
(
∑2

k=1 A
t+1
k

P
(X)

)
= V

(
∑2

k=1 A
t
k
P
(X)

)
∧(

∼ ∧2k=1V
(
∇ILAk

(X)
))

= [0, 1, 0, 0, 0, 0] ∧ [1, 1, 1, 0, 0, 0]
= [0, 1, 0, 0, 0, 0] ,
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iv. V
(
∑2

k=1 A
t+1
k

P
(X)

)
= V

(
∑2

k=1 A
t
k

P
(X)

)
∨(

∨2k=1V
(
∇IUAk

(X)
))

= [1, 1, 1, 1, 0, 1] ∨ [0, 1, 0, 1, 1, 1]
= [1, 1, 1, 1, 1, 1] .

From Definition 4 we have that ∑2
k=1 A

t+1
k

O
(X) = {x2, x4},

∑2
k=1 A

t+1
k

O
(X) = {x1, x2, x3, x4}, ∑2

k=1 A
t+1
k

P
(X) = {x2},

∑2
k=1 A

t+1
k

P
(X) = U.

Algorithm 2: Matrix-based algorithm for updating approximations in
MGRS while adding attributes.

Require: (1) IS t =
(
U,AT t,VAT t , f t

)
(2) IS t+1 =(

U,AT t+1,VAT t+1 , f t+1
)

(3) A target concept X ⊆ U (4)

∑m
k=1 A

t
k
O (X), ∑m

k=1 A
t
k

O
(X),∑m

k=1 A
t
k
P (X) and∑m

k=1 A
t
k

P
(X). (4)

Equivalence classes [x]t+1Ak
, x ∈ U, k ∈ {1, 2,⋯ ,m}.

Ensure: ∑m
k=1 A

t+1
k

O
(X), ∑m

k=1 A
t+1
k

O
(X)), ∑m

k=1 A
t+1
k

P
(X)), and

∑m
k=1 A

t+1
k

P
(X))

1: n ← |U|

2: t ← |||∑
m
k=1 A

t
k

P
(X) –∑m

k=1 A
t
k
P (X)|||

3: for i = 1 → t do
4: for k = 1 → m do
5: if vi

(
∑m

k=1 A
t
k

P
(X) – ∑m

k=1 A
t
k
P(X)

)
= 1 ∧ V

(
∼ (X)

)
⋅

V t([xi]t+1Ak

)
= 0 then vi

(
ΔILAk

)
= 1

6: end if
7: if vi

(
∑m

k=1 A
t
k

P
(X) –∑m

k=1 A
t
k
P (X)

)
= 1 ∧ V (X) ⋅

V t
(
[xi]t+1Ak

)
= 0 then vj

(
ΔIUAk

)
= 1

8: end if
9: end for
10: end for
11: V

(
Δ∑m

k=1 Ak
O (X)

)
← V

(
ΔILA1

)
12: V

(
Δ∑m

k=1 Ak
O
(X)

)
← V

(
ΔIUA1

)
13: V

(
Δ∑m

k=1 Ak
P (X)

)
← V

(
ΔILA1

)
14:V

(
Δ∑m

k=1 Ak
P
(X)

)
← V

(
ΔIUA1

)
15: for k = 2 → m do
16: V

(
Δ∑m

k=1 Ak
O (X)

)
← V

(
Δ∑m

k=1 Ak
O (X)

)
∨ V

(
ΔILAk

)
17: V

(
Δ∑m

k=1 Ak
O
(X)

)
← V

(
Δ∑m

k=1 Ak
O
(X)

)
∨ V

(
ΔIUAk

)
18: V

(
Δ∑m

k=1 Ak
P (X)

)
← V

(
Δ∑m

k=1 Ak
P (X)

)
∧ V

(
ΔILAk

)
19: V

(
Δ∑m

k=1 Ak
P
(X)

)
← V

(
Δ∑m

k=1 Ak
P
(X)

)
∧ V

(
ΔIUAk

)
20: end for
21: 

 

22: V
(
∑m

k=1 A
t+1
k

O
(X)

)
← V

(
∑m

k=1 A
t
k
O (X)

)
∨

V
(
Δ∑m

k=1 Ak
O (X)

)
23: V

(
∑m

k=1 A
t+1
k

O
(X)

)
← V

(
∑m

k=1 A
t
k

O
(X)

)
∧ ∼

V
(
Δ∑m

k=1 Ak
O
(X)

)
24: V

(
∑m

k=1 A
t+1
k

P
(X)

)
← V

(
∑m

k=1 A
t
k
P (X)

)
∨

V
(
Δ∑m

k=1 Ak
P (X)

)
25: V

(
∑m

k=1 A
t+1
k

P
(X)

)
← V

(
∑m

k=1 A
t
k

P
(X)

)
∧ ∼

V
(
Δ∑m

k=1 Ak
P
(X)

)
26: Return ∑m

k=1 A
t+1
k

O
(X) ,∑m

k=1 A
t+1
k

O
(X), ∑m

k=1 A
t+1
k

P
(X) and

∑m
k=1 A

t+1
k

P
(X)

4. MATRIX-BASED DYNAMIC
ALGORITHMS FOR UPDATING
APPROXIMATIONS WHILE ADDING AND
DELETING ATTRIBUTES

Based on Corollary 12, we propose matrix-based Algo-
rithm 2 for updating approximations in MGRS while adding
attributes. The total time complexity of Algorithm 2 is

O
(
m|∑m

k=1 A
t
k

P
(X) –∑m

k=1 A
t
k
P (X) ||U|

)
. Steps 3–12 are to cal-

culate ΔILAk
and ΔIUAk

(k ∈ {1, 2,⋯ ,m}) with time complexity

O
(
m|∑m

k=1 A
t
k

P
(X) –∑m

k=1 A
t
k
P (X) ||U|

)
. Steps 17–22 are to

compute Δ∑m
k=1 Ak

O (X) , Δ∑m
k=1 Ak

O
(X) , Δ∑m

k=1 Ak
P (X) and

Δ∑m
k=1 Ak

P
(X) with time complexity O

(
m|U|

)
. Steps 24–27 are

to update the approximations of MGRS while increasing granular
structures with time complexity O

(
|U|

)
.

Since the time complexity of Algorithm 1 is O
(
m|X||U|

)
, and in

general, O
(
m|∑m

k=1 A
t
k

P
(X) –∑m

k=1 A
t
k
P (X) ||U|

)
⩽ O

(
m|X||U|

)
does not hold. Algorithm 3 is proposed to make sure the total time
complexity is no more than O

(
m|X||U|

)
. In other words, when

|∑m
k=1 A

t
k

P
(X) – ∑m

k=1 A
t
k
P (X) | > |X| we call Algorithm 1; other-

wise, we call Algorithm 2.

Based on Corollary 17, we propose matrix-based Algo-
rithm 4 for updating approximations in MGRS while delet-
ing attributes. The total time complexity of Algorithm 4 is

O
(
m|∑m

k=1 A
t
k
O (X) ∪

(
U –∑m

k=1 A
t
k

O
(X)

)
||U|

)
. Steps 3–12 are

to calculate∇ILAk
and∇IUAk

(k ∈ {1, 2,⋯ ,m}) with time complexity

O
(
m|∑m

k=1 A
t
k
O (X) ∪

(
U –∑m

k=1 A
t
k

O
(X)

)
||U|

)
. Steps 17–22
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Algorithm 3: Ensure total time complexity of updating approximations in
MGRS while adding attributes is no more than O

(
|X||U|

)
.

Require: (1) IS t =
(
U,AT t,VAT t , f t

)
(2) IS t+1 =(

U,AT t+1,VAT t+1 , f t+1
)

(3) A target concept X ⊆ U (4)

∑m
k=1 A

t
k
O (X), ∑m

k=1 A
t
k

O
(X), ∑m

k=1 A
t
k
P (X) , and ∑m

k=1 A
t
k

P
(X).

(4) Equivalence classes [x]t+1Ak
, x ∈ U, k ∈ {1, 2,⋯ ,m}.

Ensure: ∑m
k=1 A

t+1
k

O
(X), ∑m

k=1 A
t+1
k

O
(X), ∑m

k=1 A
t+1
k

P
(X) and

∑m
k=1 A

t+1
k

P
(X)

1: if |∑m
k=1 A

t
k

P
(X) –∑m

k=1 A
t
k
P (X) | ⩽ |X| then Call Algorithm 2

2: end if
3: if |∑m

k=1 A
t
k

P
(X) –∑m

k=1 A
t
k
P (X) | > |X| then Call Algorithm 1

4: end if
5: Return ∑m

k=1 A
t+1
k

O
(X) ,∑m

k=1 A
t+1
k

O
(X), ∑m

k=1 A
t+1
k

P
(X) and

∑m
k=1 A

t+1
k

P
(X)

are to compute∇∑m
k=1 Ak

O (X) , ∇∑m
k=1 Ak

O
(X) , ∇∑m

k=1 Ak
P (X)

and ∇∑m
k=1 Ak

P
(X) with time complexity O

(
m|U|

)
. Steps 24–

27 are to update the approximations of MGRS while increasing
granular structures with time complexity O

(
m|U|

)
.

Algorithm 4: Matrix-based algorithm for updating approximations in
MGRS while decreasing attributes

Require: (1) IS t =
(
U,AT t,VAT t , f t

)
(2) IS t+1 =(

U,AT t+1,VAT t+1 , f t+1
)

(3) A target concept X ⊆ U (4)

∑m
k=1 A

t
k
O (X), ∑m

k=1 A
t
k

O
(X),∑m

k=1 A
t
k
P (X) and∑m

k=1 A
t
k

P
(X). (4)

Equivalence classes [x]t+1Ak
, x ∈ U, k ∈ {1, 2,⋯ ,m}.

Ensure: ∑m
k=1 A

t+1
k

O
(X), ∑m

k=1 A
t+1
k

O
(X)), ∑m

k=1 A
t+1
k

P
(X)) and

∑m
k=1 A

t+1
k

P
(X))

1: n ← |U|

2: t ← |||∑
m
k=1 A

t
k
O (X) ∪

(
U –∑m

k=1 A
t
k

O
(X)

)|||
3: for i = 1 → t do
4: for k = 1 → m do

5: if vi
(
∑m

k=1 A
t
k
O (X) ∪

(
U –∑m

k=1 A
t
k

O
(X)

))
= 1 ∧ V (∼ X) ⋅

V t
(
[xi]t+1Ak

)
≠= 0 then vi

(
∇ILAk

)
= 1

6: end if

7: if vi
(
∑m

k=1 A
t
k
O (X) ∪

(
U –∑m

k=1 A
t
k

O
(X)

))
= 1 ∧ vi (X) = 1

then vi
(
∇IUAk

)
= 1

8: end if
9: end for
10: end for

11: V
(
∇∑m

k=1 Ak
O (X)

)
← V

(
∇ILA1

)
12: V

(
∇∑m

k=1 Ak
O
(X)

)
← V

(
∇IUA1

)
13: V

(
∇∑m

k=1 Ak
P (X)

)
← V

(
∇ILA1

)
14: V

(
∇∑m

k=1 Ak
P
(X)

)
← V

(
∇IUA1

)
15: for k = 2 → m do
16: V

(
∇∑m

k=1 Ak
O (X)

)
← V

(
∇∑m

k=1 Ak
O (X)

)
∧ V

(
∇ILAk

)
17: V

(
∇∑m

k=1 Ak
O
(X)

)
← V

(
∇∑m

k=1 Ak
O
(X)

)
∧ V

(
∇IUAk

)
18: V

(
∇∑m

k=1 Ak
P (X)

)
← V

(
∇∑m

k=1 Ak
P (X)

)
∨ V

(
∇ILAk

)
19: V

(
∇∑m

k=1 Ak
P
(X)

)
← V

(
∇∑m

k=1 Ak
P
(X)

)
∨ V

(
∇IUAk

)
20: end for
21: 
22: V

(
∑m

k=1 A
t+1
k

O
(X)

)
← V

(
∑m

k=1 A
t
k
O (X)

)
∧ ∼

V
(
∇∑m

k=1 Ak
O (X)

)
23: V

(
∑m

k=1 A
t+1
k

O
(X)

)
← V

(
∑m

k=1 A
t
k

O
(X)

)
∨

V
(
∇∑m

k=1 Ak
O
(X)

)
24: V

(
∑m

k=1 A
t+1
k

P
(X)

)
← V

(
∑m

k=1 A
t
k
P (X)

)
∧ ∼

V
(
∇∑m

k=1 Ak
P (X)

)
25: V

(
∑m

k=1 A
t+1
k

P
(X)

)
← V

(
∑m

k=1 A
t
k

P
(X)

)
∨

V
(
∇∑m

k=1 Ak
P
(X)

)
26: Return ∑m

k=1 A
t+1
k

O
(X) ,∑m

k=1 A
t+1
k

O
(X), ∑m

k=1 A
t+1
k

P
(X) and

∑m
k=1 A

t+1
k

P
(X)

Since the time complexity of Algorithm 1 is O
(
m|X||U|

)
, and

in general, O
(
m|∑m

k=1 A
t
k
O (X) ∪

(
U –∑m

k=1 A
t
k

O
(X)

)
||U|

)
⩽

O
(
m|X||U|

)
does not hold, Algorithm 5 is proposed to make sure

the total time complexity is no more than O
(
m|X||U|

)
. In other

words, when |∑m
k=1 A

t
k
O (X)∪

(
U –∑m

k=1 A
t
k

O
(X)

)
| > |X| we call

Algorithm 1; otherwise, we call Algorithm 4.

5. EXPERIMENTAL EVALUATIONS

In this section, several experiments were conducted to evaluate the
effectiveness and the efficiency of Algorithm 3 (DMB) and Algo-
rithm 5 (DMB). Three algorithms were chosen to compare, namely,
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Algorithm 5: Ensure total time complexity of updating approximations in
MGRS while deleting attributes is no more than O

(
|X||U|

)
Require: (1) IS t =

(
U,AT t,VAT t , f t

)
(2) IS t+1 =(

U,AT t+1,VAT t+1 , f t+1
)

(3) A target concept X ⊆ U (4)

∑m
k=1 A

t
k
O (X), ∑m

k=1 A
t
k

O
(X),∑m

k=1 A
t
k
P (X) and∑m

k=1 A
t
k

P
(X). (4)

Equivalence classes [x]t+1Ak
, x ∈ U, k ∈ {1, 2,⋯ ,m}.

Ensure: ∑m
k=1 A

t+1
k

O
(X), ∑m

k=1 A
t+1
k

O
(X)), ∑m

k=1 A
t+1
k

P
(X)) and

∑m
k=1 A

t+1
k

P
(X))

1: if |∑m
k=1 A

t
k
O (X) ∪

(
U –∑m

k=1 A
t
k

O
(X)

)
| ⩽ |X| then Call

Algorithm 4
2: end if
3: if |∑m

k=1 A
t
k
O (X) ∪

(
U –∑m

k=1 A
t
k

O
(X)

)
| > |X| then Call

Algorithm 1
4: end if
5: Return ∑m

k=1 A
t+1
k

O
(X) ,∑m

k=1 A
t+1
k

O
(X), ∑m

k=1 A
t+1
k

P
(X) and

∑m
k=1 A

t+1
k

P
(X)

matrix-based static algorithm (MB) [53], relation matrix-based
static algorithm (RMB) [46], and relation matrix-based dynamic
algorithm (DRMB) [46]. Six data sets were chosen from UCI
machine learning repository. The details of the data sets are listed
in Table 2. We can see that the sizes of data sets range from 194 to
1000, the attribute numbers range from 5 to 59. All the experiments
were carried out on a personal computer with 64-bit windows 10,
Inter(R) Core(TM) i7 6700HQ CPU @2.60 GHz, and 16GB mem-
ory. The program language was Matlab r2015b.

5.1. Comparison of Computational Time
Using Data Sets with Different Size

The computational time were compared among the four algorithms
in MGRSs while adding and deleting attributes when the size of
data sets increases. First of all, we construct three granular struc-
tures. We randomly chose an attribute set Â containing at least two
attributes in the data set and divided the rest into three parts ran-
domly to contribute to three granular structures respectively.While
adding attributes, we added the attributes in Â into the three gran-
ular structures at the same time. While deleting attributes, we com-
bined Âwith each granular structure and deleted the attributes in Â
from the granular structures at the same time.We randomly divided
each data setU into 10 subsets {U1,U2,⋯ ,U10}. ThenU1 was cho-
sen as the first temporary data set. After that, some samples of tem-
porary data set were randomly selected to contribute to the target
conceptX. The size of target conceptXwasabout 0.85 times the size
of each temporary data set. We calculated the four approximations
in MGRS by the four algorithms 10 times and compared the aver-
ages. Then madeU1 ∪U2 the second temporary data set and repeat
the whole process was repeated.

When the size of data sets increases, results of the four algo-
rithms while adding and deleting attributes in MGRS are shown in

Table 2 Details of data sets.

No. Data Sets Samples Attributes
1 Blood Transfusion 748 5
2 Dermatology 366 20
3 Extention of ZAlizadehsani 303 59
4 Facebookmetrics 500 19
5 Flags 194 30
6 German Credit Data 1000 21

Figures 1 and 2.We can see thatDMB is themost efficient algorithm
when the size of data set increases gradually. From Figure 1 we can
see that DMB is effective and it reduces the computational time.

5.2. Comparison of Computational Time
Using Target Concept with Different
Size

Similarly, instead of construct temporary data sets, we construct
temporary target concepts. The process of constructing and vary-
ing the three granular structures is similar to Section 5.1. We ran-
domly divided each data set into ten subsets {X1,X2,⋯ ,X10}. And
thenX1 was chosen as the first temporary target concept. Finally, we
calculated the four approximations in MGRS by the the four algo-
rithms 10 times and compared the averages. Then made X1 ∪ X2
the second temporary target concept and the whole process was
repeated.

When the size of target concept increases, results of MB, DMB,
RMB, DRMB are shown in Figures 3 and 4. When the size of tar-
get concept increasing gradually, RMB is always the most time-
consuming algorithmn the four algorithms. DMB andMB aremore
efficient than RMB and DRMB. The computational time of DMB is
always less than or equal to MB, so DMB is more efficient than any
other algorithms. Sometimes the computational time of DMB is a
little more than the MB while deleting attributes, which is due to
additional computation inDMB and it is within the expected range.

6. CONCLUSION

Data sets in real life application sometimes are complex and huge,
which is difficult to handle. In addition, the granular structures
often increase and decrease in some data sets. It is important to
design algorithms to update approximations inMGRSwhile adding
and deleting attributes. In this paper, four algorithms have been
proposed to ensure that the time complexity of the incremental
algorithm is less than or equal to the static algorithm. Experimen-
tal results show that the computational time of the DMB is no more
than the other algorithms in most of the situations.

Approximation computation is a basic process of attribute reduc-
tion. In the future, we will further investigate attribute reduction
algorithm using the approaches we proposed.
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Figure 1 Computational time of Algorithm 3 when the size of U increasing gradually (adding attributes).
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Figure 2 Computational time of Algorithm 5 when the size of U increasing gradually (deleting attributes).
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Figure 3 Computational time of Algorithm 3 when the size of X increasing gradually (adding attributes).
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Figure 4 Computational time of Algorithm 5 when the size of X increasing gradually (deleting attributes).
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