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ABSTRACT

Recurrent neural network (RNN) is one of the most popular architectures for addressing variable sequence text, and it shows out-
standing results in many natural language processing (NLP) tasks and remarkable performance in capturing long-term depen-
dencies. Many models have achieved excellent results based on RNN. However, most of these models overlook the locations
of the keywords in a sentence and the semantic connections in different directions. As a consequence, these methods do not
make full use of the available information. Considering that different words in a sequence usually have different importance, in
this paper, we propose bidirectional gated recurrent units (BGRUs) which integrates a novel attention pooling mechanism with
max-pooling operation to force the model to pay attention to the keywords in a sentence and maintain the most meaningful
information of the text automatically. The presented model allows to encode longer sequences. Thus, it not only prevents impor-
tant information from being discarded but also can be used to filter noises. To avoid full exposure of content without any control,
we add an output gate to the GRU, which is named as text unit. The proposed model was evaluated on multiple tasks, including
sentimental classification, movie review data, and a subjective classification dataset. Experimental results show that our model

1. INTRODUCTION

Recently, neural networks have achieved outstanding performance
in many natural language processing (NLP) tasks, such as statisti-
cal machine translation [1], speech recognition [2,3], and natural
language inference [4]. As one of the main parts of NLP, sentence
modeling aims at representing the meaning of sentences. As a tra-
ditional method, the bag-of-words (BOWs) model addresses sen-
tences as sets of words [5]; however, it usually suffers from the curse
of dimensionality and a lack of rich meanings in the representation
of words. In addition, many tasks require excellent sentence mod-
eling to finish their works in NLP. The main challenge of sentence
modeling is extracting the features from the words or n-grams and
representing the sentence’s meaning.

Recurrent neural network (RNN) can capture the long-term depen-
dencies and learn the meaning of words. However, many RNN-
based models face two problems: (1) They have ignored important
information that may contribute to the understanding of the sen-
tence. For example, the famous RNN-based model [6] utilized RNN
to take the expression of the whole sentence into consideration
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rather than focused on the influence of rich semantic words, result-
ing in a lack of semantic and emotional emphasis on each word
of the sentence. (2) They have failed to consider the differences
between semantic expressions in different directions [7]. However,
in the language of expression, the meaning of the sentence is rel-
evant to its context. As a consequence, different directions of the
sentence are important for sentence understanding.

To address these problems, Lai, Xu et al. 8] proposed recurrent con-
volutional neural networks (CNNs) for text classification. In this
work, the Bidirectional RNN (BRNN) was employed to capture the
semantic information in different directions and it integrated the
max-pooling operation with CNN to extract the important infor-
mation automatically. As their experimental results demonstrated,
this approach could filter out noises effectively. Nevertheless, this
model disposed the representation of the sentence obtained by
BRNN and the CNN was employed to capture the important infor-
mation of sentence instead of evaluating and selecting the words
that expresses semantic information exactly.

In [9], an attention mechanism was proposed. The representation
of a sentence was accumulated in each time dimension. Therefore,
inspired by hierarchical attention networks for document classifi-
cation [9], when we try to understand what a sentence means, the
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words contribute more to the sentence expression will facilitate us
to better understand the sentence. Figure 1 illustrates the examples
of meaningful words those can help us pay more attention to the
sentence. In the first sentence, the words sweet, funny, charming,
and delightful deliver strongly positive meanings. By contrast, far-
flung, illogical, and plain stupid deliver negative meanings in the sec-
ond sentence. Compared with other words such as it and and, they
are more meaningful. The last sentence contains both the words
expressing positive and negative meanings, but the negative mean-
ing of the expression is more significant. Different from [9], our
model is dedicated to maintaining more important information and
reducing the effects of noise, rather than summing of all the noise
and important information to express the meaning of the sentence.

Hence, our proposed attention pooling evaluates importance
weights by representing sentences that are obtained by bidirectional
gated recurrent units (BGRUs) [1]. In addition, we utilize the GRU
to effectively overcome the situation where the gradient of RNN
tends to vanish. Then, we can obtain the importance weight of each
word and combine the corresponding weights with the representa-
tions of sentences to increase the weights of the important words in
the time-step and feature dimension. However, since we retain all
the information on the time-step and feature dimension, there will
still be some noise information. Therefore, we propose the atten-
tion pooling mechanism combined with 2D max-pooling operation
to consider the feature and time-step dimensions at the same time,
which allows us to discover more valuable information.

In summary, in this paper we propose BGRU with an attention
pooling. Compared with RNN, BGRU can process semantic rela-
tions in different directions of texts, which allows us to deal with
more sequences of semantic information. We also incorporate
attention pooling to assist in the extraction of information and
determine which information is more important and needs to be
preserved. For convenience, we call our model BGRU-Att-pooling.
In our experiments, we evaluate our model based on sentimen-
tal classification [10], the Subjectivity dataset [11], and the Movie
Review (MR) dataset [12]. Our evaluations show that our model can
achieve a good result compared to a wide range of baseline models.

To sum up, our contributions are as follows: (1) We consider the
locations of the keywords in a sentence and the semantic con-
nections in different directions for sentimental classification. (2)
Based on max-pooling mechanism, we propose an attention pool-
ing mechanism which allows us to prevent more important infor-
mation from being discarded but also can be used to filter noise.
(3) Compare GRU to long short-term memory (LSTM), a text unit
is added to GRU, which effectively controls the content gate rather
than completely exposing it without any control on the stream
information.

This paper is organized in several parts. Section 2 introduces the
related work about text classification. In Section 3, we illustrate

our BGRU-Att-pooling model and its implementation details are
described. In Section 4, we introduce the details of our experimental
evaluation setup. In Section 5, we present the experimental results.
Finally, the conclusions and future work are discussed in Section 6.

2. RELATED WORK

As one of the mainstream tasks of NLP, text classification plays an
important role and has great research and application value. In par-
ticular, the cost of manually processing massive data is prohibitive.
Excellent performance has been achieved on sentimental classifica-
tion [13-15] and spam categorization [16,17], which belong to the
field of text classification.

In the early stages, Tong et al. [18] proposed SVMs for text clas-
sification, which can reduce the need for a labeled training set.
Due to the prominent performance of neural networks, many neu-
ral network models [19-21] have been proposed for text classifica-
tion. Unlike conventional approach, which relied heavily on human
knowledge, neural networks can completely extract features auto-
matically. Sinha et al. [19] proposed an end-to-end neural network-
based model for hierarchical classification. They utilized external
knowledge in the form of topic category taxonomies to facilitate
the classification by introducing an adapted version of attention
to represent documents dynamically through the hierarchy. Wang
et al. [20] proposed a label-word joint embedding method. Differ-
ent from the methods just utilize labels as the supervision, it embeds
the words and labels in the same joint space, and measures the
compatibility of word-label pairs to attend the document represen-
tations. Qian et al. [21] proposed linguistically regularized LSTM,
which was trained with linguistic resources. The linguistic knowl-
edge was applied to the classification in order to combine the fea-
tures of humans with the neural network through the sentimental
lexicons to assist with sentimental analysis.

Our model is also aimed at training sentence expressions and clas-
sifying them; however, neural networks are expected to help us
automatically rather than utilizing the sentimental lexicons. Lee
et al. [22] proposed sequential short-text classification with recur-
rent and CNNs, which utilized RNN and CNN to generate word
embeddings, and then classified the short texts through a fully con-
nected layer and a softmax layer. However, this operation results
in high time consumption due to the training of word embeddings.
As a contrary, in this work, we aim at presenting an approach that
can automatically encode sentences, which enables the neural net-
work to automatically perform sentimental classification and avoid
complicated feature engineering process. Therefore, we utilize the
pretrained word embeddings to replace the text instead of training
the word representations of the text separately as employed in [22].

Briefly speaking, neural networks for sequence processing mod-
els can be broadly divided into two categories: recursive sentence

it's sweet ¥, funny ', charming ®, and completely delightful ®.

the story is far-flung ©, illogical ©, and plain © stupid ©.

a feel-good * picture in the best @ sense of the term.

a boring © masquerade ball where normally good ™ actors, even kingsley, are made to look bad ©.

Figure1 Examples from the movie review dataset.
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modeling, such as Recursive neural networks (RecNN) and recur-
rent sentence modeling, such as RNN, recursive sentence model-
ing defines recursive tree structures to express longer phrases [10],
which combines the leaf nodes of the tree structures to represent
compositionality. Tai et al. [23] proposed tree-structured LSTMs,
which utilizes tree-structured network topologies to build the sen-
tence model. Recurrent sentence modeling benefits from the recur-
rent structure of RNN, has achieved remarkable performance in
capturing long-term dependencies. It addresses the variable-length
sequence with the memory’s state, in which each time-step’s out-
put depends on the value at the previous time. Recently, Hochreiter
et al. [24] proposed LSTM units, it stores the previous state and
memorizes the extracted features from the current time’s input thus
it consumes less time than RecNN. GRU is similar to LSTM of
which each unit remembers the features of the input stream, which
is beneficial for processing the long sentences that contain both
important information and noise. Chung et al. [25] compared the
performance between LSTM and GRU. From their conclusions,
LSTM unit computes the new memory content without any control
of the previous time step, and GRU exposes its full content without
any control. Therefore, we finally package the content gate in the
GRU to avoid its full exposure and we call its output as text unit. We
analyze the impact of LSTM and GRU on our task in Section 5.

As one of the mainstream sentence modeling approaches, CNN
also has outstanding performance. Kim [13] proposed training on
pretrained word embeddings for sentimental classification, which
utilized the convolutional layer to capture the features among the
sentences and applied a max-over-time pooling operation [26] over
the feature map and kept the maximum value. Mou et al. [27]
observed that CNN can extract the word’s features effectively while
RNN performs well in capturing the inherent sentence structures.
Based on this observation, they proposed TBCNN, which employs
a CNN that is based on a tree structure. Johnson et al. [28] proposed
a deep pyramid CNNs, they utilized the downsampling to decrease
computational cost while efficiently representing long range asso-
ciations in text. Li et al. [29] employ initializing convolutional fil-
ters with features that computed by K-means rather than initializing
filters randomly, which enable features to be efficiently captured.
Zhang et al. [30] proposed a grouped weight sharing way to instead
of word embeddings. They supposed words derived from an exter-
nal resource, which can be divided into N group. And this is similar
to Li’s parameter initialization through clustering [29]. Our model
is consistent with its purpose.

For these CNN guided sentence models [13,26-30], the perfor-
mance is limited by the size of the perception field, thus it is less
effective in capturing the context of the sentence than the RNNs. In
this work, one insight is that the implicit semantics of the sentence
is often highly context-dependent, thus we utilize RNN to encode
sentences which can better capture the context relationship, so that
the model pays more attention to the most important information
in the sentence. Both [29] and [30] employ cluster method to make
their model more effective in extracting features, and obtain more
discriminative sentence representation. As a contrast, we focus on
reducing the complexity of model preprocessing during the training
stage and make the features more significant which can be extracted
more efficiently in the meanwhile.

As the main part of language modeling, learning a distributed rep-
resentation for words and combining the representation with words

in a sentence to deliver the information are challenging. Bengio
et al. [31] proposed a neural probabilistic language model which
overcame the curse of dimensionality and learned the distribu-
tion of words. In [32], Skip-gram and Continuous Bag-of-Words
(CBOW) were proposed for computing representations of words.
The Skip-gram model was used to predict each context word based
on the current word. In contrast, the CBOW model predicts the
current word based on the context word. Since then, Mikolov et al.
[33] also showed that negative sampling can accelerate the process
and learn more regular word representations. The complex Huff-
man binary tree was replaced with negative sampling to improve the
training speed and enhance the quality of the word vectors. After
that, Pennington et al. [34] proposed global vectors for word rep-
resentation. In their work, the model was trained in a word-word
co-occurrence matrix. Unlike in the previous model, the co-
occurrence probabilities of words can reflect the correlation
between the words, and this relationship can be described by the
word-word co-occurrence matrix.

Through these models, we can obtain deeper word embed-
dings representations. For example, Vec(“King”) — Vec(“Queen”) =
Vec(“man”) — Vec (“women”). In many NLP tasks, we would obtain
the whole representation of a sentence by replacing each word with
word embeddings. Furthermore, we achieve excellent performance
in our task. Our evaluation is based on replacing the words with
the pretrained word embeddings, which effectively helps the model
focus on the keywords.

3. THE PRESENTED MODEL
3.1. Model Description

As shown in Figure 2, BGRU-Att-pooling consists of input layer
(Section 3.2), BGRU (Section 3.3), attention pooling (Section 3.4),
and output layer (Section 3.5). The model utilizes GRU to capture
the long-term dependencies instead of employing CNN to learn
the transformation in one shot, thus it encodes the representation
of sentence progressively via recurrent process. The model did not
directly utilize the output of BGRU as the final sentence represen-
tation for text classification since the direct output of BGRU with-
out any post-processing contains much noise, and it will introduce
more learnable parameters to the output layer. Instead, an adapted
attention mechanism is applied to enhance the feature representa-
tion and the results are then fed into a max-pooling layer to retain
valuable feature information. In practice, the feature enhancement
operation can prevent hidden features that are helpful for classifi-
cation but not captured by BGRU from being filtered out.

We show the model training procedure as follows. (1) Given a
sentence X, it is first processed by word segmentation and each
word is replaced with a pre-trained word embedding. (2) The
resulted embedding matrix is employed as the input of BGRU, and
its forward and backward representations are obtained through
BGRU. (3) An improved attention pooling operation is applied to
get words’ weight values, the word with weight value larger than
a threshold is recorded as keyword. (4) In order to reduce the
computational complexity caused by the high-dimensional word
embeddings, max-pooling is followed to make the sentence repre-
sentation more semantic. (5) The sentence representation is flat-
tened and classified by the softmax layer. Through the output layer,
the model outputs the predicted label .
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Figure 2 Architecture of the attention pooling-based bidirectional gated recurrent unit (BGRU).

3.2. Input Layer

For the proposed model, the input is a sentence. Each word in the
sentence is replaced by the corresponding word vector, and it then
forms a word embedding. Without loss of generality, let x; denotes
the i-th word in the sentence and X represents the input sentence.
Let ¢; € R¥ be the d-dimensional word vectors for the word x;, and
C € R™ represents the word-embedding matrix, where [ is the
max length of the sentence. The specific setting of the max length of
the sentence and the way to initialize the word vector are described
in Section 4.3.

3.3. Bidirectional Gated Recurrent Unit

In [1], a new activation function for RNN was proposed, which was
called GRU and employed two gating units, namely, the reset and
update gates, to control the stream of information. In addition, we
add a text unit to control the stream of output.

Figure 3 shows the GRU with text unit. The GRU consists of reset
gates r, update gates z, activation h, candidate activation /1, and text
unit u. After variable sequences pass through the hidden units, the
output sequence is the representation of a sentence or phrase. The

activation value k! at time ¢ is expressed as follows:
J_ AR i
W= (1-2 )l + 20 (1)

Equation (1) shows that the activation value htj was determined by
the update gate z/, the previous state hf_l, and the candidate state

flf . The update gate z{ determines how much of the stream of infor-
mation can be kept or forgotten at time-steps ¢ and ¢-1. The update

gate z] is expressed as follows:
7} =0 (Wye + Uphyq), )

where o is a logistic sigmoid function, x; is a vector of the sequences
at time t, and W, and U, are weights that can be trained to update

zf . The candidate state is fzf :

Ij’f = tanh (Wy¢, + U, (r, © htfl))j , (3)

where © is element-wise multiplication, r; is the reset gate. W}, and
U, can be trained to contribute to the candidate state. The reset
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Figure 3 Illustration of the
calculation process of gated
recurrent unit (GRU).

gate controls the previous state h,_; by deciding how much previous
information can be kept. W, and U, are weights that can be trained
to update r,. If the reset gate is zero, it means &/ forgets all previous
states, thus the reset gate will be updated as follows:

=0 (Wrct + Urht—l) . (4)

In this paper, we utilize GRU to capture the previous and later infor-
mation, as shown in Figure 2. Our model contains forward and
backward sequences that represent semantic relations in different
directions. To capture the relationship between the forward and
backward sequences, we utilize element-wise summation to com-
bine the forward and backward sequences as follows:

hi =h{ @ h, (5)
where h! is the forward sequence and h? is the backward sequence.
u, = tanh (W,h; + b,,), (6)

where u; is text unit, rather than utilizing exposed content directly
as text embedding.

Benefitting from GRU control of the information flow, GRU retains
the previous information and combines the information that is
currently entered, which allows us to obtain a better semantic
representation.

3.4. Attention Pooling

Since different words have different meanings, we employ impor-
tance weights to identify important words that convey the meaning
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of the sentence. The formula is defined as follows:
exp (u?uw)
OCZ- -
E exp (u]u,)
t

where u,, is used to assist the softmax function in automatically
deciding which words play an important role. When the normal-
ized importance weights are obtained, the most commonly used
approach to get the final expression of the sentence for attention-
based models is the weighted sum of all the word vectors at time
step [9,35,36], its definition is as follows:

@)

t
‘VI' = z aihi. (8)
i=0

However, directly superpose information at time step will lose some
important information, hence, in order to retain more semantic
information, we utilize element-wise multiplication instead. There-
fore, the expression of the sentence is expressed as follows:

vi=a;Oh;, 9)

where © refers to element-wise multiplication. Once the impor-
tance weight is close to zero, the multidimensional features of v; are
also close to zero.

Similarly, we also find that the retention of information will also
bring about noise information. Therefore, we combine our atten-
tion mechanism with max-pooling to allow the model to encode
longer sequences. In this way, the model not only prevents impor-
tant information from being discarded but also can be used to filter
noise. The operation about applying max-pooling to the matrix v; ,
can be expressed as

Oy = Max (Vi:i+k1,t:t+k2) . (10)

where Max is the max-pooling function. We employ the filter m*1*%2
(k is the size of the filter) to extract the maximum in a fixed window,

and the output 4 is expressed as

h = (01,1, 01,14, > Ok 1 )ky (k1) | (11)

where [ is the time-step length, and d is the size of the word
embeddings.

3.5. Output Layer

The output of the max-pooling layer is the penultimate output
of BGRU-Att-pooling. For text classification, we classify sentences
into multiple classes that depend on various tasks. Then, we utilize
the softmax function to predict the type of input text. We compute
the result j as follows:

y = softmax(Wh +b). (12)

Then, the cross-entropy loss is defined as
1 < .
1©) =-= 3 tlog (3) + A2, (13
i=1

where t; € T™ is the one-hot representation of the true label, y is the
result of the cross-entropy loss, and A is an L, regularization [37]
hyperparameter. We employ stochastic gradient descent and adopt
the optimizer Adadelta [38].

4. EXPERIMENTAL SETUP

4.1. Experimental Settings

For demonstrating the efficiency and efficacy of our model, we con-
duct five experiments on a desktop machine with an Intel Core
17-6300 CPU (3.4 GHz) ans a GeForce 1080 GPU (16GB memory).
We implemented our model based on Tensorflow framework and
the source code is available at https://github.com/djzgroup/BGRU-
AttentionPooling.

At the training stage, a one layer BGRUs is employed as our BGRU
model and the number of hidden units is set as 300. We set model
hyperparameter for the filter size, L, regularization rate, batch size,
number of hidden units, dropout rate, and learning rate. For the
dropout rate, the default value as 0.5 is set for all tasks. For the learn-
ing rate, the Adadelta optimizer is utilized which can be adapted
dynamically on the basis of a single initial learning rate. Hence, we
do not need to tune the learning rate during training. We also set
the learning rate to a default value of 1.0 in all tasks, and the tanh
function is chosen as the activation function according to the exper-
imental results. Furthermore, the mini batch size is 10 and the L,
regularization rate is 1 X 107>.

4.2. Datasets

In this paper, we evaluate our model on the following data sets, and
Table 1 shows the summary statistics for these datasets.

¢ SST-1. The Stanford sentimental treebank’ was proposed by
[10], and it includes fine-grained labels (very negative,
negative, neutral, positive, and very positive). SST-1 contains
8,544 sentences for training, 1,101 for validating, and 2,210 for
testing. The data were provided in subsentence format. We
train our model on both phrases and sentences in the training
set and only test on sentences.

» SST-2. Similar to the SST-1; however, SST-2 eliminates neutral
labels, integrates negative and negative labels into negative
labels, and integrates active and active labels into positive labels.

e MR. The MR? dataset is a dataset with 5,331 positive and 5,331
negative reviews, proposed by [12].

Table 1 Summary statistics for the datasets.

Data C L N \% |Vpre|  Test
SST-1 5 18 11855 17834 17370 2210
SST-2 2 19 9613 16186 15802 1821
MR 2 21 10662 19472 17260 CV
Subj 2 23 10000 22240 19787 CV

C: number of target classes.

L: average sentence length.

N: number of sentence.

V: vocabulary size.

|Vpre|: number of words that are present in both the pretrained word
embeddings and the dataset.

Test: test dataset size. (CV: These datasets do not set the test data. Hence,
we utilize 10-fold cross validation to evaluate our model.)

'http://nlp.stanford.edu/sentiment/

2https://www.cs.cornell.edu/people/pabo/movie-review-data/
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o Subj. The subjective classification dataset (Subj))* was
proposed by [11]. Subj includes 5,000 subjective sentences and
5,000 objective sentences.

4.3. Padding and Word Embeddings
4.3.1. Padding

Since we employ stochastic gradient descent, if we were to feed mul-
tiple batches, our model would require each sentence to be of a fixed
length. The maximum sentence length for each dataset is denoted
as maxlen, and sentences of length less than maxlen are padded.

4.3.2. Word embeddings

Our experiment utilizes GloVe® embeddings and employs the pre-
trained word embeddings, whose corpora were Wikipedia 2014 and
Gigaword 5. We employ word embeddings of dimension 300. If a
word appears in the pretrained word embeddings, it will be replaced
with a word embedding. Otherwise, it will be randomly initialized
using a uniform distribution in the range of [-0.1, 0.1]. Besides,
the word embeddings are fine-tuned along with other trainable
parameters.

4.4. Regularization and Dropout

We utilize the L, regularization [37] and dropout [39] to alleviate
model overfitting. The dropout operation is expressed as

r](.l) ~ Bernoulli (p) , (14)
)7(1) =Dy )/(l)- (15)

By Equation (14), we obtain a vector that is generated by a Bernoulli
process with probability p, where * denotes the element-wise prod-

uct operation and the thinned output 7 is sampled by y®.

We employ the dropout operation in the word embeddings layer,
the BGRU layer, and the Output layer. For the word embeddings
layer, we apply the dropout operation after the word has been
replaced by pretrained word embeddings. For the BGRU layer, we
apply this operation in each unit. For the Output layer, we apply it
before the softmax operation. We only perform L, regularization
on the Output layer.

5. RESULTS

5.1. Performance

We show the results of evaluating our model and compare our
two model variations (BGRU-Att and BGRU-Att-pooling) with
other state-of-the-art models. The comparison results are shown in
Table 2 and the best performing results are highlighted in bold.

Other models are summarized as follows: M V-RNN: Semantic com-
positionality through recursive matrix-vector spaces [40]; RNTN:
Recursive Deep Models for Semantic Compositionality Over a

3https://nlp.stanford.edu/projects/glove/

Table 2 Comparison of different models.

Model SST-1 SST-2 Subj MR
MV-RNN [40] 44.4 82.9 - -
RNTN [10] 45.7 85.4 - .
DCNN [41] 48.5 86.8 - -
CNN-nonstatic [13] 48.0 87.2 93.4 81.5
CNN-multichannel [13] 47.4 88.1 93.2 81.1
Modeling-CNN [42] 51.2 88.6 - -
Tree-LSTM [23] 51.0 88.0 - -
RCNN [8] 47.2 - - -
C-LSTM [7] 49.2 87.8 - -
d-TBCNN [27] 51.4 87.9 - .
Dependency Tree-LSTM [23] 48.4 85.7 - -
DSCNN [43] 49.7 89.1 93.2 81.5
Li-Bi-BLSTM [21] 48.6 - - 82.1
MVCNN [44] 49.6 89.4 93.9 ¥
CNN-nonstatic + UNI [29] 50.8 89.0 93.7 82.1
BGRU-Att 49.8 88.4 93.4 81.4
BGRU-Att-pooling 49.7 89.2 94.2 82.3

SST-1 is the sentiment treebank’s fined-grained classification.
SST-2 is the sentiment treebank’s binary classification.

Subj is the subjective classification dataset’s binary classification.
MR is the MR data’s binary classification.

“-” indicates the model was not evaluated on this dataset.

Sentiment Treebank [10]; DCNN: A CNNs for modeling sen-
tences [41]; CNN-nonstatic/multichannel: CNNs for Sentence Clas-
sification [13]; Modeling-CNN: Molding CNNs for text: nonlinear,
nonconsecutive convolutions [42]; Tree-LSTM/Dependency Tree-
LSTM: improved Semantic Representations From Tree-Structured
LSTMs [23]; C-LSTM: A C-LSTM N [7]; DSCNN: Dependency
Sensitive CNNs for Modeling Sentences and Documents [43];
Li-Bi-BLSTM: Linguistically Regularized LSTM for Sentiment Clas-
sification [21]; d-TBCNN: Discriminative Neural Sentence Mod-
eling by Tree-Based Convolution [27]; MVCNN: Multichannel
Variable-Size Convolution for Sentence Classification [44]; RCNN:
Recurrent CNNs for Text Classification [8].

For SST-1,d-TBCNN [27] has achieved the best result of 51.4%, and
that for SST-2 is 89.4% (MVCNN [44]). Our model, namely, BGRU-
Att-pooling, achieves outstanding results on MR and Subj, with test
accuracies of 82.3% and 94.2%, respectively. Besides, our model
still achieves comparable results on SST-1 and SST-1 for 49.7% and
89.2 %, respectively. From the results, we also found there is over-
fitting phenomenon on the SST datasets. As a consequence, we fail
to achieve the best results on all datasets, and this is the problem
we aim to resolve in the future. Besides, compare the proposed
BGRU-ALtt-pooling to our implemented BGRU-Att, which discards
the max-pooling operation, the results of our BGRU-Att-pooling
model are superior on all datasets which demonstrates the effective-
ness of max-pooling operation.

5.2. Analysis

5.2.1. Effects of filter size and training ratio

We are interested in evaluating the learning capability of our model.
Thus, we divide the Subj dataset into train sets and test sets, with
a training ratio for those datasets that do not specify a test set. As
shown in Figure 4, it can be found that the model can achieve high
accuracy while the training ratio is relatively small, and in the case
of a small training set, our model still performs well in terms of
learning ability. Besides, although there are some fluctuations as the
training ratio increases, the overall performance of our model still
increases.
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Figure 4 Illustration of the effects of different filter sizes and different
training ratios on the experimental performance. The horizontal axis is
the training ratio, which is the ratio of the training dataset size of to the
size of the entire dataset.

We also investigate the influence of filter size on the experimental
result. In this situation, each word’s importance weight is calculated
by Equation (7), and the importance weights are further combined
with the representations of words according to Equation (9). The
filter size affects how much information we will ultimately retain.
For example, if we choose the a filter size of (5, 5), only the largest
of the 25 elements will be retained.

As for max-pooling, larger pooling filter size results in smaller
feature maps, and smaller feature maps retain more semantic
information with the cost of losing more content information. In
this experiment, we analyze the effect of different filter sizes on the
experimental results. As shown in Figure 4, we found that when the
filter size is chosen as (3, 3), we can get its optimal performance.

5.2.2. Dimension effect of word embeddings

We select pretrained word embeddings, whose corpora are
Wikipedia 2014 and Gigaword 5, which also has 50, 100, and 200
dimension word embeddings. Figure 5 shows our model’s perfor-
mance with different word embeddings sizes.

From Figure 5, with the size of the word embeddings increases,
the cost of the model increases, and the expression of each word is
becoming more extensive. We found that our model performs best
on the highest-dimensional word embeddings.

Thus, we can get a conclusion that different word vector sizes
has different impact on the experimental results. According to the
results, we recommend word embedding size = 300 in order to
retain maximum feature information. In addition, we utilize max-
pooling to alleviate the huge computation cost caused by the high-
dimensional word vector.

5.2.3. Visualization of attention pooling

To evaluate the performance of the attention pooling in our tasks,
we isolate the attention pooling for training and visualize the

100

!

accuracy
®©
T

3
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=

!
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50 100 150 200 250 300
word embeddings size

Figure 5 Illustration of the effects of word embeddings
dimension.

weights of the attention pooling (Equation (7)). In addition, we
select a few sentences for data visualization analysis, as shown in
Figure 6. The color’s depth represents the importance weight’s scale.
The darker the color, the larger the importance weight is. The depth
of the color represents the importance of the corresponding word
in the sentence.

In Figure 6, the first sentence is a positive sentence. The impor-
tance weights of “funny” and “digressions” are larger than those of
the other words. Comparing “funny,” “digressions,” the color of the
former is darker, which indicates that it is more important than
the latter. By contrast, in the last sentence in Figure 6, the color of
“mediocre” is deeper than those of other words, meaning that it has
more negative semantics than the other words.

From Figure 6, the attention pooling is capable of paying attention
to more representative words. Moreover, in the penultimate sen-
tence in Figure 6, “vicious,” “messy;,” “uncouth,” and “incomprehensi-
ble” should be completely captured by attention pooling. However,
in our experiments, “uncouth” and “incomprehensible” are not well
captured. Our model still needs to be improved so that it captures
more details.

5.2.4. Effect of sentence length and a comparison of
LSTM and GRU

Our model combined with the improved attention pooling has the
ability to filter noise and can capture more semantic information,
which also makes it possible to encode longer sentence sequences
for decoding.

To explore the effects of the length of sentences on the model per-
formance, we conducted experiments using sentences with the max
length and the average length on the Subj dataset, respectively.

As shown in Figure 7, the initial loss values of sentences with dif-
ferent lengths are very close. However, after a certain number of
iterations, sentences with the max length converge significantly
faster than sentences with the average length. This experiment
proves that, due to the attention pooling, our model can handle
more retained information and filter noise information to optimize
model training. Besides, the GRU-based network converges faster
than the LSTM-based network during the training process.
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Figure 6 Illustration of visualization of the attention pooling.
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Figure 7 Illustration of the effects of sentence length and a comparison of long

short-term memory (LSTM) and gated recurrent unit (GRU).

6. CONCLUSION

In this paper, we propose an attention pooling-based bidirectional
GRU, namely BGRU-Att-pooling. With the help of a novel atten-
tion pooling mechanism, BGRU takes full account of the locations
of the keywords in a sentence and the semantic connections in dif-
ferent directions thus it focuses on the important information in a
sentence. In order to make the keywords more prominent in a sen-
tence, we utilize max-pooling to retain the important information.
Futhermore, a text unit is added to control the GRU’s content gate
to avoid completely exposing it. We discover that attention mech-
anism combined with the max-pooling operation outperforms the
attention mechanism does not. Experiments demonstrate that our
model can effectively extract useful information.
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