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Abstract. Convergence of series is the rudiments of study series, but for the divergent series, people 
tend not to pay close attention, however the proof of this paper what is based on the revelation of 
the divergent series. Doing a process of combination unconditional convergence with a proper 
pattern exists some interesting finding. When we do a subtraction with harmonic series expressed 
as geometric progression and primitive series equal to one. It exists an obvious regularity, so the 
following paper will extract the regularity of this series by using the complete induction to and by 
using reduction ad absurdum to demonstrate this conclusion. 
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1. Introduction  

The theory of series is the branch of analytics, combine with integral calculus which called the 
other branch of analytics as the rudiments and tool appear in others branches. Series along with 
integral calculus study analytics from two sides that are discreteness and continuer that taking limits 
as the basic tool and combining to study the objection of analytics-the relationship of variable-
function. Series is a vital tool for study of functions and plays an important role in both theoretical 
and practical application, that is because on one hand series can express large numbers elementary 
function, such as the solution of a differential equation; on the other hand, function can represent 
series, therefore using the series to study function, such as using power function as a tool to study 
nonelementary function, as well as doing an approximate calculation, etc. 

We were proving the divergence of harmonic series, when we found a certain form function’s 
summation equal to one. There, that might do a simplification in the future calculation. 
Our guess is as follows: 

We try a variety of methods to prove the divergence of harmonic series, however one method that 
is classify each of number of terms in series, then do a summation. Dismantling function to infinitely 
many geometric progressions, then sum the finitely many geometric progressions, which means 
transform harmonic series to a summation of geometric progression. But we have some brand new 
found in this progress, research the summation of geometric progression as the conjecture follow: 
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M, x, n are all positive integer; M can express n-degree power of a certain positive integer; n is 

any number which is greater than 1; all the form, such as 
ଵ

ெିଵ
  equal to 1. The rigorous proof will 

follow. 
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2. The Proof Process is as Follows 

Harmonic series 0
n=1
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= =
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Dismantle the harmonic series to geometric progression, which the purpose is making

1 2 3S S S  each of the term cover all the term in harmonic series and will not repeat.  
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In accordance with above term, the following summations are just unilateral: 
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According to the geometric sequence sum formula 
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By the same token 2 3 4 5 6 7 8
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Compared 0S  with 1 2 3 4S S S S ， ， ， ,we can found, make k 1 2 3 4=S S S S S     
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3. Doing an Explanation of Some Process May Possible Lead to Doubt and 
Prove 

1 The Riemann theorem states that if an infinite convergent real number is conditional convergence, 
then its terms can be arranged in a permutation so that the new series convergences to an arbitrary 
real number or diverges. 

In the text, the proof is absolutely a permutation. And the divergence of harmonic series will not 
prove again. qS  is the positive term series, so it is an absolute convergence series. 

2 prove: the summation of geometric progression covers all the term of harmonic series, and will 
not repeat. 

 

n n 1q S   

 

Prove the term will not repeat. 
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m=X௩	ܽ݊݀	n=ܺ௨ (this formula is discussed at the election of common ratio q, so discard) 
2ka=n  

2q 1a=m   

2q 1 2k  (odd number is not equal to even number) 

When n m=p p  （ N ） and q 2k2 -1 , q k
1

k=
p

（2 -1）-2 ( k N ), is a negative proposition. 

By the same token, when q 2k2 -1  is a negative proposition. 

When n m=p p  （ N ）, and q 2k2 -1 , is obvious k N , which is a negative proposition. 
By the same token, when q 2k2 -1 , is a negative proposition. 

4. Conclusion 

Through the above logical reasoning, comprehensive analysis and reasonable induction of taking 
power series as a basic tool to prove the proposition in this paper, which could be a brand-new 
discovery of series theory. The proposition gives a clearly logic thought to deal with 1/n, deriving the 
summation of each term of series, deleting the repeating item, which conclude an expression of the 
proposition- summation of series equal to one. This proposition might provide a convenience in the 
future series study, as well as a brand-new possibility. 
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