Journal of Statistical Theory and Applications

Volume 18, Issue 2, June 2019, Pages 113 - 122

Divergence Measures Estimation and Its Asymptotic Normality Theory Using Wavelets Empirical Processes III

Authors
Amadou Diadié Bâ1, Gane Samb Lo2, *, Diam Bâ3
1Unité de Formation et de Recherche des Sciences Appliquées à la Technologie, Laboratoire d'Etudes et de Recherches en Statistiques et Développement, Gaston Berger University, Saint Louis, Sénégal
2LERSTAD, Gaston Berger University, Saint-Louis, Senegal, Evanston Drive, NW, Calgary, Canada, T3P 0J9, Associate Researcher, LSTA, Pierre et Marie University, Paris, France, Associated Professor, African University of Sciences and Technology, Abuja, Nigeria
3Unité de Formation et de Recherche des Sciences Appliquées à la Technologie, Laboratoire d'Etudes et de Recherches en Statistiques et Développement, Gaston Berger University, Saint Louis, Sénégal
*Corresponding author. Email: gane-samb.lo@ugb.edu.sn
Corresponding Author
Gane Samb Lo
Received 29 October 2018, Accepted 24 February 2019, Available Online 23 May 2019.
DOI
10.2991/jsta.d.190514.002How to use a DOI?
Keywords
Divergence measures estimation
Abstract

In the two previous papers of this series, the main results on the asymptotic behaviors of empirical divergence measures based on wavelets theory have been established and particularized for important families of divergence measures like Rényi and Tsallis families and for the Kullback-Leibler measures. While the proofs of the results in the second paper may be skipped, the proofs of those in paper 1 are to be thoroughly proved since they serve as a foundation to the whole structure of results. We prove them in this last paper of the series. We will also address the applicability of the results to usual distribution functions.

Copyright
© 2019 The Authors. Published by Atlantis Press SARL.
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)
View full text (HTML)

Journal
Journal of Statistical Theory and Applications
Volume-Issue
18 - 2
Pages
113 - 122
Publication Date
2019/05/23
ISSN (Online)
2214-1766
ISSN (Print)
1538-7887
DOI
10.2991/jsta.d.190514.002How to use a DOI?
Copyright
© 2019 The Authors. Published by Atlantis Press SARL.
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Amadou Diadié Bâ
AU  - Gane Samb Lo
AU  - Diam Bâ
PY  - 2019
DA  - 2019/05/23
TI  - Divergence Measures Estimation and Its Asymptotic Normality Theory Using Wavelets Empirical Processes III
JO  - Journal of Statistical Theory and Applications
SP  - 113
EP  - 122
VL  - 18
IS  - 2
SN  - 2214-1766
UR  - https://doi.org/10.2991/jsta.d.190514.002
DO  - 10.2991/jsta.d.190514.002
ID  - Bâ2019
ER  -