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Abstract. Code plagiarism is a serious problem in the teaching evaluation process, and the 
programming assignment is related to the student's grades. Therefore, it is especially important to 
detect code plagiarism submitted by students. As all the codes submitted are kept in the database, 
and the data are gradually accumulated day by day. In this case, we propose a detection approach 
based on relevant features and XGBoost incremental learning. First, we describe the definitions of 
the relevant features of the code submission record in the Online Judge system, as well as the 
algorithm details such as calculating code similarity, code style similarity and the level of 
concentration of plagiarism targets, etc. Then, we use information gain to filter out some irrelevant 
features, and use the performance metrics such as Accuracy, Macro F1-Score, AUC and ROC curve 
to select the learning model. Finally, the XGBoost incremental learning algorithm is used to 
optimize the system implementation, and the accuracy of the model is up to 97.9% during 
evaluation test.  
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1.  Introduction 

Nowadays, with the rapid development of computer technology, a large number of online judge 
systems are pouring into the market, such as UVA, POJ, ZOJ and so on. The majority of them are 
set up for students with independent learning to prepare for the competition, and do not have the 
function of code plagiarism detection. However, in the teaching process, it is very important to 
evaluate the coding ability of students. Therefore, it seems extremely essential to introduce the 
approach of code plagiarism detection into the online judge system. 

For these large amounts of source code plagiarism, it is difficult to detect without proper tool 
support. At present, various source code similarity detection systems have been developed to help 
detect source code plagiarism at home and abroad. These systems need to recognize many lexical 
and structural source code modifications. For example, the modification of the control structure, the 
modification of the data structure or the structural redesign of the source code [1]. When these 
structural modifications are applied to the source code, most existing code similarity detection 
systems may not recognize them. At the moment, in the academic research about the detection of 
suspected code plagiarism, the data-centric attribute counting methods are less studied [2, 3]. These 
methods use various measurable features extracted from the data. The extracted features are used as 
input to the source code plagiarism detection algorithm [4]. On the other hand, the code plagiarism 
detection system based on the data-centric attribute counting method does not depend on the 
structure of the source code. Therefore, they are not affected by the above problems. There are 
some papers that introduce the application of machine learning algorithms to the plagiarism 
detection system of attribute counting methods, but the accuracy is not satisfying [5]. 

Therefore,we propose a code plagiarism detection method based on relevant features and 
XGBoost incremental learning. It describes the definition of the relevant features of the code 
submission record in OJ (Online Judge) system, and the algorithm details. For example, when 
calculating the code similarity, we make use of the k-gram hash algorithm, and optimize the 
algorithm flow when calculating the hash value, so as to reduce the time complexity of the 
algorithm.When calculatingthe code style similarity, we take five features into account, 
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including spaces, indents, blank lines, braces’ locations and comments in the code. We use edit 
distance to calculate the similarity of spaces, indents and blank lines, and use the longest common 
subsequence algorithm to calculate the similarity of the comments and the braces. The most 
important thing is that we proposed the degree of concentration of plagiarism objects. Finally, the 
XGBoost incremental learning algorithm elegantly solves the situation where the sample data is 
gradually added, and optimizes the final system implementation. 

The remainder of the paper is organized as follows. We will first give the definition of the 
relevant features of the submitted code in OJ system, and the proposed algorithm details in Sec.2. 
We then use information gain scheme to filter out some weaker features, and adopt four indices 
including Accuracy, Macro F1-Score, AUC and ROC curve to evaluate the model in Sec.3. The 
implementation of the code plagiarism detection method based on XGBoost incremental learning 
are illustrated in Sec.4. Finally, we summarizes our work and puts forward some future research 
directions in Sec.5. 

2. Candidate Features 

Table 1 Description of Features 

Feature 
Name Detailed Description 

MSR The maximum similarity between a student's submitted code and others’ codes 
CPMS Whether MSR exceeds the similarity threshold 

CPMSPC A category value for the distance between MSR and threshold 
ASSR Similarity of the code style between two source codes 
WPSR The similarity of spaces, indents, and blank lines between two source codes 
BSR The similarity of the braces between two source codes 
CSR The similarity of code comments between two source codes 
PCR The level of concentration of plagiarism targets 
DL The difficulty level of the problem 
PR The plagiarism rate of a student 

RRB Ranking of the student in an exam 
According to the submitted code of the student and the related problem’s information, we can ext

ract the features described in Table 1. The separation of code and comments is performed when pro
cessing each piece of code, then we can calculate the similarities between two source codes. The det
ailed description of the source code feature attributes is shown in Table 1. The relevant definitions o
f the feature attributes are elaborated in the following. 
2.1 Feature MSR 

The codes submitted by all the students of one problem are processed according to the following 
scheme: 

We are currently processing the source code S0 . All the submitted codes by others are in set 
S = {S1, S2, ⋯ , Sn}, where Si represents the code submitted by the ith student. sim(S0, Si) represents 
the similarity between two codes  S0 and Si. When use a k-gram hash algorithm [6] to calculate 
sim(S0, Si) following the steps: 

Step 1: Remove the line breaks, tabs, and extra spaces in each code, and replace the identifiers 
with simpler forms. For Si, we can obtain  Si

′ 
Step 2: Generate the k-gram collection KGi from Si

′. A k-gram is a substring of length k for Si
′. If  

the length of Si
′ is n, then KGi will have n − k + 1 elements. 

Step 3: Calculate the hash value of each element of KGi and store the results in set Ui. The Karp-
Rabin String Matching algorithm is used to calculate the hash value. Compared with the traditional 
hash function, it can reduce the time complexity from O(kn)  to O(n) , thus accelerating the 
calculation speed of the whole process[7]. The first element of  KGi contains a string {c1 ⋯ ck}, and 
H(c1 ⋯ ck) is the hash function based on the constant𝑏: 

                                                    H(c1 ⋯ ck) = c1 ∗ bk−1 + c2 ∗ bk−2 + ⋯ + ck−1 ∗ b + ck                             (1)              

Advances in Computer Science Research, volume 88

270



We will not use equation (1) to calculate the hash value H(c2 ⋯ ck+1)of the second string, and 
we will use the following formula as the substitute: 

H(c2 ⋯ ck+1) = (H(c1 ⋯ ck) − c1 ∗ bk−1) ∗ b + ck+1    (2)
For Si

′, we can calculate n − k + 1 hash values, so set Ui has n − k + 1 elements. 
Step 4: Calculate the similarity between  S0

′  and  Si
′: 

 sim(S0, Si) = sim(S0
′ , Si

′) =
|U0∩Ui|

|U0∪Ui|
  (3)                                    

 

Step 5: The calculation formula of MSR of  S0 can be described as: 
 MSR = max(sim(S0, S1), sim(S0, S2), ⋯ , sim(S0, Sn))  (4) 

2.2 Feature CPMSPC 

First we define CPMS: Whether the maximum similarity (MSR) of the student's code to others' 
codes exceeds the similarity threshold (SRT). 

The similarity threshold (SRT) is set by the author of the problem according to the difficulty 
level of the problem, and the threshold can also be dynamically adjusted by a method of machine 
learning. Therefore, the algorithm logic of the CPMS is as follows. If the maximum similarity 
(MSR) is less than the similarity threshold (SRT), the CPMS is set to 0; otherwise, it is set to 1. 

We also define CPMSP: A measure of the distance between CPMS and SRT. It can be calculated 
by: 

 CPMSP =
|MSR−SRT|

SRT
  (5)

Discretize CPMSP, then we get a category value, which is called CPMSPC. It can be calculated 
as following: 

If CPMS equals 0, then: 
If 0.5<CPMSP≤1, then CPMSPC=1; 
If 0.2<CPMSP≤0.5, then CPMSPC=2; 
If CPMSP≤0.2, then CPMSPC=3; 

If CPMS equals 1, then: 
If CPMSP≤0.2, then CPMSPC=4; 
If 0.2<CPMSP≤0.5, then CPMSPC=5; 
If 0.5<CPMSP≤1, then CPMSPC=6. 

We can know that there are six kinds of CPMSPC category values. 
2.3 Feature ASSR 

Code style similarity (ASSR): Separate the code style information of two codes, such as spaces, 
indents, blank lines, curly braces, comments, etc. Then we can calculate the code style similarity 
ASSR. 

1) Feature WPSR 
The similarity of spaces, indents and blank lines (WPSR) is calculated using the edit distance ED, 

and includes the following steps: 
Step 1: Separate the spaces, indents, blank lines and other information in the code, we can get 

WP, such as “blank line 1, space 3, space 4, indent 1”. Indicates that the code contains 1 
consecutive blank line, 3 consecutive spaces, 4 consecutive spaces, and 1 consecutive tab character. 

Step 2: Calculate the edit distance ED according to the spaces, indents and blank lines separated 
by the two codes. For example, the conversion results of the two codes are as follows. 

WP1 = [blank line 1, space 3, space 4, indent 1] 
WP2 = [blank line 1, space 4, indent 1, indent 1] 
Because it changes from three spaces to four spaces, you need to "insert" a space. It also changes 

from four spaces to one indent, you need to "delete" three spaces, as well as "replace" a space with 
indent. The total operations required are one insert, three deletions and one replacement, so the edit 
distance is 5.  
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Step 3: Calculate the similarity using the edit distance ED. 
                                                     WPSR = 1 −

ED

max(SC1, SC2)
                                                  (6) 

Among them, SC1  is the total amount of all the numbers in WP1. In the example, 
SC1=1+3+4+1=9, and SC2=1+4+1+1=7. 

So WPSR between WP1 and WP2 is 1-5/(9+7)=11/16. 
2) Feature BSR 
The similarity of the braces in the codes (BSR) represents the similarity of two strings formed by 

the braces and their states in the two codes. Among them, we give four state definitions for braces. 
The first one shows that the brace is at the far left of a line of code, the second indicates that the 
brace is at the far right of a line of code, the third indicates that the brace is in the middle of a line of 
code, and the fourth one shows that the brace is on a separate line. The above four states are 
represented by 1, 2, 3, and 4, respectively. Therefore, we give the following calculation examples. 

Step 1: We extract all the braces and their state from the two codes to form two strings. For 
example, a string extracted by a code is: “{2{2}1{2}4}4”; 

Step 2: For the above string, it is denoted by S = {s1, s2, ⋯ , sn}, and then convert it into a 
sequence X = {x1, x2, ⋯ , xm}, m =

n

2
, where xi = {s2∗i−1, s2∗i} and i ∈ {1,2, ⋯ , m}. Next, calculate 

the length of the longest common subsequence of the sequences after the conversion of the two 
strings, denoted as CL; 

Step 3: Record the number of braces in the first string as C1, and the number of braces in the 
second string as C2. Then, give the formula for calculating the similarity of the braces in the codes 
as: 

                                                                   BSR = 2 ∗
CL

C1+C2
                                                                  (7) 

3) Feature CSR 
The similarity of code comments (CSR) represents the similarity of two strings consisting of the 

status category values of the comments at each position in the two codes. We give three state 
definitions for comments. The first one indicates that this comment is on a separate line, and the 
second indicates that this comment is at the far right of a line of code, and the third is the other 
categories, which is represented by 1, 2, and 3 respectively. For the same reason, we use the same 
logic algorithm as BSR to calculate CSR. 

After calculating WPSR, BSR and CSR, their average value can be obtained as ASSR: 
                                                          ASSR =

WPSR+BSR+CSR

3
                                        (8) 

2.4 Feature PCR 

The level of concentration of plagiarism targets (PCR) is described as follows. Let n be the 
number of codes (to the problems) submitted by a student, then the set R = {r1, r2, ⋯ , rn} represents 
all the targets of the plagiarisms, where ri represents the target (a student) of the ith code plagiarized 
from. As a student can plagiarize more than one code from one student, so there will be duplications 
in R. After getting rid of duplications in R, we can get a new set S = {s1, s2, ⋯ , sm}, m ≤ n. Then 
the formula of PCR can be expressed as: 

                                                                  PCR = 1 −
m−1

n
                                                     (9)                               

If m equals to 1, which means the students copied all of his codes from one student, then PCR 
equals to 100%. This is the highest level of the concentration of plagiarism targets. 
2.5 Feature DL 

The difficulty level of the problem (DL): When creating a new problem, the teacher establishes 
the difficulty level of the problem or attaches a corresponding label according to his teaching 
experience. In the OJ system, three levels including easy, medium, and difficult are used to indicate 
the difficulty of the problem. In the subsequent data processing, the difficulty values are expressed 
in the form of 1, 2, and 3, respectively. 
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2.6 Feature PR 

The plagiarism rate of the student (PR): We count the number of codes that a student is labeled 
to be plagiarized, and it is denoted as TNPE. Therefore, we can calculate the plagiarism rate of the 
student. PR = TNPE n⁄ , where n is the number of codes he ever submitted. 
2.7  Feature RRB 

Ranking of the student (RRB): Each time the student completes a solution (to a problem), the 
system will calculate his current total score in real time, and then update his rank according to his 
total score. Since students’ rank were in a descending  order, we can take advantage of the basic 
idea of insertion sorting to implement the algorithm in order to reduce the complexity in the ranking 
process. 

3. Data Processing Based on Information Gain 

First, we extract some feature datasets from the raw data and their tag data in the database, into 
the initial sample dataset. Then, we use the filter selection method to filter out some weaker features 
from the initial sample set to reduce the difficulty of subsequent learner learning tasks. We use 
information gain to measure the importance of features. If the information gain based on a feature 
of the sample set is larger, it means that the feature contains more information that contributes to the 
algorithm. Thus, we calculate the information gain of each candidate feature based on the sample 
set, sorted by the value of the information gain. Finally, the feature whose information gain is 
greater than the threshold is selected. 

Next, we use the dichotomy to discretize some continuous feature attribute values. The method is 
described below.  

Assume we have a given sample data set D, and have a continuous attribute in the data set D, the 
values in this continuous attribute are sorted in ascending order and their values are combined into a 
set C = {c1, c2, ⋯ , cn}. By taking the average of any two adjacent elements ci and ci+1 in the set C 
as the dividing point, the definition of the candidate dividing point set is 
given Tc = {

ci+ci+1

2
|1 ≤ i ≤ n − 1}, and then the information gain of the data set after division is 

obtained. The information gain in all possible division cases are compared, so we choose the 
dividing point that maximizes the information gain. Then, we repeats the above process by selecting 
a set with the largest information entropy from the obtained data set, until the number of sets 
reaches the user-specified number or the specified termination condition. 

"Information entropy" is the most commonly used indicator for measuring the purity of a sample 
set. Assuming that the proportion of the kth label sample in the set D is pk(k = 1,2, ⋯ , m), the 
information entropy of the sample D is defined as [8]: 

                                                        Ent(D) = − ∑ pk log pk
m
k=1                                            (10)                   

Suppose there is a division point t(tϵTc), which divides the sample set D into D1
t  and D2

t , where 
D1

t  includes the samples whose continuous attribute C is not greater than t, and D2
t  includes others. 

According to the difference of the size of samples, each partitioned sample is given the 
corresponding weight |Di

t| |D|⁄ , i ∈ {1,2} . Then, the calculation formula of the maximum 
information gain of all the partitions of  D is as following [8]: 

                              Gain(D, C) = maxtϵTc
(Ent(D) − ∑

|Di
t|

|D|i∈{1,2} Ent(Di
t))                         (11)                 

4. Incremental Learning Based on Xgboost 

In the actual database, the amount of data is gradually increasing. In particular, during an exam, 
a large amount of new data are generated. These new data often have great values, with recent user 
plagiarism information and behaviors that were not available in previous data. How to effectively 
use these new data, this will be solved in this section. 

In the field of machine learning, it is very difficult to use traditional batch learning techniques to 
get useful information from the ever-increasing amount of new data. As the size of the data 
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continues to increase, the demand for time and space will increase rapidly, and eventually the speed 
of learning will not keep up with the speed of data updates. It is a widely used intelligent data 
mining and knowledge discovery technology compared with Incremental Learning. It is also a 
learning system that can continuously acquire new knowledge from new sample data, and can save 
a large amount of the knowledge that has been learned before. As the sample data is gradually 
accumulated, the learning accuracy will also increase. Therefore, incremental learning is an 
effective way to solve this problem. 

The XGBoost toolkit in the Python environment is used in this paper. We can do the work as 
following: 

Step 1: Import the sample dataset into memory. The sample dataset will be divided into training 
and testing set.  

Step 2: Convert the training set to XGBoost's own data structure, DMatrix, to speed up 
subsequent calculations.  

Step 3: Adjust the corresponding model parameters and learn the training.  
Step 4: Save the model generated by each training into memory, or a binary file. When the next 

new sample data are generated, we can train the new sample based on the original model, which can 
produce a good new model under the condition of less time. 

5. Experimental Results and Analysis 

Now, we have processed the sample data set, and then divided it into training set and testing set. 
In order to understand the distribution of training data intuitively, we use PCA to reduce the 
dimensionality of the feature data in the training set, and then use Python Matplotlib and mplot3d 
toolkits to visualize the data, as shown in Fig. 1. 

 
Fig. 1 Distribution map of training data 

Furthermore, we use SVM, GBDT and XGBoost machine learning algorithms to learn the 
training set, then analyze the experimental results and evaluate the algorithm model. Their 
corresponding performance metrics are shown in Table 2.  

Table 2 Evaluation of svm, gbdt and xgboost 

Evaluation Algorithm 
SVM GBDT XGBOOST 

Accuracy 0.9761 0.9780 0.9790 
macro-P 0.9760 0.9781 0.9791 
macro-R 0.9761 0.9781 0.9791 
macro-F1 0.9761 0.9780 0.9790 

AUC 0.9761 0.9781 0.9791 
It is not difficult to know from Table 2 that the performance metrics of the XGBoost model are 

larger than the other two machine learning models. The results of Macro F1-Score are especially 
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important, so it is preliminarily concluded that XGBoost is better than the other two. In order to 
more accurately analyze the experimental results and select the optimal model, we draw the ROC 
curve and compare the machine learning model based on the ROC curve, as shown in Fig. 2 and 3. 
It is not difficult to know that the ROC curve of the XGBoost model has completely "encased" the 
other two models, so it is also basically concluded that the XGBoost model outperforms the other 
two models. However, some people think that there may be coincidences and intersections between 
them by looking at Fig. 3, then we will further calculate the area under the ROC curve, AUC (Area 
Under ROC Curve), as shown in Table 2. The AUC value of XGBoost is greater than the values of 
the other two models, so its performance is still better than the other two models. 

 
Fig. 2 ROC Curve 

 

 
     Fig. 3 ROC Curve (zoomed in at top left) 

 

 
        Fig. 4 XGBoost Feature Importance 

Finally, the analysis shows that the XGBoost algorithm has the highest classification accuracy 
and the best performance compared with the other two models. Therefore, a comparison chart of the 
importance of features based on the XGBoost model is given, as shown in Fig. 4. XGBoost is a 
highly scalable, end-to-end tree boosting model. It also take advantage of a new sparsity-aware 
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algorithm for sparse data and weighted quantile sketch for approximate tree learning. More 
importantly, it also provides methods for cache access patterns, data compression and building of 
scalable tree boosting system in parallel [9]. Therefore, XGBoost is undoubtedly the best choice to 
solve our problem. 

6.  Conclusion 

In this paper, we describe the definition of the relevant features of the submitted code in Online 
Judge system, and their calculation algorithm details. Such as code similarity, code style similarity 
and the level of concentration of plagiarism targets, etc. Respectively, they have adopted efficient 
algorithm to achieve high efficiency. Then, we use information gain to filter out some weaker 
features, and use the performance metrics such as Accuracy, Macro F1-Score, AUC and ROC curve 
to choose the model. Finally, the XGBoost incremental learning algorithm is chosen to optimize the 
system implementation. However, academic research has not been enough so far, and we still need 
to continue to strengthen the research on machine learning algorithms, and further advances in 
theoretical research. 
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