
An Approach of Suspected Code Plagiarism Detection Based on
XGBoost Incremental Learning

Qiubo Huang1, a, Guozheng Fang1, b and Keyuan Jiang2, c

1Donghua University, Shanghai, China Shanghai, China

2Purdue University Northwest, USA Hammond, USA

ahuangturbo@dhu.edu.cn, bhellofangguozheng@163.com, ckjiang@pnw.edu

Abstract. Code plagiarism is a serious problem in the teaching evaluation process, and the
programming assignment is related to the student's grades. Therefore, it is especially important to
detect code plagiarism submitted by students. As all the codes submitted are kept in the database,
and the data are gradually accumulated day by day. In this case, we propose a detection approach
based on relevant features and XGBoost incremental learning. First, we describe the definitions of
the relevant features of the code submission record in the Online Judge system, as well as the
algorithm details such as calculating code similarity, code style similarity and the level of
concentration of plagiarism targets, etc. Then, we use information gain to filter out some irrelevant
features, and use the performance metrics such as Accuracy, Macro F1-Score, AUC and ROC curve
to select the learning model. Finally, the XGBoost incremental learning algorithm is used to
optimize the system implementation, and the accuracy of the model is up to 97.9% during
evaluation test.

Keywords: Code Plagiarism Detection, Relevant Features, XGBoost, Incremental Learning.

1. Introduction

Nowadays, with the rapid development of computer technology, a large number of online judge
systems are pouring into the market, such as UVA, POJ, ZOJ and so on. The majority of them are
set up for students with independent learning to prepare for the competition, and do not have the
function of code plagiarism detection. However, in the teaching process, it is very important to
evaluate the coding ability of students. Therefore, it seems extremely essential to introduce the
approach of code plagiarism detection into the online judge system.

For these large amounts of source code plagiarism, it is difficult to detect without proper tool
support. At present, various source code similarity detection systems have been developed to help
detect source code plagiarism at home and abroad. These systems need to recognize many lexical
and structural source code modifications. For example, the modification of the control structure, the
modification of the data structure or the structural redesign of the source code [1]. When these
structural modifications are applied to the source code, most existing code similarity detection
systems may not recognize them. At the moment, in the academic research about the detection of
suspected code plagiarism, the data-centric attribute counting methods are less studied [2, 3]. These
methods use various measurable features extracted from the data. The extracted features are used as
input to the source code plagiarism detection algorithm [4]. On the other hand, the code plagiarism
detection system based on the data-centric attribute counting method does not depend on the
structure of the source code. Therefore, they are not affected by the above problems. There are
some papers that introduce the application of machine learning algorithms to the plagiarism
detection system of attribute counting methods, but the accuracy is not satisfying [5].

Therefore,we propose a code plagiarism detection method based on relevant features and
XGBoost incremental learning. It describes the definition of the relevant features of the code
submission record in OJ (Online Judge) system, and the algorithm details. For example, when
calculating the code similarity, we make use of the k-gram hash algorithm, and optimize the
algorithm flow when calculating the hash value, so as to reduce the time complexity of the
algorithm.When calculatingthe code style similarity, we take five features into account,

International Conference on Computer, Network, Communication and Information Systems (CNCI 2019)

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 88

269

including spaces, indents, blank lines, braces’ locations and comments in the code. We use edit
distance to calculate the similarity of spaces, indents and blank lines, and use the longest common
subsequence algorithm to calculate the similarity of the comments and the braces. The most
important thing is that we proposed the degree of concentration of plagiarism objects. Finally, the
XGBoost incremental learning algorithm elegantly solves the situation where the sample data is
gradually added, and optimizes the final system implementation.

The remainder of the paper is organized as follows. We will first give the definition of the
relevant features of the submitted code in OJ system, and the proposed algorithm details in Sec.2.
We then use information gain scheme to filter out some weaker features, and adopt four indices
including Accuracy, Macro F1-Score, AUC and ROC curve to evaluate the model in Sec.3. The
implementation of the code plagiarism detection method based on XGBoost incremental learning
are illustrated in Sec.4. Finally, we summarizes our work and puts forward some future research
directions in Sec.5.

2. Candidate Features

Table 1 Description of Features

Feature
Name Detailed Description

MSR The maximum similarity between a student's submitted code and others’ codes
CPMS Whether MSR exceeds the similarity threshold

CPMSPC A category value for the distance between MSR and threshold
ASSR Similarity of the code style between two source codes
WPSR The similarity of spaces, indents, and blank lines between two source codes
BSR The similarity of the braces between two source codes
CSR The similarity of code comments between two source codes
PCR The level of concentration of plagiarism targets
DL The difficulty level of the problem
PR The plagiarism rate of a student

RRB Ranking of the student in an exam
According to the submitted code of the student and the related problem’s information, we can ext

ract the features described in Table 1. The separation of code and comments is performed when pro
cessing each piece of code, then we can calculate the similarities between two source codes. The det
ailed description of the source code feature attributes is shown in Table 1. The relevant definitions o
f the feature attributes are elaborated in the following.
2.1 Feature MSR

The codes submitted by all the students of one problem are processed according to the following
scheme:

We are currently processing the source code S0 . All the submitted codes by others are in set
S = {S1, S2, ⋯ , Sn}, where Si represents the code submitted by the ith student. sim(S0, Si) represents
the similarity between two codes S0 and Si. When use a k-gram hash algorithm [6] to calculate
sim(S0, Si) following the steps:

Step 1: Remove the line breaks, tabs, and extra spaces in each code, and replace the identifiers
with simpler forms. For Si, we can obtain Si

′
Step 2: Generate the k-gram collection KGi from Si

′. A k-gram is a substring of length k for Si
′. If

the length of Si
′ is n, then KGi will have n − k + 1 elements.

Step 3: Calculate the hash value of each element of KGi and store the results in set Ui. The Karp-
Rabin String Matching algorithm is used to calculate the hash value. Compared with the traditional
hash function, it can reduce the time complexity from O(kn) to O(n) , thus accelerating the
calculation speed of the whole process[7]. The first element of KGi contains a string {c1 ⋯ ck}, and
H(c1 ⋯ ck) is the hash function based on the constant𝑏:

 H(c1 ⋯ ck) = c1 ∗ bk−1 + c2 ∗ bk−2 + ⋯ + ck−1 ∗ b + ck (1)

Advances in Computer Science Research, volume 88

270

We will not use equation (1) to calculate the hash value H(c2 ⋯ ck+1)of the second string, and
we will use the following formula as the substitute:

H(c2 ⋯ ck+1) = (H(c1 ⋯ ck) − c1 ∗ bk−1) ∗ b + ck+1 (2)
For Si

′, we can calculate n − k + 1 hash values, so set Ui has n − k + 1 elements.
Step 4: Calculate the similarity between S0

′ and Si
′:

 sim(S0, Si) = sim(S0
′ , Si

′) =
|U0∩Ui|

|U0∪Ui|
 (3)

Step 5: The calculation formula of MSR of S0 can be described as:
 MSR = max(sim(S0, S1), sim(S0, S2), ⋯ , sim(S0, Sn))  (4) 

2.2 Feature CPMSPC

First we define CPMS: Whether the maximum similarity (MSR) of the student's code to others'
codes exceeds the similarity threshold (SRT).

The similarity threshold (SRT) is set by the author of the problem according to the difficulty
level of the problem, and the threshold can also be dynamically adjusted by a method of machine
learning. Therefore, the algorithm logic of the CPMS is as follows. If the maximum similarity
(MSR) is less than the similarity threshold (SRT), the CPMS is set to 0; otherwise, it is set to 1.

We also define CPMSP: A measure of the distance between CPMS and SRT. It can be calculated
by:

 CPMSP =
|MSR−SRT|

SRT
  (5)

Discretize CPMSP, then we get a category value, which is called CPMSPC. It can be calculated
as following:

If CPMS equals 0, then:
If 0.5<CPMSP≤1, then CPMSPC=1;
If 0.2<CPMSP≤0.5, then CPMSPC=2;
If CPMSP≤0.2, then CPMSPC=3;

If CPMS equals 1, then:
If CPMSP≤0.2, then CPMSPC=4;
If 0.2<CPMSP≤0.5, then CPMSPC=5;
If 0.5<CPMSP≤1, then CPMSPC=6.

We can know that there are six kinds of CPMSPC category values.
2.3 Feature ASSR

Code style similarity (ASSR): Separate the code style information of two codes, such as spaces,
indents, blank lines, curly braces, comments, etc. Then we can calculate the code style similarity
ASSR.

1) Feature WPSR
The similarity of spaces, indents and blank lines (WPSR) is calculated using the edit distance ED,

and includes the following steps:
Step 1: Separate the spaces, indents, blank lines and other information in the code, we can get

WP, such as “blank line 1, space 3, space 4, indent 1”. Indicates that the code contains 1
consecutive blank line, 3 consecutive spaces, 4 consecutive spaces, and 1 consecutive tab character.

Step 2: Calculate the edit distance ED according to the spaces, indents and blank lines separated
by the two codes. For example, the conversion results of the two codes are as follows.

WP1 = [blank line 1, space 3, space 4, indent 1]
WP2 = [blank line 1, space 4, indent 1, indent 1]
Because it changes from three spaces to four spaces, you need to "insert" a space. It also changes

from four spaces to one indent, you need to "delete" three spaces, as well as "replace" a space with
indent. The total operations required are one insert, three deletions and one replacement, so the edit
distance is 5.

Advances in Computer Science Research, volume 88

271

Step 3: Calculate the similarity using the edit distance ED.
 WPSR = 1 −

ED

max(SC1, SC2)
 (6)

Among them, SC1 is the total amount of all the numbers in WP1. In the example,
SC1=1+3+4+1=9, and SC2=1+4+1+1=7.

So WPSR between WP1 and WP2 is 1-5/(9+7)=11/16.
2) Feature BSR
The similarity of the braces in the codes (BSR) represents the similarity of two strings formed by

the braces and their states in the two codes. Among them, we give four state definitions for braces.
The first one shows that the brace is at the far left of a line of code, the second indicates that the
brace is at the far right of a line of code, the third indicates that the brace is in the middle of a line of
code, and the fourth one shows that the brace is on a separate line. The above four states are
represented by 1, 2, 3, and 4, respectively. Therefore, we give the following calculation examples.

Step 1: We extract all the braces and their state from the two codes to form two strings. For
example, a string extracted by a code is: “{2{2}1{2}4}4”;

Step 2: For the above string, it is denoted by S = {s1, s2, ⋯ , sn}, and then convert it into a
sequence X = {x1, x2, ⋯ , xm}, m =

n

2
, where xi = {s2∗i−1, s2∗i} and i ∈ {1,2, ⋯ , m}. Next, calculate

the length of the longest common subsequence of the sequences after the conversion of the two
strings, denoted as CL;

Step 3: Record the number of braces in the first string as C1, and the number of braces in the
second string as C2. Then, give the formula for calculating the similarity of the braces in the codes
as:

 BSR = 2 ∗
CL

C1+C2
 (7)

3) Feature CSR
The similarity of code comments (CSR) represents the similarity of two strings consisting of the

status category values of the comments at each position in the two codes. We give three state
definitions for comments. The first one indicates that this comment is on a separate line, and the
second indicates that this comment is at the far right of a line of code, and the third is the other
categories, which is represented by 1, 2, and 3 respectively. For the same reason, we use the same
logic algorithm as BSR to calculate CSR.

After calculating WPSR, BSR and CSR, their average value can be obtained as ASSR:
 ASSR =

WPSR+BSR+CSR

3
 (8)

2.4 Feature PCR

The level of concentration of plagiarism targets (PCR) is described as follows. Let n be the
number of codes (to the problems) submitted by a student, then the set R = {r1, r2, ⋯ , rn} represents
all the targets of the plagiarisms, where ri represents the target (a student) of the ith code plagiarized
from. As a student can plagiarize more than one code from one student, so there will be duplications
in R. After getting rid of duplications in R, we can get a new set S = {s1, s2, ⋯ , sm}, m ≤ n. Then
the formula of PCR can be expressed as:

 PCR = 1 −
m−1

n
 (9)

If m equals to 1, which means the students copied all of his codes from one student, then PCR
equals to 100%. This is the highest level of the concentration of plagiarism targets.
2.5 Feature DL

The difficulty level of the problem (DL): When creating a new problem, the teacher establishes
the difficulty level of the problem or attaches a corresponding label according to his teaching
experience. In the OJ system, three levels including easy, medium, and difficult are used to indicate
the difficulty of the problem. In the subsequent data processing, the difficulty values are expressed
in the form of 1, 2, and 3, respectively.

Advances in Computer Science Research, volume 88

272

2.6 Feature PR

The plagiarism rate of the student (PR): We count the number of codes that a student is labeled
to be plagiarized, and it is denoted as TNPE. Therefore, we can calculate the plagiarism rate of the
student. PR = TNPE n⁄ , where n is the number of codes he ever submitted.
2.7 Feature RRB

Ranking of the student (RRB): Each time the student completes a solution (to a problem), the
system will calculate his current total score in real time, and then update his rank according to his
total score. Since students’ rank were in a descending order, we can take advantage of the basic
idea of insertion sorting to implement the algorithm in order to reduce the complexity in the ranking
process.

3. Data Processing Based on Information Gain

First, we extract some feature datasets from the raw data and their tag data in the database, into
the initial sample dataset. Then, we use the filter selection method to filter out some weaker features
from the initial sample set to reduce the difficulty of subsequent learner learning tasks. We use
information gain to measure the importance of features. If the information gain based on a feature
of the sample set is larger, it means that the feature contains more information that contributes to the
algorithm. Thus, we calculate the information gain of each candidate feature based on the sample
set, sorted by the value of the information gain. Finally, the feature whose information gain is
greater than the threshold is selected.

Next, we use the dichotomy to discretize some continuous feature attribute values. The method is
described below.

Assume we have a given sample data set D, and have a continuous attribute in the data set D, the
values in this continuous attribute are sorted in ascending order and their values are combined into a
set C = {c1, c2, ⋯ , cn}. By taking the average of any two adjacent elements ci and ci+1 in the set C
as the dividing point, the definition of the candidate dividing point set is
given Tc = {

ci+ci+1

2
|1 ≤ i ≤ n − 1}, and then the information gain of the data set after division is

obtained. The information gain in all possible division cases are compared, so we choose the
dividing point that maximizes the information gain. Then, we repeats the above process by selecting
a set with the largest information entropy from the obtained data set, until the number of sets
reaches the user-specified number or the specified termination condition.

"Information entropy" is the most commonly used indicator for measuring the purity of a sample
set. Assuming that the proportion of the kth label sample in the set D is pk(k = 1,2, ⋯ , m), the
information entropy of the sample D is defined as [8]:

 Ent(D) = − ∑ pk log pk
m
k=1 (10)

Suppose there is a division point t(tϵTc), which divides the sample set D into D1
t and D2

t , where
D1

t includes the samples whose continuous attribute C is not greater than t, and D2
t includes others.

According to the difference of the size of samples, each partitioned sample is given the
corresponding weight |Di

t| |D|⁄ , i ∈ {1,2} . Then, the calculation formula of the maximum
information gain of all the partitions of D is as following [8]:

 Gain(D, C) = maxtϵTc
(Ent(D) − ∑

|Di
t|

|D|i∈{1,2} Ent(Di
t)) (11)

4. Incremental Learning Based on Xgboost

In the actual database, the amount of data is gradually increasing. In particular, during an exam,
a large amount of new data are generated. These new data often have great values, with recent user
plagiarism information and behaviors that were not available in previous data. How to effectively
use these new data, this will be solved in this section.

In the field of machine learning, it is very difficult to use traditional batch learning techniques to
get useful information from the ever-increasing amount of new data. As the size of the data

Advances in Computer Science Research, volume 88

273

continues to increase, the demand for time and space will increase rapidly, and eventually the speed
of learning will not keep up with the speed of data updates. It is a widely used intelligent data
mining and knowledge discovery technology compared with Incremental Learning. It is also a
learning system that can continuously acquire new knowledge from new sample data, and can save
a large amount of the knowledge that has been learned before. As the sample data is gradually
accumulated, the learning accuracy will also increase. Therefore, incremental learning is an
effective way to solve this problem.

The XGBoost toolkit in the Python environment is used in this paper. We can do the work as
following:

Step 1: Import the sample dataset into memory. The sample dataset will be divided into training
and testing set.

Step 2: Convert the training set to XGBoost's own data structure, DMatrix, to speed up
subsequent calculations.

Step 3: Adjust the corresponding model parameters and learn the training.
Step 4: Save the model generated by each training into memory, or a binary file. When the next

new sample data are generated, we can train the new sample based on the original model, which can
produce a good new model under the condition of less time.

5. Experimental Results and Analysis

Now, we have processed the sample data set, and then divided it into training set and testing set.
In order to understand the distribution of training data intuitively, we use PCA to reduce the
dimensionality of the feature data in the training set, and then use Python Matplotlib and mplot3d
toolkits to visualize the data, as shown in Fig. 1.

Fig. 1 Distribution map of training data

Furthermore, we use SVM, GBDT and XGBoost machine learning algorithms to learn the
training set, then analyze the experimental results and evaluate the algorithm model. Their
corresponding performance metrics are shown in Table 2.

Table 2 Evaluation of svm, gbdt and xgboost

Evaluation Algorithm
SVM GBDT XGBOOST

Accuracy 0.9761 0.9780 0.9790
macro-P 0.9760 0.9781 0.9791
macro-R 0.9761 0.9781 0.9791
macro-F1 0.9761 0.9780 0.9790

AUC 0.9761 0.9781 0.9791
It is not difficult to know from Table 2 that the performance metrics of the XGBoost model are

larger than the other two machine learning models. The results of Macro F1-Score are especially

Advances in Computer Science Research, volume 88

274

important, so it is preliminarily concluded that XGBoost is better than the other two. In order to
more accurately analyze the experimental results and select the optimal model, we draw the ROC
curve and compare the machine learning model based on the ROC curve, as shown in Fig. 2 and 3.
It is not difficult to know that the ROC curve of the XGBoost model has completely "encased" the
other two models, so it is also basically concluded that the XGBoost model outperforms the other
two models. However, some people think that there may be coincidences and intersections between
them by looking at Fig. 3, then we will further calculate the area under the ROC curve, AUC (Area
Under ROC Curve), as shown in Table 2. The AUC value of XGBoost is greater than the values of
the other two models, so its performance is still better than the other two models.

Fig. 2 ROC Curve

 Fig. 3 ROC Curve (zoomed in at top left)

 Fig. 4 XGBoost Feature Importance

Finally, the analysis shows that the XGBoost algorithm has the highest classification accuracy
and the best performance compared with the other two models. Therefore, a comparison chart of the
importance of features based on the XGBoost model is given, as shown in Fig. 4. XGBoost is a
highly scalable, end-to-end tree boosting model. It also take advantage of a new sparsity-aware

Advances in Computer Science Research, volume 88

275

algorithm for sparse data and weighted quantile sketch for approximate tree learning. More
importantly, it also provides methods for cache access patterns, data compression and building of
scalable tree boosting system in parallel [9]. Therefore, XGBoost is undoubtedly the best choice to
solve our problem.

6. Conclusion

In this paper, we describe the definition of the relevant features of the submitted code in Online
Judge system, and their calculation algorithm details. Such as code similarity, code style similarity
and the level of concentration of plagiarism targets, etc. Respectively, they have adopted efficient
algorithm to achieve high efficiency. Then, we use information gain to filter out some weaker
features, and use the performance metrics such as Accuracy, Macro F1-Score, AUC and ROC curve
to choose the model. Finally, the XGBoost incremental learning algorithm is chosen to optimize the
system implementation. However, academic research has not been enough so far, and we still need
to continue to strengthen the research on machine learning algorithms, and further advances in
theoretical research.

Acknowledgments

We would like to thank all the graduate students who contributed much to the OJ system, and
they help make this work possible.

References

[1]. Z. Djuric, and D. Gasevic, “A Source Code Similarity System for Plagiarism Detection”, The
Computer Journal, vol. 56, pp. 70-86, 2013.

[2]. S. Engels, V. Lakshmanan, and M. Craig, “Plagiarism detection using feature-based neural
networks,” Proceedings of the 38th SIGCSE technical symposium on Computer science
education, 2007, p. 38.

[3]. R.C. Lange and S. Mancoridis, “Using code metric histograms and genetic algorithms to
perform author identification for software forensics,” Proceedings of the 9th annual conference
on Genetic and evolutionary computation, 2007, p. 2089.

[4]. J.H. Ji, G. Woo, and H.G. Cho, “A source code linearization technique for detecting plagiarized
programs,” ACM SIGCSE Bulletin, vol. 39, 2007, p. 77.

[5]. U. Bandara, G. Wijayarathna, “A machine learning based tool for source code plagiarism
detection”, International Journal of Machine Learning and Computing, vol. 1, no. 4, 2011.

[6]. S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for document
fingerprinting. In ACM, editor, Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data 2003, San Diego, California, June 09–12, 2003, pages 76–
85, New York, NY 10036, USA, 2003. ACM Press.

[7]. Richard M. Karp and Michael O. Rabin. Pattern-matching algorithms. IBM Journal of Research
and Development, 31(2):249–260, 1987.

[8]. Raileanu, L.E. and Stoffel, K. (2004) Theoretical comparison between the Gini Index and
Information Gain criteria. Ann. Math. Artif. Intell. 41, 77–93.

[9]. T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 785–794,
San Francisco, CA, 2016.

Advances in Computer Science Research, volume 88

276

