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ABSTRACT
Nap is an effective way to reduce daily-level fatigue after several hours of work.However, no alarm clock, which intelligentlyman-
ages the nap duration with good autonomic nervous recovery (ANR) from fatigue, has been reported in literature. In this work,
an intelligent biological alarm clock algorithmwas designed on the basis of electrocardiogram (ECG) and electroencephalogram
(EEG) data acquisition and analysis. ECG data samples were collected from 31 subjects in 278 times of nap experiments and cat-
egorized into good, moderate, and poor ANR datasets according to the degree of sympathetic withdrawal and parasympathetic
activation during the nap. In practice, the alarm clock automatically classified the new-coming ECG data as good, moderate,
or poor ANR with a classifier trained by the abovementioned ANR datasets. A prototype system of the intelligent alarm clock
algorithm was implemented and validated in real-scene naps. The prototype system detected falling asleep during the closed-eye
naps with a true positive rate of 93.55% and a true negative rate of 100%.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Fatigue [1, 2] is extreme tiredness arising from mental or physical
efforts, associated with a significant level of physical and psychoso-
cial morbidity. Daily level of fatigue, which is a highly prevalent
phenomenon, usually has the symptoms of tiredness, sleepiness,
difficulty in concentration, less strength in muscles. [3]. Fatigue-
inducing mental task experiment [4, 5] has shown that fatigue
decreases parasympathetic activity and increases sympathetic activ-
ity [5, 6], causing certain degree of autonomic imbalance harmful
to the health of the people [7]. There are many fatigue interven-
tion methods at certain situations, for example, driving [8]. How-
ever, sleep is the most generalized way to recover from daily-level
fatigue [9]. Although the biological meanings of sleep process do
not have a final conclusion, compared with those during wakeful-
ness, most biological functions of the body change during sleep,
and sleep depriving can cause significant cardiometabolic and neu-
rological sequelae [10, 11]. Heart rate decreases during nonrapid
eyemovement (NREM) sleep and increases during rapid eyemove-
ment (REM) sleep [11]. Besides, a predominant parasympathetic
modulation is observed during NREM sleep, and the sympathetic
control is significantly predominant during REM sleep [11]. Con-
sidering the opposite influences of fatigue and NREM sleep on
the autonomic nerve system, a daytime nap is a promising way to
reduce daily-level fatigue after several hours of work. The decreased
heart rate and increased heart rate variability during the NREM
sleep are the signs of sympathetic withdrawl and parasympathetic
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(ANR) from fatigue-caused autonomic imbalance. For most peo-
ple, the length of the daytime nap is no more than one hour [12,
13], and the best wake-up time is during the second phase of the
NREM sleep [13]. Although the actigraphy software is an effective
way to detect the nap status of people [14], its accelerometer-based
data acquisition cannot obtain the autonomic activity during the
nap. Given the variable sleep latency of each time of the naps, cur-
rent mainstream electronic alarm clocks cannot guarantee that the
user will be awakened during the NREM sleep, not to mention the
monitoring of ANR during the nap. In fact, accurate sleep status
detection can be achieved by using the polysomnography in which
the brainwave rhythm is an important index to judge the sleep sta-
tus. However, the application of polysomnography is expensive and
not convenient, hindering its use in daily life.

Therefore, the aim of this work is to design an intelligent alarm
clock based on the electrocardiogram (ECG) signal. The basic func-
tion of the intelligent alarm clock is to monitor the ANR during the
nap and awaken the user after good ANR has been detected. HR
and HRV are effective markers of the autonomic nervous activity
[15–18], and they can be derived from the ECG signal conveniently
acquired through wearable ECG devices. The conventional indexes
of HR and HRV are the mean of the RR intervals, standard devi-
ation of the RR intervals, square root of the mean of the squares
of differences between successive RR intervals (RMSSD), low
frequency power (0.04 Hz–0.15 Hz), and high frequency power
(0.15 Hz–0.4 Hz) [18]. The intelligent alarm clock in practice will
process the real-time ECG data, calculating the RR intervals andPdf_Folio:1

activation [11], and we call this the autonomic nervous recovery
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inferring the ANR with as short delay as possible. Therefore, new
HR and HRV indexes with low calculation cost will be explored, in
order to describe different levels of ANR in a refined form.

The following sections are structured as follows: The second section
is the design of the intelligent alarm clock algorithm; the third
section is the ECG data acquisition during the nap and data anal-
ysis; the fourth section shows a prototype system of the biological
alarm clock and the validation of the alarm clock in practice; finally,
the fifth and sixth sections are the discussion and conclusion.

2. ALGORITHM DESIGN

the alarm rule. The flow chart of the algorithm is shown in Figure 1.

Figure 1 The flow chart of the intelligent biological alarm clock
algorithm.

The real-time RR interval calculation algorithm includes the fol-
lowing: (1) store the ECG data into a buffer with certain length, for
example, 4 seconds; (2) after the buffer is full, read the ECG data;
(3) eliminate the baseline drift of the ECG data by wavelet decom-
position and reconstruction; (4) find themaximumof the ECGdata
as the R peak in a running window with adaptive window length
adjusted by the latest normal RR interval and the empirical largest

normal RR interval; (5) calculate the duration between two succes-
sive R peaks as the RR interval.

The length of the running window in the third execution block is
set to be 300 RR intervals, about 5 minutes. The running step of the
runningwindow is set to be 10RR intervals. As the runningwindow
moves along the timewith the given running step, the detectedANR
is renewed by using the new-coming RR intervals.

The HR and HRV features and the trained classifier used for ANR
status recognition are obtained by analyzing the experimental ECG
data acquired during the naps of a group of subjects. The experi-
mental ECG data acquisition and analysis will be explained in the
next section.

There are two alarm rules in the algorithm: (1) if good ANR is
detected for the first time, wait for a certain duration t1 and then
alarm; (2) if good ANR is not detected in a certain duration t2,
alarmwithout more waiting. The first alarm rule is to ensure that, if
the user has fallen asleep, let the user wake up at certain phase of
the NREM sleep. The purpose of the second alarm rule is that, if the
sleep latency is too long, let the user get up before he/she feels dizzy
after a long time in bed.

3. EXPERIMENT PROCESS AND ECG DATA
ANALYSIS

3.1. Participants

Thirty-one healthy Master Degree Candidates (age, 24.2 ± 1.2 years
[mean ± SD]; weight, 60.7 ± 12.6 kg; height, 167.8 ± 9.9 cm; body
mass index, 21.8 ± 0.4; 16 males and 15 females) from the school
of electronic and information engineering at Southwest University
were recruited in the experiment. To be included in the experiment,
the participants would be obliged to the following criteria: (1) do
not have a history of diagnosed mental sickness or cardiac respi-
ratory disease; (2) do not take any medications for fatigue, such as
Amantadine, Modafinil, and Fampridine; (3) get up before eight
every morning; (4) do not drink alcoholic or caffeinated beverages,
nor use tobacco products during the whole session of experiment.
The experimental agreement was approved by the affective com-
puting laboratory at Southwest University, and all participants pro-
vided written informed consent.

3.2. Experiment Process

The experiment was to let the participants have a nap of 20 min-
utes after they worked hard successively for about 6 hours except
for a short lunch time. Before the nap, the participants should have
the fatigue feeling. During the nap, the participants reclined on a
chair with their eyes closed. After the nap, the participants reported
whether they had fallen asleep and whether their fatigue had been
reduced by the nap. The air temperature in the experiment room
was controlled to be 26–27°C.

The ECG signal was recorded during the napwith a Shimmer3 ECG
device. The sampling rate of ECG data acquisition was set to be
512 Hz. Most data acquisition was around 2 P.M. when the partici-
pants felt tired of several hours of cognitive task and could not con-
centrate on their work. Each participant took part in the experiment
9–10 times, only having one nap at one day. After the electrode-
failure ECG recordings were excluded, 278 normal ECG recordings
were collected from 31 participants.

Pdf_Folio:2
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As a biological alarm clock, the algorithm firstly receives ECG
data from the wearable ECG device. Then, RR intervals are cal-
culated from the ECG data by using the real-time RR interval
calculation algorithm in [19]. As an intelligent alarmclock, the algo-
rithm extracts theHR andHRV features from the new-coming data,
classifies the new-coming data into certain category of ANR with
the classifier trained by the experimental ECG dataset, and finally
determines whether it is the right time to awaken the user by using



3.3. ECG Data Analysis

The original ECG had baseline drift, as shown in Figure 2(a). With-
out baseline drift, fast R peak location could be realized through
maximum value detection with a running window having a length
longer than one normal RR interval and shorter than two normal
RR intervals. The adaptive length of the running window was con-
trolled by the latest normal RR interval. If the latest RR interval was
not a normal one, the length of the runningwindowwas set by using
an empirical normal RR interval, for example, 1.5 seconds. In order
to fast locate the R peak, the baseline drift of the ECG data was
eliminated by a wavelet method. Firstly, we decomposed the ECG
data with certain wavelet; secondly, we set the approximation coef-
ficients at the last level of decomposition to be 0; finally, the ECG
data were reconstructed from the revised decomposition structure,
as shown in Figure 2(b). After R peak locating, the RR intervals
were calculated as the durations between two successive R peaks, as
shown in Figure 2(c).

Figure 2 Original electrocardiogram (ECG) (a), reconstructed
ECG (b), and RR interval series (c) calculated from reconstructed
ECG.

Figure 3 shows three RR interval series calculated from the ECG
data of the nap experiments. The data in Figure 3(a) belongs to
a participant who had fallen asleep during the nap and recovered
from the fatigue after the nap; the data in Figure 3(b) belongs to a
participant who was not sure that he had fallen asleep during the
nap, but he felt the fatigue had been relieved after the nap; the data

in Figure 3(c) belongs to a participant who had not fallen asleep
during the nap, and he felt more tired after the nap. The RR inter-
val series in Figure 3(a) show the largest small-scale fluctuations
among those in the three subfigures of Figure 3, and the RR interval
series in Figure 3(c) have the least small-scale fluctuations. In order
to visualize the differences of the three RR interval series in Figure
3, the Poincare section scatter plots of these RR interval series are
given in Figure 4. The scatter plots in the (a), (b), and (c) subfigures
of Figure 4 are respectively corresponding to the RR interval series
in Figure 3(a), (b), and (c). Along the diagonal line, the centroid of
the scatter plot in Figure 4(a) is the highest, and the length of the
scatter plot is also the longest among those in the three subfigures.
That is to say, the RR interval series corresponding to the scatter
plot in Figure 4(a) show the most sympathetic withdrawal and the
most parasympathetic modulation, consistent with the participant-
reported good fatigue reduction after the nap. Besides, the apparent
sympathetic withdrawal and parasympathetic activation in Figure
3(a) start nearly after the 300th RR interval where the inter-beat-
interval obviously becomes longer, and the small-scale fluctuation
of RR interval series becomes larger, compared with those in the
first 300 RR intervals. In order to describe these changes of ANR, a
running window was used to segment the RR intervals. The length
of the running window and the running step were empirically set
to be 300 and 10 RR intervals. In the running window, we used the
centroid of the Poincare section scatter plot of the RR interval series
as an index of sympathetic activity, and we applied the total fluctua-
tion at small RR scales as an index of parasympathetic activity. The
total fluctuation at small RR scales were deduced from the average
fluctuation function [20] as follows:

Figure 3 RR interval series with good autonomic nervous
recovery (ANR) (a), moderate ANR (b), and poor ANR (c).

Pdf_Folio:3
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Figure 4 Poincare section scatter plot of the three RR interval
series shown in Figure 3.

F (n) = |RR (n′ – n) – RR (n′) |, n′ = n + 1, n + 2,… ,N (1)

where n is the scale used to calculate the fluctuation, n’ is the
sequence number of the RR intervals,N is the total length of the RR
interval series, and | ⋅ | means the average of the absolute values.

Then, the total fluctuation at small scales was calculated as

f =
M

∑
n=1

F (n) , (2)

where M is the maximum scale under consideration.

As the running window moved along the time, we calculated the
ANR difference of the RR data in the running windows respectively
having the highest and the lowest centroids of the Poincare section
scatter plots. Let

(
xch, ych

)
and

(
xcl, ycl

)
respectively denote the

coordinates of the highest and the lowest centroids of the Poincare
section scatter plots, the first RR interval feature depicting the
change of sympathetic activity was calculated as

feature1 = √(xch – xcl)
2 +

(
ych – ycl

)2 (3)

We also calculated the ANR difference of the RR data in the run-
ning windows respectively having the largest and the smallest total
fluctuations as

feature2 = fh – fl, (4)

where fh and fl are the largest and the smallest fluctuations. The sec-
ondRR interval feature reveals the change of parasympathetic activ-
ity along the nap time. Taken the observations in Figure 3 as exam-
ples, with the running window method, the apparent sympathetic
withdrawl and parasympathetic activation after 300 RR intervals in
Figure 3(a) lead to large values of feature1 and feature2. However,
the RR interval series in Figure 3(b) and (c) have smaller values
of feature1 and feature2 than those in Figure 3(a). That is to say,
larger values of feature1 and feature2 mean more sympathetic with-
drawl and parasympathetic activation, revealing better ANR during
the nap.

We calculated the values of feature1 and feature2 from the 278 ECG
recordings, and the ECG recordings were described as the data vec-
tors of the two RR interval features. We clustered the 278 data vec-
tors into three categories, and the scatter plot of the 278 data vec-
tors in the two-dimensional feature plane is shown in Figure 5. The
data were marked as good, moderate, and poor ANR, according to
the locations of the data in the two-dimensional feature plane. The
larger the feature values, the better the ANR.

4. PROTOTYPE ALARM CLOCK SYSTEM
AND ITS VALIDATION

The intelligent biological alarm clock algorithm in Section 3.2 was
implemented by programming in the Matlab software, and the
interface of the prototype system is shown in Figure 6. The result
display panel of the prototype system shows the start time of the sys-
tem, the timestamp of the good ANR detected for the first time, the
alarm time, and theANR status at the end of the nap. This prototype
system worked with a Blue-tooth mode Shimmer3 ECG device. In
the process of real-timemonitoring ofANR, the system received the
real-time ECG data from the Shimmer3 device through Blue-tooth
data transmission. The delay of the system was less than 4 seconds,
because of the application of the RR interval calculation algorithm
in [19].When extracting the RR interval features from the real-timePdf_Folio:4
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Figure 5 Scatter plots and clustering results of 278 RR interval
time series in two-dimensional feature plane.

Figure 6 Real-time running of the prototype intelligent biological
alarm clock.

The alarm clock was validated during many times of real-scene
naps. The participants taken part in the validation experiments all
followed the participant criteria mentioned in Section 3.3. The val-
idation was divided into three sessions. The first session of the val-
idation was to determine the best values of t1 and t2 used in the
alarm clock algorithm. According to the report of 10 participants
in the first session, after the good ANR was detected for the first
time, the participants had 20 minutes more nap, got up, and felt
fully refreshed; if the sleep latency was more than 45 minutes, the
participants would get up with dizzy head. Therefore, in the sec-
ond session of the validation, the values of t1 and t2 were respec-
tively set to be 20 and 45 minutes. Forty-two participants took part

in the second session of the validation. If the participants did not
feel tired or only felt slightly tired, they had a rest with open eyes
(11 participants); if the participants felt moderately or strong tired,
they had a rest with closed eyes (31 participants). Only ECG data
were acquired during the second session of the validation. Among
the 31 subjects rested with closed eyes, 10 of them reported no
sleep, 21 of them reported falling asleep during the nap. In order to
further explore the relationship between ECG-revealed good ANR
and EEG-revealed NREM sleep, we performed the third session of
the validation in which ECG and EEG data were simultaneously
recorded, and 12 participants took part in the third-session exper-
iments. According to the self-reports and the brainwave rhythm, 2
of the participants did not fall asleep, and 10 of the participants fell
asleep during the nap. We determined the start of the first stage of
NREM sleep (see Figure 7(a) as an example) through the slowed
down brainwave rhythm and the dropping out of alpha activity. As
a comparison to the EEG at the first stage of NREM sleep, Figure
7(b) shows the many alpha activities at the late period of the sleep
latency.

Figure 7 The O2 channel of electroencephalogram (EEG). (a) The
slower brainwave than the alpha wave at the beginning of the sleep
status. (b) The alpha wave at the late period of the sleep latency.

Table 1 shows the amount of detected good, moderate, and poor
ANR in the second and third sessions of the validation. Table 2
shows the amount of participant-reported good, moderate, and
poor fatigue reductions during the naps with closed eyes. We can
see that during the naps with closed eyes, only when the subjects
fell asleep, good ANRwas detected. Besides, 26/30 of detected good
ANR corresponds to the participant-reported good fatigue reduc-
tion. Therefore, the nap with closed eyes and good ANR status is
effective for reducing fatigue.

Figure 8 shows the participant-reported sleep latencies, the times-
tamps of detected good ANR, and total nap time of the 20 exper-
iments in which the subjects fell asleep during the nap in the sec-
ond session of the validation. Although the participant-reported
sleep latencies are subjective, we still can see that the sleep latency
of each nap changes from time to time, confirming that the alarm
clockmanually set before the nap cannot guarantee a good rest. The
participant-reported sleep latency and the timestamp of detected
good ANR of the sixth experiment are very different, because thePdf_Folio:5

ECG data, the
(
xch, ych

)
and fh in Equations (3) and (

respectively replaced by the coordinates of the centroid of the
Poincare section scatter plot and the total fluctuation of the RR
intervals in the current running window. The system judged the
degree of ANRof the data in the current runningwindow by detect-
ing the smallest distance between the location of the current data
in the feature plane and the means of the three clusters in Figure 5,
that is, the data sample in the current running window was catego-
rized into the nearest cluster.

4) were
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Table 1 The amount of detected good, moderate, and poor ANR in the
second session of the validation.

Detected as
Good ANR

Detected as
Moderate ANR

Detected as
Poor ANR

Participant-reported
sleep with closed eyes

30 1 0

Participant-reported no
sleep with closed eyes

0 8 4

Rest status with open
eyes

3 8 0

ANR, autonomic nervous recovery.

Table 2 The amount of good, moderate, and poor fatigue reduction
during the naps with closed eyes.

Detected as
Good ANR

Detected as
Moderate ANR

Detected as
Poor ANR

Participant-reported
good fatigue reduction

26 1 1

Participant-reported
moderate fatigue
reduction

4 7 1

Participant-reported
poor fatigue reduction

0 1 2

ANR, autonomic nervous recovery.

subject fell asleep too soon and the alarm clock did not get a
valid baseline of ANR in the sleep latency. After excluding the
sixth experiment, the timestamps of detected good ANR and the
participant-reported sleep latencies have a correlation coefficient of
0.9284, showing that the detected good ANR is a good indicator of
falling asleep. Figure 9 shows the start and end timestamps of sleep
status revealed by EEG and the timestamp of detected good ANR
of the 10 participants who fell asleep in the third session of the val-
idation. Through manual checking of the EEG data, we found that
the timestamps of detected good ANR were at the late period of the
first stage of NREM sleep or the early period of the second stage of
NREM sleep, further confirming that the detected good ANR is a
good indicator of falling asleep.

participant-reported good fatigue reduction, but the alarm clock
system only detected moderate ANR during the nap. Like the sixth
subject in Figure 8, this was also caused by the missing baseline of
ANR status in the sleep latency due to too fast falling asleep of the
subject. Therefore, the correct rate of detecting sleep status is 29/31,
and the correct rate of detecting no sleep status is 12/12. With the
alarm rules of the prototype system, the missing baseline because
of extreme tiredness will result in a long nap equal to or longer than
45 minutes in practice.

5. DISCUSSION

Large amount of nap experiments were performed to get the ECG
datasets of good, moderate, and poor ANR. Then, the prototype
intelligent biological alarm clock system was realized on the basis
of the algorithm designed in Section 3.2 and the ECG datasets
acquired in Section 3.3. From the results of system validation, we

Figure 8 Participant-reported sleep latencies, timestamps of
detected good autonomic nervous recovery (ANR), and total nap
time of the 20 experiments in which the subjects fell asleep
during the nap in the second session of the validation.

Figure 9 The start and end timestamps of sleep status
revealed by electroencephalogram (EEG) and the
timestamp of detected good autonomic recovery in the
third session of the validation.

can see that if the participants fell asleep, the intelligent biologi-
cal alarm clock successfully awakened the participants after they
obtained good rest, and the empirical duration of effective nap for
reducing daily-level fatigue is only 20 minutes.

Both the self reports of the participants and the EEG data during
the validation of the system show that the detected good ANR is a
good indicator of falling asleep.With this indicator of falling asleep,
the biological alarm clock effectively manages the duration of sleep.
Therefore, the detection of good ANR has great value in practice.Pdf_Folio:6

As shown in Tables 1 and 2, one subject fell asleep and got up with
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It is worth noting that, the detected good ANR is not the start of the
sleep revealed by EEG, but between the first and the second stages of
NREM sleep. Therefore, the detection of good ANR does not guar-
antee that the user will be awakened at the second stage of NREM
sleep. According to the EEG signal, some of the participants in the
third session of the validationwere in the third stage of NREM sleep
when they were awakened by the alarm clock.

Compared with ECG, EEG is more accurate in determining the
sleep status. However, the operations of EEG data acquisition, such
as washing the head before and after the experiment and smearing
the conductive gel to the EEG electrodes, were time-consuming in
our work. Besides, some subjects felt uneasy wearing the EEG cap
and could not sleep tight during the nap, for example, subjects 21,
22, 27, and 28. On the other hand, the data acquisition of inter-
beat-interval series is easy and user-friendly. Therefore, compared
with the brainwave rhythm method, detecting sleep status with
good ANR revealed by the heartbeat rhythm is more convenient in
daily life.

6. CONCLUSION

The ANR status during the nap was quantified by two new HR and
HRV features, that is, the movement of the centroid of the Poincare
section scatter plot of the RR interval series up along the diago-
nal line, and the increase of total fluctuation of the RR intervals in
small scales. The intelligent biological alarm clock algorithm using
the above two RR features was designed and implemented into a
prototype system. During the validation of the prototype system, it
was found that good ANR status during the closed-eye nap indi-
cated effective reduction of daily-level fatigue. Because of the man-
agement of sleep duration with goodANR, the intelligent biological
alarm clock designed in this work is much better for fatigue reduc-
tion than the conventional electrical alarm clock.
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