
“IJ-CIS-D-18-00250_proof ” — 2019/2/2 — 12:03 — page 1 — #1

A Hybrid Learnt Clause Evaluation Algorithm for SAT
Problem

Guanfeng Wu1, 2*, Qingshan Chen1, 2, Yang Xu2, Xingxing He2

1School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, P.R. China
2National-Local Joint Engineering Laboratory of System Credibility Automatic Verification, Southwest Jiaotong University, Chengdu 610031, Sichuan, P.R. China

ART I C L E I N FO
Article History

Received 20 Oct 2018
Revised 30 Oct 2018
Accepted 04 Nov 2018

Keywords

ID:p0070

SAT problem
Parallel SAT solver
VSIDS
LBD
GLUCOSE

ABSTRACT

ID:p0065

It is of great theoretical andpractical significance to develop the efficient SAT solvers due to its important applications in hardware
and software verifications and so on, and learnt clauses play the crucial role in state of the art SAT solvers. In order to effectively
manage learnt clauses, avoid the geometrical growth of learnt clauses, reduce the memory footprint of the redundant learnt
clauses and improve the efficiency of the SAT solver eventually, learnt clauses need to be evaluated properly. The commonly used
evaluation methods are based on the length of learnt clause, while short clauses are kept according to these methods. One of the
current mainstream practices is the variable state independent decaying sum (VSIDS) evaluation method, the other is based on
the evaluation of the literals blocks distance (LBD). There have been also some attempts to combine these two methods. The
present work is focused on the hybrid evaluation algorithm by combining the trend intensity and the LBD. Based on the analysis
of the frequency of learnt clauses, the trend of learnt clause being used is taken as an evaluation method which is then mixed
with the LBD evaluation algorithm. The hybrid algorithm not only reflects the distribution of learnt clauses in conflict analysis,
but also makes full use of literals information. The experimental comparison shows that the hybrid evaluation algorithm has
advantages over the LBD evaluation algorithm in both the serial version and the parallel version of SAT solver, and the number
of problems solved has significantly increased.

© 2019 The Authors. Published by Atlantis Press SARL.

1.

ID:TI0020

INTRODUCTION

ID:p0075

The SAT (Boolean satisfiability) problem is the basic problem of
logic and computer science, and also is the first NP-complete prob-
lem that has been proven [1]. Many problems of natural science
can be transformed into SAT problems [2–4], such as transporta-
tion, integrated circuit automatic routing, code automatic gen-
eration, software verify-cation, etc. It is of great theoretical and
practical significance to develop the efficient SAT solvers. The algo-
rithms of SAT solving can be divided into two types: complete algo-
rithm and incomplete algorithm. A complete algorithm must be
able to determine the satisfiability of the formula in theory. How-
ever, the incomplete algorithm is not guaranteed to find solutions
to the problem. The solvers and algorithms involved in this paper
refer to complete algorithms.

ID:p0080

From the introduction of the Davis–Putnam–Logemann–Loveland
(DPLL) algorithm in 1960 to the publication of conflict driven
clause learning (CDCL) algorithm [5–7]. The SAT solvers have
evolved over decades. Their modules tend to be stable. The state of
art SAT solvers are both based on the framework of DPLL or CDCL
algorithms [8–14], such as MiniSAT, Glucose, MapleCOMSPS,
Kiel, etc. Including but not limited “simplification”, “two literals
watched”, “decision variable selection”, “Boolean Constraint Prop-

*Corresponding author. Email: wl520gx@gmail.com

agation (BCP)”, “CDCL”, “branch backtracking”, “restart”, “clause
management” modules.

ID:p0085

A large number of learnt clauses will be generated by a CDCL-
based SAT solver during the solution process. Take a benchmark
“g2-ak128modbtbg2msisc.cnf ” from Main Track in SAT Competi-
tion (2017) as an example. The total number of literals are 296 051
and the number of clauses are 968 713. There are 16 007 084 learnt
clauses generated by Glucose, and 15 204 538 learnt clauses are
deleted during search. The rate of the deletion is almost 95%. The
memory resources are occupied by excessive learnt clauses, and this
increases the time complexity of traversing clauses during search.
So, learning too much clauses means that the solver has to sort the
“good” clauses to be used.

ID:p0090

GRASP [7] found the influence of learnt clauses on the search pro-
cess in experiments. The learnt clauses increased exponentially and
reduced the efficiency of searching. To avoid this, it deletes learnt
clauses which length (the number of literals in the clause) greater
than 30.

ID:p0095

Chaff uses the number of unassigned variables as the condition
for the clause to be deleted. When the number of unassigned vari-
ables in the learnt clause reaches the threshold, the learnt clause is
deleted [8].

ID:p0100

Minisat uses the variable state independent decaying sum (VSIDS)
evaluation method. The activity is set for the clause, and the clauses

Pdf_Folio:1

Classification

Autonomous reasoning

International Journal of Computational Intelligence Systems
Vol. 12(1); 2019, pp. 250–258

https://www.atlantis-press.com/journals/ijcis/

This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

DOI: https://doi.org/10.2991/ijcis.2018.125905645; ISSN: 1875-6891; eISSN: 1875-6883

https://www.atlantis-press.com/journals/ijcis/
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.2991/ijcis.2018.125905645


“IJ-CIS-D-18-00250_proof ” — 2019/2/2 — 12:03 — page 2 — #2

are sorted according to the activity, and the half of the learnt clauses
with low activity are periodically deleted [13].

Precosat is the champion solver for the SAT Competition (2009).
It uses VSIDS to evaluate the learnt clauses and adds preprocessing
techniques to the binary clauses, making full use of the role of the
binary clauses in conflict analysis [15].

Glucose uses the value of literals blocks distance (LBD) as the basis
of retaining the learnt clause [11].

In addition, Lingeling uses a hybrid evaluation method of VSIDS
and LBD [16].

VSIDS and LBD belong to the radical learnt clause evaluation
method. The description of the learnt clause is relatively simple.
When the learnt clause is deleted periodically, some clauses that
play a role in the search may be deleted by mistake.

The research on parallel solvers started late due to the develop-
ment of computer hardware. Some representative parallel solvers
have appeared inmore than ten years, such asManySAT [17], ppfo-
lio2011 [18], PLingeling [19], TLingeling [20], Glucose-Syrup [21]
and so on. They are essentially one of the three parallel process-
ing principles: search tree partitioning, combinatorial parallelism,
or hybrid both of them.

Some of the solvers are based on network exchange [22], and some
solvers are based on database storage [23], and also some based on
sharedmemory [12]. From the early sharing of all to the subsequent
selective sharing, the learnt clause sharing strategy of the parallel
solver is gradually formed.

Although the SAT solution has developed rapidly and the scale of
the problems that can be dealt with has reached tens of millions,
it still cannot meet the actual application needs. In the SAT Com-
petition (2017), there were 350 benchmarks. The Champion Solver
solved only 208 in the specified time. There are still 142 problems
that cannot be solved [24] (a large part of the SAT Competition
benchmarks comes from real industrial application problems).

The parallel solvers improve the efficiency of the SAT problem to
some extent, but its capability is limited by the parallel hardware
environment and other factors. In essence, it is necessary to study
the effective SATproblem solving algorithmor improve the existing
SAT solving algorithm. The description of the clauses of the learnt
clause based on the length of the clause, VSIDS or LBD is not suf-
ficient to fully quantify the role of the learnt clause in the search
process.

This paper combines the simplified evaluationmethod based on the
trend strength of learnt clauses with the LBD evaluation algorithm
and proposes a mixed clause evaluation algorithm to describe the
characteristics of the learnt clause more accurately. The key ideas
are applied to Glucose4.1 and its parallel version of Syrup respec-
tively by improving their evaluation algorithm part and the paral-
lel node clause sharing strategy, aiming at enhancing the capability
and efficiency the SAT solvers.

The remainder of the paper is organized as follows. The review
of related works is provided in Section 2, including some brief
overviews of relevant search algorithms and evaluation algorithms.
Section 3 introduces the hybrid evaluation algorithm with focus
on the serial version of SAT solver, while Section 4 proposes the
improved clause sharing strategy for the parallel solver. The detailed

experimental case studies and comparison analysis are provided in
Section 5. The paper is concluded in Section 6.

2. RELATED WORKS

2.1. The DPLL Algorithm

Figure 1 An example of the assignment of DPLL.

The DPLL algorithm is an algorithm proposed by Davis, Putnam,
Logemann and Loveland and named according to their name [5, 6].
The DPLL replaces the resolution part of the DP algorithm with
branch backtracking. Essentially a depth-first traversal of a fully
binary tree, looking for an assignment path so that all clauses are
satisfied. When there is no unit clause or pure literal that can be
used for Boolean constraint propagation, the algorithm selects a
variable from the unassigned variables as a branch variable, assigns
it to 1, and then traverses the branch. If there is a conflict (at least
one clause cannot be satisfied), backtracking, assigning the branch
variable to 0 and continue traversing.

The DPLL algorithm is a typical recursive algorithm [12], and the
algorithm is described as follows:

1. Execute the BCP and pure literal elimination algorithms until
there are no unit clauses and pure literals in the clause set. If the
branch is satisfied, the formula set can be satisfied. The current
assignment is an example of the formula, and the algorithm
ends. Otherwise, go to the next step.

2. Select decision variables according to the strategy and perform
the next step.

3. Select the branch whose decision variable is assigned the value
“1” and execute the DPLL algorithm. If the branch can be sat-
isfied, the formula set can be satisfied and the algorithm ends.
Otherwise, go to the next step.

4. Select the branch whose decision variable is assigned ”0”, and
execute the DPLL algorithm. If the branch can be satisfied, the
formula set can be satisfied and the algorithm ends. Otherwise,
the current branch is executed and the current branch is not
satisfied.

Pdf_Folio:2

If the currently executing branch is the topmost branch, the entire
algorithm ends and the clause set is unsatisfiable.

G. Wu et al. / International Journal of Computational Intelligence Systems 12(1) 250–258 251



“IJ-CIS-D-18-00250_proof ” — 2019/2/2 — 12:03 — page 3 — #3

ID:p0195

Figure 1 shows a partial example of a DPLL search algorithm, with
blank nodes representing a certain decision of the algorithm. Up 0
means that the variable is assigned by Boolean constraint propaga-
tion. In this decision, variable x1 is assigned a value of 0 by Boolean
constraint propagation. In the subsequent variable decision process,
the DPLL algorithm does not utilize the known search information
[12], and the same branch in the search space in the dotted line
frame are repeatedly accessed.

2.2.

ID:ti0035

CDCL Algorithm

ID:p0200

In order to avoid the problem of repeated searches in the DPLL,
Marques-Silva et al. first proposed the CDCL algorithm in the
GRASP [7] solver. The purpose of retaining the assignment infor-
mation when a conflict occurs is achieved.

ID:p0205

The main improvement of CDCL algorithm compared with DPLL
algorithm is [25]: analyzing the causes of conflicts by constructing
implication graphs, constructing learnt clauses and putting them
into the original clause set; non-recursive executing algorithms;
instead of returning to the previous decision position, algorithm
backtracking undoes the most recent assignments and the BCP
implication assignments resulting from these assignments after
analysis.

ID:p0210

The classic CDCL algorithm [25] is described below

1.

ID:p0215

Simplify the clause set and return when it can be satisfied by
simplification.

2.

ID:p0220

Check if all the literals have been assigned, and return if all
clauses are satisfied. Otherwise, go to step 3.

3.

ID:p0225

Select an unassigned variable as a decision variable based on
the heuristic strategy.

4.

ID:p0230

Execute the BCP process, if the conflict is found, go to step 5,
otherwise skip back to step 2 and continue.

5.

ID:p0235

Analyze the reason for the conflict, obtain the learnt clause and
the backtracking decision level. If the backtracking level is 0,
it means that it has been rolled back to the top level, and the
founding value is not found, and the clause set is unsatisfied.
Otherwise, perform step 6.

6.

ID:p0240

Back to the specified level, undo all assignments from the cur-
rent level to the backtracking level and undo assignments in the
BCP process. Go to step 2.

2.3.

ID:ti0040

The VSIDS Algorithm

ID:p0245

The VSIDS evaluation algorithm is a classical algorithm in the SAT
problem solving [13], which is described as follows:

ID:p0250

The algorithm sets the activity attribute for each original clause,
with the initial value set to 1. Cla_inc is the activity increment with
an initial value of 1/0.999.

ID:p0255

When a conflict occurs during the search, and if the clause is
used for conflict analysis, its activity value activity=activity*cla_inc.
When the activity value exceeds 10 [20], the activity value of all
clauses is scaled by 10−20, and cla_inc is scaled to cla_inc*10−20.

ID:p0260

At the end of each conflict analysis, adjust the activity increment,
cla_inc=cla_inc*(1/0.999).

2.4.

ID:ti0045

LBD Algorithm

ID:p0265

LBD was first proposed by Gilles in the early version of Glucose
(Champion, SAT Competition 2009 and 2011) [11] to evaluate the
quality of the learnt clause. The value of LBD is the number of dif-
ferent decision levels in which the literals in a clause. The literals at
the same decision level are considered to be a block, and a learnt
clause links the literals on different blocks together.

ID:p0270

Suppose there are two learnt clauses as follows:

ID:p0275

The symbol x1(6) indicates that the variable x1 is assigned at the 6th
decision level. Then the decision level set of the variable in clause
C1 is {3, 6}, and its LBD value is 2. So, clause C2 has its variables
from three decision levels with an LBD value of 3.

ID:p0280

A clause with an LBD value of 2 is called a glue clause, such as
the learnt clause C2 above. Because one of the literals comes from
the decision level at which the conflict occurred, the other literals
comes from another decision level. The glue clause is considered to
be the best and most reserved clause. Glucose periodically deletes
clauses with an LBD value greater than 2 to reduce the size of the
learnt clauses.

2.5.

ID:ti0050

Hybrid Evaluation Algorithm

ID:p0285

The hybrid evaluation algorithm is a mixture of well-known evalu-
ation algorithms.

ID:p0290

Lingeling [16] uses the inner-outer scheme to manage learnt
clauses, also known as reduce-schedule. In the Inner scheme, the
evaluation method of LBD is adopted. When the distribution of
the glue clause is not balanced, the clause evaluation method of
the VSIDS is dynamically switched. The Outer scheme uses the
Luby sequence to control the total number of learnt clauses. Such a
scheme has proven to be very effective in well-structured example
solving.

ID:p0295

The outstanding contribution of the MapleCOMSPS solver is the
learning rate branching heuristic (LRB) algorithm and the conflict
history based branching heuristic (CHB) algorithm [26, 27]. The
decision variables selected by these two algorithms can produce
high-quality learnt clauses. At the same time, in the management
of learnt clauses, MapleCOMSPS also uses the clause deletion strat-
egy of LBD and VSIDS. In the first 2 500 seconds of the operation,
the clause is evaluated by LBD. Then, use VSIDS evaluates learnt
clauses [14]. Win the championship in the SAT competition (2016)
Main group.

2.6.

ID:ti0055

Clause Sharing Strategy

ID:p0300

The “good” clause sharing strategy in the parallel solver can accel-
erate the parallel solution efficiency. The “bad” clause sharing strat-
egy occupies communication bandwidth and increases the size of
invalid learnt clauses of the database in each node, which is not con-
ducive to solving the problem.

ID:p0305

In the 2009 International SAT Competition, the Parallel Com-
petition Group first appeared. The champion of parallel group,

Pdf_Folio:3

C1 = x1 (6) ∨ x3 (6) ∨ x4 (3) ∨ x5 (6)
C2 = x7 (1) ∨ x8 (5) ∨ x9 (7)

252 G. Wu et al. / International Journal of Computational Intelligence Systems 12(1) 250–258
ID:p0195ID:ti0035ID:p0200ID:p0205ID:p0210ID:p0215ID:p0220ID:p0225ID:p0230ID:p0235ID:p0240ID:ti0040ID:p0245ID:p0250ID:p0255ID:p0260ID:ti0045ID:p0265ID:p0270ID:p0275ID:p0280ID:ti0050ID:p0285ID:p0290ID:p0295ID:ti0055ID:p0300ID:p0305



“IJ-CIS-D-18-00250_proof ” — 2019/2/2 — 12:03 — page 4 — #4

ManySAT [17] shared the learnt clause based on lockless queues,
and the length of the shared learnt clauses ware limited to no more
than 8.

In 2011, the parallel version of Lingeling, PLingeling and its vari-
ant TLingeling joined the shared equivalence structure based on the
shared unit clause. These two versions of the parallel solver have
been in the leading position in many years [16, 20].

Roussel O. developed a combined parallel solver named ppfolio by
combiningMinisat, zCharf, Lingeling and other solvers, while ppfo-
lio provides only unit clause sharing function between these com-
bined solvers [18]. Ppfolio is considered the benchmark for parallel
solver efficiency.

Soos M. added parallel processing to CryptoMiniSat, using a lock-
less shared data structure, sharing unit clauses, learnt clauses, and
“Xor” clauses between parallel nodes [28]. Ranked third in the SAT
Competition (2016) in Parallel Group.

Audemard, G. proposed a lazy data exchange strategy [29], the gen-
erated learnt clauses are not immediately shared, only the clauses
that are used once in the conflict analysis will be shared. It also lim-
its the LBD value of the shared clause and limits the length of the
clause. When the parallel node imports the external learnt clause,
only the clause with the LBD value less than 2 and the unit clause
being monitored are imported. The improved Glucose parallel ver-
sion won the first place in the parallel group between the 2015 and
2017 SAT competitions [30].

3. SIMPLIFIED TREND STRENGTH AND
LBD HYBRID EVALUATION ALGORITHM

3.1. Trend Strength Evaluation Algorithm

We tested and analyzed the examples of the SAT Competitions
(2015 and 2016) and found that: 84% of the learnt clauses were
deleted by the solver based on the VSIDS evaluation method;
the solver which used LBD method removes 80% of the learnt
clauses.

The earliest generated learnt clauses account for less and less in the
subsequent search process. Both VSIDS and LBD clause evaluation
methods adopt stricter deletion strategies, and the utilization rate
of learnt clauses is not high.

The trend strength evaluation algorithm quantifies the trend
strength of the learnt clauses used for conflict analysis.

Definition 1. Conflicts number ti(i>=0) indicates the total num-
ber of conflicts that occurred during search, corresponding to the
i-th the learnt clauseC being applied to the conflict analysis. In par-
ticular, t0 represents the total number of conflicts when the learnt
clause C was generated.

Definition 2. Conflicts intervalΔti indicates that the total number
of conflicts of the i-th the learnt clause C is applied to the conflict
analysis compared with the previous one. The specific calculation
method is as follows:

(1)

ByDefinition 2, it can be concluded that the smaller theΔt, themore
frequently the clause is used.

Definition 3. Local trend Ti is the quantitative value of the change
trend of the frequency of learnt clauses being used. The specific cal-
culation method is as the Eq. (2) shown.

(2)

It indicates that the frequency of the clause being used is increased if
Ti = 1, and so the trend is enhanced. IfTi = 0, it indicates that it is not
used during the conflict period.Ti =−1means that the interval used
in the period becomes larger and the tendency becomes weaker.

For clause C, the general trend Gk(C) in the k-th period can be
obtained from the local trend accumulation.

(3)

We first incorporates this algorithm into the MiniSat solver and
tests it with the cases in the SAT Competition (2015 and 2016). In
the best case, the Trend strength evaluation algorithm is better than
VSIDS and worse than LBD.

Although the trend strength can describe the trend change of the
clause applied to the conflict analysis, its calculationmethod ismore
complicated than the number of times the clause is used. The sim-
plified version only needs to save the number of times the learnt
clause is used for conflict analysis.

3.2. Simplified Trend Strength and LBD
Hybrid Evaluation Algorithm

The simplified trend strength algorithm is a shorten version of
trend strength algorithm. It only save the number of times of the
learnt clause. In order to implement this, we introduce a function
which named “UsageCount”. The “UsageCount” function is mainly
responsible for updating the conflicts number of a learnt clause
which corresponding to “usedCount” (a member of the clause
object).

The simplified trend strength and LBD hybrid algorithm is based
on the LBD algorithm and adds the “UsageCount” function of
the learnt clause in conflict analysis. In terms of data structure,
the “usedCount” member is added to the clause structure, and
the “usedCount” counter value is increment by one each time the
learnt clause participates in the conflict analysis by “UsageCount”
function.

Periodically deleting the learnt clause module in Glucose corre-
sponds to the reduceDB() function. The LBD restriction is replaced
by the “usedCount” restrictions. As it shown in rhombuses in
Figure 2.Pdf_Folio:4

G. Wu et al. / International Journal of Computational Intelligence Systems 12(1) 250–258 253

Ti = {
1, iff (Δti – Δti–1) < 0;
0, iff (Δti – Δti–1) = 0; (i ≥ 2)
–1, iff (Δti – Δti–1) > 0;

G (C) =
⎧
⎨
⎩

0 (i ≤ 1)
k

∑
i=2

Ti (2 ≤ i ≤ k)

Δti = { 0 (i = 0)
ti – ti–1 (i ≥ 1)



“IJ-CIS-D-18-00250_proof ” — 2019/2/2 — 12:03 — page 5 — #5

Figure 2

ID:p0415

Flow chart of reduceDB().

4.

ID:TI0075

IMPROVED CLAUSE SHARING
STRATEGY IN PARALLEL SOLVER

4.1.

ID:ti0080

The Clauses Strategy of Syrup

4.1.1.

ID:ti0085

The shared data structures

ID:p0400

Syrup is essentially a multi-threaded parallel solver. All children
threads share learnt clauses and implement data synchronization
between threads through locks.

ID:p0405

The MultiSolvers class manages ParallelSolver classes, maintains
and runs multiple threads in parallel. At the same time, it relies on
SolverCompanion and its subclass ShareComparion to manage the
learnt clauses sharing.

ID:p0410

The UML class diagram is shown in Figure 3.

4.1.2.

ID:ti0090

Export and import of learnt clauses

ID:p0420

Syrup is more cautious in dealing with clause sharing between par-
allel nodes. It considers that clauses with LBD value less than 8 and
clause length less than 40 to be “good” clauses and should be shared.
Second, in order to avoidmutual interference between nodes. In the
initial time of running, it is forbidden to share the learnt clause until
the number of conflicts of the node reaches 5 000 times.

ID:p0430

It performs a lazy clause sharing strategy. Before the clause is shared,
it observes the number of times it is applied to the conflict analy-
sis. Only the clauses that appear in conflict analysis can be shared.
Consistent with the strategy in the serial version, the LBD value of
the clause that restricts sharing is less or equal to 8, and the length
of the clause is less than 40, and the unit clause is directly shared.

ID:p0435

If the number of conflicts has reached 5 000 during the search, the
import operation of the external learnt clauses can be performed.
First import the unit clauses and then import other learnt clauses
that meet the evaluation criteria.

ID:ti0095ID:p0440

During the execution of the search function of the parallel node, if
there is a conflict, the analyze function will analyze the cause of the
conflict and obtains the learnt clause. If the learnt clause is a unit
clause, it will be directly shared with the shared memory queue. It
judges whether to share the current learnt clause or not according to
the clause sharing strategies. Algorithm1 is a clause sharing strategy
in the hybrid evaluation mode, and the number of times the clause
is used as a condition to replace the original partial LBD constraint.

ID:p0445

The second line of bold code replace the original LBD evaluation
condition, and derives the clauses with the highest frequency of use,

Figure 3

ID:p0425

Class diagram of syrup.
Pdf_Folio:5

4.2. Clause Sharing Strategy Using the
Hybrid Evaluation Method

254 G. Wu et al. / International Journal of Computational Intelligence Systems 12(1) 250–258
ID:p0415ID:TI0075ID:ti0080ID:ti0085ID:p0400ID:p0405ID:p0410ID:ti0090ID:p0420ID:p0430ID:p0435ID:ti0095ID:p0440ID:p0445ID:p0425



“IJ-CIS-D-18-00250_proof ” — 2019/2/2 — 12:03 — page 6 — #6

or derives the best learnt clauses considered by the LBDalgorithm—
“glue” clause. “LimitNum” indicates the threshold of the number of
times the learnt clause is used whose value needs to be set according
to the experimental results.

Algorithm 1. Parallel Export Learnt Clause 
Input : a learnt clause c
Output: null
1: if c.UsedCount > LimitNum and c.Size < 40 than

2: Add c to Share d queue

4: else if c.lbd<=2 than

5: Add c to Shared queue

6: end if

5. EXPERIMENTAL CASE STUDIES

Glucose is an internationally renowned CDCL solver. The author’s
main contribution is to propose an LBD evaluation algorithm and
successfully apply it to the solver. Glucose has won numerous
awards in the SAT International Competition. The SAT competi-
tion (2016) even set the Glucose-Hack award outside of the Main
Track group. Based on Glucose 4.1 and its parallel version of Syrup,
this paper uses the hybrid clause evaluation method to improve in
reduceDB() function and the clause shared strategy in parallel node.

The versions of the SAT solvers and the software environment and
hardware environment of the test machines are shown in Table 1
and Table 2.

Table 1 Operation environment.

First, ran Glucose and Glucose-H based on the hybrid clause eval-
uation strategy. The results are shown in Table 3. The evaluation
strategy based on the hybrid learning clause is 3more than the orig-
inal version on SAT, and 1 less than the original version on UNSAT.
There are 2 more overall, and the average time is 28.5 seconds less
than that of Glucose.

The results are highly coincident in the time distribution of the first
80 questions, so the abscissa starts from 80. In Figure 4, Sum rep-
resents the number of solving problems, and the ordinate axis rep-
resents the time taken for solving a single problem. It is obvious
from the figure that the Glucose-H based on the hybrid evaluation
algorithm represented by the red triangle is significantly less time-
consuming than Glucose, especially in the 150–180 range.

In the parallel version of the experiment, we used the same config-
uration of Syrup in the SAT Competition, running 24 threads in
parallel by default. In order to analyze the influence of the hybrid
clause evaluation and clause sharing strategy on the solution results,
different combinations are set up to form different parallel solvers.
The parallel solvers involved in the comparative analysis are named
after the Syrup prefix. See Table 2 for details.

The results of the parallel experiments are shown in Table 4. It
can be seen that the number of solving problems of each ver-
sion based on the hybrid clause evaluation strategy is more than
Syrup, which shows the effectiveness of the hybrid learning clause
evaluation method. On the other hand, the version of Syrup-HE
with a hybrid clause sharing strategy is 1 less than the results of
Syrup-H which only use the hybrid clause evaluation algorithm,
but the number of UNSAT solved by it is 100, and more than other
versions.

When Syrup-HEN40 shares the learning clause, it removes the
restrictions that the learnt clauses must be less than 40 in length
so they can be shared. The results are 3 less than Syrup-HE, which
reduces the efficiency of the solution. This also confirms the ratio-
nality of the length limit of learnt clauses in [31].

Figure 5 shows the relationship between the results and time dis-
tribution. From the relationship between the number and the
time distribution curve, although average time consumption of the
improved version is more than Syrup, the solution problems are
concentrated on the more difficult problems. On the last few diffi-
cult problems, the red triangle representing Syrup-HE is lower than
the other lines, indicating that it takes less time than several other
solvers.

There are 166 records that are the intersection of results of Glu-
cose, Syrup, and Syrup-HE. After eliminating the noise data with

Table 2 Versions of SAT solvers.

OS Software CPU Memory

Win7
x64

Cygwin64
GCC6.4.0

Intel®Core™ i7-
4790 CPU @3.60
GHz 3.6 GHz

16 G

We use 350 benchmarks of the MainTrack group of the SAT Com-
petition (2017), with a time limit of 3 600 seconds. All testmachines
strictly guarantee the same software and hardware environment.
According to the results of previous experimental analysis, Glucose-
H achieved the best results when the value of LimitNum was 150.
The same values are used in the parallel version, and for each test
case is runs 5 times, and the average is taken as the statistical result.

Solver Description

Glucose Serial version
Syrup Glucose parallel version
Glucose-H Added hybrid clause evaluation strategy
Syrup-H Added hybrid clause evaluation strategy, unchanged parallel clause sharing strategy
Syrup-HE Added hybrid clause evaluation strategy, changed parallel clause sharing strategy
Syrup-HEN40 Added hybrid clause evaluation strategy, changed the parallel clause sharing strategy, but removed the limitation

that the length of the shared learnt clause does not exceed 40.
Pdf_Folio:6

G. Wu et al. / International Journal of Computational Intelligence Systems 12(1) 250–258 255



“IJ-CIS-D-18-00250_proof ” — 2019/2/2 — 12:03 — page 7 — #7

Table 3

ID:p0475

Results of glucose and Glucose-H.

ID:t0085ID:t0090ID:t0095ID:t0100ID:t0105ID:t0110ID:t0115ID:t0120ID:t0125ID:t0130

Table 4

ID:p0490

Results of parallel solvers.

ID:t0135ID:t0140ID:t0145ID:t0150ID:t0155ID:t0160ID:t0165ID:t0170ID:t0175ID:t0180ID:t0185ID:t0190ID:t0195ID:t0200ID:t0205ID:t0210ID:t0215ID:t0220ID:t0225ID:t0230ID:p0515ID:p0525

relatively large difference between the two times, the correspond-
ing acceleration ratio data distribution is shown in Figure 6. The
red left slash shades to indicate a parallel solver based on the hybrid
clause evaluation and hybrid sharing strategy, and the blue right
slash shaded area represents Syrup. The red shaded area is larger

than the blue shaded area, indicating that the Syrup-HEhas a higher
speedup than the original program at the same number of threads.

ID:p0535

In a given hardware environment, the performance of parallel
programs does not always increase with the number of threads. In
order to study the relationship between the number of threads and
the number of problems solved, the results of the execution under
different number of threads of Syrup and Syrup-HE are shown in
Table 5.

Table 5

ID:p0540

Results of Syrup and Syrup-HE with different TNs (thread
numbers).

ID:t0235ID:t0240ID:t0245ID:t0250ID:t0255ID:t0260ID:t0265ID:t0270ID:t0275ID:t0280ID:t0285ID:t0290ID:t0295ID:t0300ID:t0305ID:t0310ID:t0315ID:t0320ID:t0325ID:t0330ID:t0335ID:t0340ID:t0345ID:t0350ID:t0355ID:t0360ID:t0365ID:t0370ID:t0375ID:t0380ID:t0385ID:t0390ID:t0395ID:t0400ID:t0405ID:t0410ID:t0415ID:t0420ID:t0425ID:t0430ID:t0435ID:t0440ID:p0545

When the number of threads is 8, both solvers reach the peak value
of the number of problems solved, and then the number of solutions
decreases as the number of threads increases. At the same time,
although the number of solving problems is exactly the same when
the number of threads is 8, the problems solved are not the same.
There are seven problems that have not been solved by Syrup-HE.

ID:p0550

We also tested the solvers with 400 benchmarks in the SATCompe-
tition 2018 at the same environment except that the thread number
is set to 8. The result is shown in Figure 7. Obviously, for the test
data of 2018, the improved version of the parallel solver is still more
efficient than the original. For Syrup-H, there are 6 more solutions
than the Syrup.

6.

ID:TI0105

CONCLUSIONS

ID:p0555

In this paper, the hybrid learning clause evaluation algorithm has
been proposed and applied to improve Glucose and its parallel ver-
sion of Syrup (the champion of parallel group in SAT Competition
2017). The experimental case studies and comparisons have shown
that the hybrid evaluation method can reach and exceed the solu-
tion efficiency of the SAT solvers which are only based on the LBD
evaluation algorithm to a large extent.

ID:p0560

The downside is that the parameter settings in the hybrid evaluation
algorithm are based on statistical analysis, and the intrinsic rela-
tionship needs further investigation, although most existing clause
evaluation algorithms have this kind of shortage.

ID:p0565

Follow-up research will consider the specific problem type, analyze
the relationship between the frequency of the usage of the learnt
clause and the problem itself, in order to find the patterns between
parameters and the problem types, with the expectation to solve
more problems within the specified time.

ID:TI0110

ACKNOWLEDGEMENTS

ID:p0585

This work is supported by the National Natural Science Foundation of
P. R. China (Grant No.61673320) and the Fundamental Research Funds forPdf_Folio:7

Solvers SAT UNSAT Total Avg-time(s)

Glucose 86 99 185 749.694
Glucose-H 89 98 187 721.121

Solvers SAT UNSAT Total Avg-time(s)

Syrup 97 95 192 634.031
Syrup-H 99 99 198 707.568
Syrup-HE 97 100 197 713.459
Syrup-HEN40 96 98 194 706.111

TN Syrup Syrup-HE
SAT UNSAT SUM SAT UNSAT SUM

4 95 110 205 88 106 194
8 97 111 208 97 111 208
12 97 106 203 95 106 201
16 95 103 198 93 107 200
20 97 99 196 94 102 196
24 97 95 192 97 100 197

Figure 4 The relationship of used times and results.

Figure 5 The relationship of used times and results for parallel version
solvers.

256 G. Wu et al. / International Journal of Computational Intelligence Systems 12(1) 250–258
ID:p0475ID:t0085ID:t0090ID:t0095ID:t0100ID:t0105ID:t0110ID:t0115ID:t0120ID:t0125ID:t0130ID:p0490ID:t0135ID:t0140ID:t0145ID:t0150ID:t0155ID:t0160ID:t0165ID:t0170ID:t0175ID:t0180ID:t0185ID:t0190ID:t0195ID:t0200ID:t0205ID:t0210ID:t0215ID:t0220ID:t0225ID:t0230ID:p0515ID:p0525ID:p0535ID:p0540ID:t0235ID:t0240ID:t0245ID:t0250ID:t0255ID:t0260ID:t0265ID:t0270ID:t0275ID:t0280ID:t0285ID:t0290ID:t0295ID:t0300ID:t0305ID:t0310ID:t0315ID:t0320ID:t0325ID:t0330ID:t0335ID:t0340ID:t0345ID:t0350ID:t0355ID:t0360ID:t0365ID:t0370ID:t0375ID:t0380ID:t0385ID:t0390ID:t0395ID:t0400ID:t0405ID:t0410ID:t0415ID:t0420ID:t0425ID:t0430ID:t0435ID:t0440ID:p0545ID:p0550ID:TI0105ID:p0555ID:p0560ID:p0565ID:TI0110ID:p0585



“IJ-CIS-D-18-00250_proof ” — 2019/2/18 — 13:01 — page 257 — #8

G. Wu et al. / International Journal of Computational Intelligence Systems 12(1) 250–258 257
ID:p0570ID:p0580

suggestions of the teachers and students from National-Local Joint Engi-
neering Laboratory of System Credibility Automatic Verification at South-
west Jiaotong University in China, and especially appreciate that the Lab
provides the testing PC equipment.

REFERENCES

ID:TI0115

[1] S.A. Cook, The complexity of theorem proving procedures, in
Proceeding of 3rd Annual ACM Symposium on Theory of Com-
puting, New York, 1971, pp. 151–158.

[2] E. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded model checking
using satisfiability solving, Form.Method. Syst. Des. 19(1) (2001),
7–34.

[3] Y. Vizel, G. Weissengbcher, S. Malik, Boolean satisfiability solvers
and their applications in model checking, Proc. IEEE. 103(11)
(2015), 2021–2035.

[4] L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, M. Kochen-
derfer, Toward Scalable Verification for Safety-Critical Deep Net-
works, arXiv preprint arXiv: 1801.05950, 2018.

[5] M. Davis, H. Putnam, A computing procedure for quantification
theory, J. ACM. 7(3) (1960), 201–215.

[6] J. Franco,M. Paull, Probabilistic analysis of theDavis Putnampro-
cedure for solving the satisfiability problem, Discrete Appl. Math.
5(1) (1983), 77–87.

[7] J.P. Marques-Silva, K.A. Sakallah, GRASP: a search algorithm for
propositional satisfiability. IEEE Transac. Comput. 48(5) (1999),
506–521.

[8] M.W. Moskewicz, C.F. Conor, Y. Zhao, L. Zhang, S. Malik, Chaff:
engineering an efficient SAT solver, in Proceedings of the 38th
annual Design Automation Conference, ACM, New York, 2001,
pp. 530–535.

[9] N. Een, N. Sorensson, An extensible SAT-solver, in: Theory and
Applications of Satisfiability Testing, Springer, Berlin, Heidelberg,
2004, pp. 502–518.

[10] J. Marques-Silva,  I. Lynce, S. Malik, Conflict-driven clause learn-
ing SAT solvers, in: A. Biere, M. Heule, H. van Maaren, T. Walsh
(Eds.), Handbook of Satisfiability, Frontiers in Artificial Intelli-
gence and Applications. IOS Press, The Netherlands, 2009, pp.
131–153.

[11] G. Audemard, L. Simon, Glucose: A solver that predicts learnt
clauses quality, SAT Competition, Swansea, Wales, United King-
dom, June 30–July 3, 2009, pp. 7–8.

[12] T. Ehlers, SAT and CP-Parallelisation and Applications, Univer-
sitätsbibliothek Kiel, Germany, 2017.

[13] N. Sorensson, N. Een, Minisat v1.13- A SAT solver with conflict-
clause minimization, SAT Competition. 2005(53) (2005), 1–2.

[14] J.H. Liang, C. Oh, V. Ganesh, K. Czarnecki, P. Poupart, Maple-
COMSPS, MapleCOMSPS LRB, Maple COMSPS CHB, SAT
Competition Bordeaux, France, 2016, p. 52.

[15] A. Biere, P{re, i}coSAT, SATCompetition, Swansea,Wales, United
Kingdom, June 30–July 3, 2009, pp. 41–43.

[16] A. Biere, Lingeling and friends entering the SAT challenge 2012,
in Proceedings of SAT Challenge, 2012, pp. 33–34.

[17] Y. Hamadi, J. Said, S. Lakhdar, ManySAT: a parallel SAT solver, J.
Satisfiability Boolean Model. Comput. 6 (2008), 245–262.

[18] O. Roussel, Description of ppfolio (2011), in Proceeding of SAT,
Trento, Italy, June 17–20, 2012, p. 46.

[19] A. Biere, Lingeling, plingeling, picosat and precosat at sat race
2010, FMV Rep Ser. Tech. Rep. 10(1) (2010), 1–4.

[20] A. Biere, Splatz, Lingeling, PLingeling, Treengeling, YalSATEnter-
ing the SAT Competition 2016, in Proceedings of SAT Competi-
tion, 2016, pp. 44–45.

[21] G. Audemard, L. Simon, Glucose and Syrup in the SATRace 2015,
SAT Race, Austin, Texas, USA, September 24–27, 2015.

[22] W. Chrabakh, R.Wolski, GridSAT: a system for solving satisfiabil-
ity problems using a computational grid, Parallel Comput. 32(9)
(2006), 660–687.

[24] M. Heule, M. Jarvisalo, T. Balyo, Results page of SAT Com-
petition 2017, Sept. 1, 2017. Retrieved September 20, 2018,

Pdf_Folio:257

the Central Universities (Grant No.2682018ZT10, 2682018CX59, 2682018-
ZT25). The authors also gratefully acknowledge the helpful comments and

Figure 6 The speed-up ratio of Syrup-HE and Syrup.

Figure 7 The relationship of used times and results for parallel version
solvers (thread number = 8).

[23] M. Lewis, T. Schubert, B. Becker, Multithreaded SAT solving, in
Design Automation Conference, 2007, ASP-DAC’07 (Asia and
South Pacific IEEE 2007), pp. 926–931.

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1016/0166-218X(83)90017-3
https://doi.org/10.1016/0166-218X(83)90017-3
https://doi.org/10.1016/0166-218X(83)90017-3
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/j.parco.2006.01.004
https://doi.org/10.1016/j.parco.2006.01.004
https://doi.org/10.1016/j.parco.2006.01.004
https://doi.org/10.1109/ASPDAC.2007.358108
https://doi.org/10.1109/ASPDAC.2007.358108
https://doi.org/10.1109/ASPDAC.2007.358108


“IJ-CIS-D-18-00250_proof ” — 2019/2/2 — 12:03 — page 9 — #9

Pdf_Folio:9

258 G. Wu et al. / International Journal of Computational Intelligence Systems 12(1) 250–258

from https://baldur.iti.kit.edu/sat-competition-2017/index
.php?cat=results

[25] K. Claessen, N. Een, M. Sheeran, N. Sorensson, SAT-solving in
practice, in Discrete Event Systems, WODES 2008, 9th Interna-
tional Workshop on IEEE, 2008, pp. 61–67.

[26] J.H. Liang, V. Ganesh, P. Poupart, K. Czarnecki, Learning rate
based branching heuristic for SAT solvers, in Proceedings of the
19th International Conference onTheory andApplications of Sat-
isfiability Testing, Springer, Cham, 2016.

[27] J.H. Liang, V. Ganesh, P. Poupart, K. Czarnecki, Exponential
recency weighted average banching heuristic for SAT solvers, in
AAAI, 2016, pp. 3434–3440.

[28] M. Soos, The CryptoMiniSat 5 set of solvers at SAT Competition
2016, in SAT Competition, Bordeaux, France, 2016, p. 28.

[29] G. Audemard, L. Simon, Lazy clause exchange policy for par-
allel SAT solvers, in Theory and Applications of Satisfiability
Testing – SAT 2014 – 17th Internation Conference Vienna,
Austria, 2014.

[30] A. Gilles, L. Simon, On the Glucose SAT solver, Int. J. Artif. Intell.
Tools. 27(1) (2018). 1840001.

[31] Z.H. Fu, M. Yogesh, M. Sharad, New features of the SAT04 ver-
sions of zChaff, in SAT Competition 2004, Solver Descriptions,
2004.

https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=results
https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=results
https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=results
https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=results
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1007/978-3-319-09284-3_15
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1109/WODES.2008.4605923
https://doi.org/10.1109/WODES.2008.4605923
https://doi.org/10.1109/WODES.2008.4605923
https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=results
https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=results

	A Hybrid Learnt Clause Evaluation Algorithm for SAT Problem
	1. INTRODUCTION
	2. RELATED WORKS
	2.1. The DPLL Algorithm
	2.2. CDCL Algorithm
	2.3. The VSIDS Algorithm
	2.4. LBD Algorithm
	2.5. Hybrid Evaluation Algorithm
	2.6. Clause Sharing Strategy

	3. SIMPLIFIED TREND STRENGTH AND LBD HYBRID EVALUATION ALGORITHM
	3.1. Trend Strength Evaluation Algorithm
	3.2. Simplified Trend Strength and LBD Hybrid Evaluation Algorithm

	4. IMPROVED CLAUSE SHARING STRATEGY IN PARALLEL SOLVER
	4.1. The Clauses Strategy of Syrup
	4.1.1. The shared data structures
	4.1.2. Export and import of learnt clauses

	4.2. Clause Sharing Strategy Using the Hybrid Evaluation Method

	5. EXPERIMENTAL CASE STUDIES
	6. CONCLUSIONS


