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Abstract 

Back-Propagation Neural Network 

(BPNN) algorithm is a widely used tech-

nique implemented in many engineering 

disciplines. Despite solving several prac-

tical problems around the globe, BPNN 

still faces problems like slow conver-

gence, network stagnancy and conver-

gence to local minima. Many alternative 

ways of improving the  convergence rate 

in BPNN are suggested by previous re-

searchers such as the careful selection of 

input weights and biases, learning rate, 

momentum, network topology, activation 

function and value for „gain‟ in the acti-

vation function. This research propose an 

algorithm for improving the working per-

formance of back-propagation algorithm 

which is „Gradient Descent with Adaptive 

Momentum (GDAM)‟ by keeping the 

gain value fixed during all network trials. 

The performance of GDAM is compared 

with „Gradient Descent with fixed Mo-

mentum (GDM)‟ and „Gradient Descent 

Method with Adaptive Gain (GDM-AG)‟. 

The results show that GDAM is a better 

approach than previous methods and 

shows better accuracy on selected classi-

fication problems like Wine Quality, 

Mushroom, Thyroid disease Breast Can-

cer, IRIS, Australian Credit Card Ap-

proval, Pima Indian Diabetes, and Heart 

Disease. 

Keywords: neural networks, gradient de-

scent, adaptive momentum, adaptive gain.  

1. Introduction 

Artificial Neural Networks (ANNs) are 

systematic techniques sculpted on the 

neurological process of the brain. An Ar-

tificial Neuron can be trained to store, 

recognize, estimate and adapt to new pat-

terns without having the prior information 

of the function it receives. This ability of 

learning and adaption has made ANN 

suitable for solving complex time critical 

problems such as; biological modeling,  

NIHL prediction, decision modeling, con-

trol systems, manufacturing, ocean and 

space exploration etc. [1-3, 11]. 

Back-Propagation Neural Network 

(BPNN) is one of the most novel super-

vised-learning Artificial Neural Network 

(ANN) [4].  The BPNN learns by calcu-

lating the errors of the output layer to find 

the errors in the hidden layers. This quali-

tative ability makes it highly suitable to 

be applied on problems in which no rela-

tionship is found between the output and 

the inputs. Due to this prowess, it has 

been successfully implemented in wide 

range of applications [5]. Despite provid-

ing successful solutions BPNN has some 

limitations. Since, it requires careful se-

lection of parameters such as network to-

pology, initial weights and biases, learn-
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ing rate, activation function, and value for 

the gain in the activation function. An 

improper use of these parameters can lead 

to slow network convergence or even 

stagnancy. Previous researchers have 

suggested the use of learning rate and 

momentum to stop network failure and to 

speed-up the convergence to global min-

ima. These two parameters are frequently 

used in the control of weight adjustments 

along the steepest descent and for con-

trolling oscillations [6]. 

2. BPNN with Momentum Coefficient 

Momentum-coefficient (α) is based on 

the observation that convergence might 

be improved if the oscillation in the tra-

jectory is smoothed out, by adding a frac-

tion of the previous weight change [4,7]. 

So the addition of momentum-coefficient 

helps to smooth-out the descent path by 

preventing extreme changes in the gradi-

ent due to local anomalies [8]. In this 

case, it is essential to suppress any oscil-

lations that results from the changes in 

the error surface [10]. 

In earlier studies, static momentum-

coefficient was found to be beneficial for 

the convergence to global minima but in 

later studies it was revealed that Back-

propagation with Fixed Momentum 

(BPFM) shows acceleration results when 

the current downhill of the error function 

and the last change in weights are in simi-

lar directions, when the current gradient 

is in an opposing direction to the previous 

update, BPFM will cause the weight di-

rection to be updated in the upward direc-

tion instead of down the slope as desired, 

so in that case it is necessary that the 

momentum-coefficient should be adjusted 

adaptively instead of keeping it static 

[9,10]. 

In 1994, Simple Adaptive Momentum 

(SAM) [11] was proposed to enhance the 

convergence capability of BPNN to glob-

al minima. Although SAM was found as 

a better alternative to Conjugate Gradient 

Descent and conventional BPNN but its 

success and failure rate was found to be 

same as conventional BPNN. In 2002, C. 

Yu and B. Liu [17] introduced a more ef-

ficient Back Propagation and Accelera-

tion Learning (BPALM) method, to an-

swer the convergence failure problem in a 

much better way by adding some momen-

tum to the adjustment expression. In 

2009, R. J. Mitchell suggested adjusting 

the momentum-coefficient in SAM [11] 

by considering all the weights in the Mul-

ti-layer Perceptrons (MLP). This tech-

nique of global adjustment of weights 

was found much better than the previous-

ly used SAM [11] and helps improve the 

convergence rate to global minima [12]. 

In 2007, Nazri et al. [13] proposed that 

by varying the gain value adaptively for 

each node can radically progress the 

training time of the network. Based on 

Nazri et al. [13] research, this paper pro-

poses a further improvement on the algo-

rithm that will use adaptive momentum 

and will keep the gain value fixed for all 

trials.  

3. Gradient Descent Adaptive Mo-

mentum (GDAM) Algorithm 

For each epoch, 

For each input vector, 

Step-1: 

Calculate the weights and biases using the previ-

ous momentum value 

Step-2: 

Use the weights and biases to calculate new 

momentum value. 
End input vector 

IF Gradient is increasing, increase momentum 
ELSE decrease momentum 

End IF 

Repeat the above steps until the network reaches 
the desired value. 

End epoch 

The proposed GDAM algorithm adap-

tively changes the momentum while it 

keeps the gain and learning rate fixed for 

each training node. Mean Square Error 

(MSE) is calculated after each epoch and 
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compared with the target error. The train-

ing continues until the target error is 

achieved.  

 

3.1. Derivation of GDAM Algorithm 

The gradient descent method is utilized to 

calculate the weights and adjustments are 

made to the network to minimize the out-

put error.  The output error function at the 

output neuron is defined as; 
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Here, Log-sigmoid activation function is 
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The weight and bias update expressions 

for the links connecting to the output 

nodes are; 
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For adjusting the α adaptively, gradient 

path is selected. When the gradient (gs), is 

increasing, increase the α else decrease 

the α. So, all the momentum adjustment 

is done with respect to an increase or a 

decrease in gs. The momentum coefficient 

on each training at epoch (s + 1) is calcu-

lated in Equation 6.  
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where;  

9.02.0  p  

Here in the Equation (6), „p‟ represents 

the highest and the lowest value in the 

sigmoid interval [18]. After calculating 

the α in each epoch, the weight update 

expression for the input node links be-

comes: 
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The bias update expression for hidden 

nodes will be like this; 
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After calculating biases, hidden and out-

put layer weight, the net weight becomes; 
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Finally, the network weights are calculat-

ed after being updated with momentum 

coefficient, the net weight becomes; 
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4. Results and Discussions 

For performing simulations, eight classi-

fication problems from UCI machine 

learning repository are selected to verify 

the accuracy of the GDAM algorithm. 

Gradient Descent with Momentum 

(GDM), Gradient Descent Method with 

Adaptive Gain (GDM-AG), and the pro-

posed GDAM algorithms are analyzed 

and simulated on the problems using the 

MATLAB 2010 software. Three layer 

back-propagation neural networks is used 

for training and testing purposed, hidden 

layer is kept fixed to 5-nodes while out-

put and input layers nodes vary. Global 

learning rate of 0.4 is selected for the en-

tire tests and gain is kept fixed to 0.3 and 

target error is set to 0.01[19]. While log-

sigmoid activation function is used, the 

momentum term is varied adaptively be-

tween the range of [0, 1]. For each prob-

lem, a total of 30 trials are run for each 
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momentum value and one trial is limited 

to 3000 epochs.  

 

4.1. Wine Quality  

Red wine sub-dataset contains 1599 in-

stances [14]. The best momentum values 

for GDM and GDM-AG is 0.6 and 0.2 

respectively. While for GDAM, the best 

performance is found in the momentum 

interval of  8.06.0  . The highlighted area 

in Table 1, demonstrate that the superior 

performance of the proposed GDAM al-

gorithm.  

 

4.2. Mushroom   

In mushroom dataset, each mushroom is 

identified as definitely edible, definitely 

poisonous, or of unknown edibility [15]. 

For mushroom, the best momentum value 

for GDM and GDM-AG is 0.7 and 0.3 

respectively. While for GDAM, the best 

performance is achieved in the momen-

tum interval of  0.80.5 .From the Ta-

ble 1, it is easily seen that GDAM algo-

rithm is better in performing convergence 

with a percentile accuracy of 96.34 than 

GDM and GDM-AG.  

 

4.3. Thyroid 

For thyroid disease, GDM and GDM-AG 

have the best momentum values at 0.8 

and 0.2 respectively [16]. GDAM works 

best on the momentum interval of 

 0.90.5 . It is evident from the Table 1, 

that GDM-AG has 2 failed trials, while 

GDAM shows success-rate throughout.  

 

4.4. Breast Cancer 

This problem deals with the classification 

of breast cancer as benign or malignant 

[20]. Table 1 shows that GDAM algo-

rithm shows far better performance in 

reaching the desired target error value. 

 

 

4.5. IRIS  

IRIS dataset consists of 150 instances and 

deals with length and width of sepal and 

petals of three selected species [21]. For 

Iris, the best momentum value for GDM 

and GDM-AG is 0.2. While for GDAM, 

the best momentum interval is established 

in  8.06.0  .   

 

4.6. Australian Credit Card Approval  

Each instance in this dataset represents a 

real credit card application and the output 

describes whether the bank will grant the 

credit card or not [22]. GDM and GDM-

AG both have the same best momentum 

values at 0.4. GDAM works best on the 

momentum interval of  8.07.0  . It is ap-

parent from the Table 1, that GDAM is 

giving a percentile accuracy of 96.60. 

  

4.7. Pima Indian Diabetes  

This dataset deals with the diabetes prob-

lem in female‟s body [23]. For Pima In-

dians Diabetes, GDM and GDM-AG 

have the best momentum values of 0.3 

and 0.2 respectively. GDAM works best 

on the momentum interval of  8.06.0  . 

As seen from the Table 1, GDAM is 

showing a percentile accuracy of 75.73. 

 

4.8. Heart Disease  

This dataset deals with all the symptoms 

of a heart disease present in a patient on 

the basis of information given as input 

[24]. For Heart Disease, GDM and GDM-

AG have the best momentum values of 

0.4 and 0.7 respectively.  

5. Conclusions 

The back-propagation neural network 

(BPNN) is one of the most capable su-

pervised-learning algorithms deployed 

successfully in all engineering fields. Re-

gardless of its high success rate at provid-
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ing many practical solutions, it has a 

problem of slow convergence and net-

work stagnancy, which still needs to be 

answered.  This paper tries to answer the 

problem of slow convergence and net-

work failure in BPNN and proposes a fur-

ther improvement on the current working 

algorithm by Nazri [18]. The proposed 

„Gradient Descent Method with Adaptive 

Momentum (GDAM)‟ works by adap-

tively changing the momentum and keep-

ing the „gain‟ parameter fixed for all 

nodes in the neural network. The perfor-

mance of the proposed GDAM is com-

pared with „Gradient Descent Method 

with Adaptive Gain (GDM-AG)‟ and 

„Gradient Descent with Simple Momen-

tum (GDM)‟ in this paper. The perfor-

mance of GDAM is verified by means of 

simulations on the eight classification 

problems taken from UCI machine learn-

ing repository. The final results show that 

GDAM works better than the previous 

methods and it converge to global mini-

ma successfully with high accuracy and 

without showing any failed trials. 

Acknowledgments 

The Authors would like to thank Univer-

siti Tun Hussein Onn Malaysia (UTHM) 

for supporting this research under the 

FRGS. Vote. No. 1257. 

References 

[1] M. Z. Rehman et al., “Studying the 
effect of adaptive momentum in 
improving the accuracy of GDAM 
on classification problems,” 
IJMPCS, 1(1), 2012. 

[2] B. Kosko, “Neural Network and 

Fuzzy Systems,” 1st edition, Prentice 

Hall of India, 1994. 

[3] V.M. Krasnopolsky et al., “Some 

Neural Network application in envi-

ronmental sciences, Part II: advanc-

ing computational efficiency of envi-

ronmental numerical models,” NN, 

16, pp. 3-4, 2003. 

[4] D. E. Rumelhart et al., “Learning In-

ternal Representations by error Prop-

agation,” Journal of Parallel Distrib-

uted Processing: Explorations in the 

Microstructure of Cognition, 1986. 

[5] K. Lee et al., “Comparison of Super-

vised and Unsupervised Neural Net-

works in Predicting Bankruptcy of 

Korean Firms,” ESA, 29, 2005. 

[6] Y. H. Zweiri et al., “Stability Analy-

sis of a Three-term Back-propagation 

Algorithm,” NN, 18(10), 2005. 

[7] M. A. Fkirin et al., “Change Detec-

tion Using Neural Network in Tosh-

ka Area,” NSRC, Cairo, Egypt, pp. 

1-10, 2009. 

[8] Y. J. Sun et al., “Improved BP Neu-

ral Network for Transformer Fault 

Diagnosis,” China University of 

Mining Technology, 17, 2007. 

[9] H. Shao, & H. Zheng, “A New BP 

Algorithm with Adaptive Momentum 

for FNNs Training,” GCIS-2009, 

Xiamen, China, 2009. 

[10] M. Z. Rehman et al., NIHL Predic-

tion in Humans Using a Modified 

Back Propagation Neural Network,” 

IJASEIT, 1(1), pp. 185-189, 2011.  

[11] D. J. Swanston et al., “Simple adap-

tive momentum: New algorithm for 

training multilayer Perceptrons,” 

Electronic Letters, 30, 1994. 

[12] R. J. Mitchell, “On Simple Adaptive 

Momentum,” CIS-2008, London, 

UK, pp.01-06, 2006.  

[13] N. M. Nawi et al., “An improved 

Conjugate Gradient based learning 

algorithm for back propagation neu-

ral networks,” CI, 4, 2007. 

[14] P. Cortez et al., “Modeling wine 

preferences by data mining from 

physicochemical properties,” DSS, 

47(4), 2009. 

[15] J. S. Schlimmer, “Concept Acquisi-

tion through Representational Ad-

50



justment,” Doctorial Disseration, 

UC, Irvine, 1987.  

[16] J. R. Quinlan et al., “Inductive 

knowledge acquisition: A case 

study,” 2
nd

 ACAES, 1986. 

[17] C. Yu and B. Liu, “A Backpropaga-

tion algorithm with adaptive learning 

rate and momentum coefficient,” 

IJCNN’02, Honolulu, USA, pp.1218-

1223, 2002. 

[18] N. M. Nawi, M. Z. Rehman, M. I. 

Ghazali, “Noise-Induced Hearing 

Loss Prediction in Malaysian Indus-

trial Workers using Gradient Descent  

with Adaptive Momentum Algo-

rithm,” IRECOS, 6 (5), 2011.  

[19] M. Z. Rehman, N. M. Nawi, “The 

Effect of Adaptive Momentum in 

Improving the Accuracy of Gradient 

Descent Back Propagation Algorithm 

on Classification Problems,” CCIS, 

179(6), pp.380-390, 2011. 

[20] W. H. Wolberg et al., “Multisurface 

method of pattern separation for 

medical diagnosis applied to breast 

cytology,” NAS, 87, pp. 9193-9196, 

1990. 

[21] R. A. Fisher, “The use of multiple 

measurements in taxonomic prob-

lems,” Annual Eugenics, 7, pp. 179-

188, 1936.  

[22] J. R. Quinlan, “Simplifying Decision 

Trees,” Journal of Man-Machine 

Studies, 27, pp. 221-234, 1987. 

[23] J. W. Smith et al., “Using the ADAP 

learning algorithm to forecast the on-

set of diabetes mellitus,” SCAMC’88 

IEEE, pp. 261-265, 1988.  

[24] R. Detrano et al., “International ap-

plication of a new probability algo-

rithm for the diagnosis of coronary 

artery disease,” American Journal of 

Cardiology, 64, pp. 304-310, 1989. 
 

 

 

 

 

TABLE 1. Selected Classification Problems for GDAM Algorithm 

 
Classification 

Problem (s) 

Algorithm Mean No. 

of Epochs 

Standard 

Deviation 

Accuracy 

Wine Quality  

GDM 2801 6.21 71.99% 

GDM-AG 481 5.23 75.70% 

GDAM 22 1.07 90.48% 

Mushroom  

GDM 3000 1.21 50.96% 

GDM-AG 730 12.57 89.39% 

GDAM 65.47 0.36 96.34% 

Thyroid Disease  

GDM 1452 1.58 94.32% 

GDM-AG 960 10.01 86.38% 

GDAM 1201 0.53 95.73% 

Breast Cancer  

GDM 684.33 0.77 93.93% 

GDM-AG 419.60 6.98 94.06% 

GDAM 706.13 0.19 94.71% 

IRIS  

GDM 1481 0.23 93.85% 

GDM-AG 738.30 4.28 91.93% 

GDAM 655.67 1.09 94.09% 

Australian 

Credit Card 

Approval  

GDM 1293 1.15 94.28% 

GDM-AG 1635.87 11.87 91.05% 

GDAM 2355.33 0.53 96.60% 

Pima Indian 

Diabetes  

GDM 2093 2.07 70.81% 

GDM-AG 2797.07 3.63 67.81% 

GDAM 2000 0.54 75.73% 

Heart Disease  

GDM 1857.40 9.71 88.77% 

GDM-AG 1819.87 15.11 83.97% 

GDAM 1479.93 3.57 91.76% 
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