
A Game Based Interactive Development Environment

for Non-computer Science Majors

Bo Chen

College of Computer Science

Zhejiang University of Technology

Hangzhou, China

cb@zjut.edu.cn

Yan Liu

Chengdu Institute

Sichuan International Studies University

Chengdu, China

elsa.liu1212@hotmail.com

Abstract—Object oriented programming is useful course for non-

computer science majors to understand computer language, but

there are several problems in the teaching and learning

procedure. We designed an interactive development environment

based on Greenfoot project. The IDE makes it easy to write

interactive graphical applications in Java language. Several game

based program examples are introduced into course and used for

lab projects. The game designing procedure provides educational

tools that aid in understanding fundamental object-oriented

concepts, and it is highly motivational through instant graphical

feedback. We described the IDE’s features, discussed the

effectiveness of tool, and describe potential improvements to IDE

design and implementation.

Keywords- Object Orientd Programming; course design; game

programming

I. INTRODUCTION

Java is one of the most popular programming languages in
use, particularly for client-server Internet web applications. The
language derives much of its syntax from C and C++, but it has
fewer low-level facilities than either of them. Java language is
used in pilot course for non-CS majors with prior programming
experience and an interest in building software application.
This course introduces students to an object-oriented model of
programming, with an emphasis on the programming
approaches useful in creating software applications. Students
will be expected to design, implement, and debug object-
oriented programs. Topics include inheritance, user interfaces,
and database access.

According to our teaching practice on Java programming
for both CS and non-CS majors, there are great differences
between the two types of students. Then, it is required that
teachers must pay enough attention to the differences, and
design different teaching ways to achieve better results.

In contrast to computer science students, the most important
features of non-CS majors include:

1) Inconsistent basic level of programming

Since different major students have different computer pilot
course, the basic level of students’ programming skill has great
disparity. For example, to arts and management major students,
the pilot course only introduce basic knowledge about
computer literacy, almost have no sense on program design and
language. But for engineering science majors, most of them

have learned some language course like Pascal or C, they only
lack of knowledge of object oriented programming. And more,
even in same class, there is great individual difference in
designing and coding ability.

2) Low English proficiency

Most of the students only have English proficiency in
general, reluctant to use development tools in English. Most of
them can not read English technical documents. Even for
English majors, the error messages output by compiler and
linker are so "strange", students have no sense for what's the
message means.

3) Lack of debug skills

In practice course, many students cannot debug the program
code by themselves and have to ask teachers to correct for them.
They know little about the hints in English, cannot understand
the error messages from compiler. So it is very difficult to find
real problem. Even they know the error messages’ meaning,
they lack of skills to debug and correct codes.

II. GUIDELINES

In general, Java program design includes two major
components: basic knowledge and advanced knowledge. Basics
knowledge includes Java basic syntax, Java's basic working
principle, the focus is a Java object-oriented content. Advanced
knowledge is different with the students' professional varies.

The greatest problem with teaching Java is the large
number of circular dependencies of language concepts and
constructs. It sometimes seems that to understand anything, you
have to know everything. This characteristic makes especially
the first few weeks of a course hard to deal with.

Similar with Kolling & Rosenberg, we identified five
guidelines that help in Java programming course.

Guideline 1: Objects first. Start thinking everything is
objects from the first day. Objects and classes are the
fundamental concepts that students need to understand,
whenever the students come from CS or non-CS majors.

Guideline 2: Don't start with a blank screen. If students start
writing projects from scratch, they have to structure the
problem first. This is not a task that students can master at the
beginning.

International Conference on Education Reform and Modern Management (ERMM 2014)

© 2014. The authors - Published by Atlantis Press 303

Guideline 3: Read code. Reading code is an essential skill
for any software developer. Students can learn a great deal
from reading code.

Guideline 4: Use "large" projects. One of the major benefits
of object orientation lies in the ability to structure problems
into independent modules (classes). Show multi-class examples
from the start to convey the right ideas.

Guideline 5: Show program structure. The internal structure
of applications lies at the heart of understanding object-oriented
programming.

The ultimate goal of programming course is to get students
interested in pursuing studies in object oriented disciplines.
One way to do this is to give students a positive and fun
experience where they felt empowered. A game based
development environment allows users to create new classes,
objects, and invoke methods simply by clicking with the mouse.
This greatly assists teaching in some abstract concepts, like the
difference between classes and objects.

III. RELATED WORK

Before choosing our interactive development environment
we evaluated commercial, open source, and freeware tools. We
decided the benefits of freeware tools outweighed any
weakness. We choose tools for their functionality and
facilitation of teaching introductory programming and game
design, but also committed to keeping the tools free. It also
allows students to continue development of their games at
home and at school. We paid heavy attention on three projects.

A. Scratch from MIT

Scratch is a media-rich, networked environment originally
designed for use in "computer clubhouses", a network of
afterschool learning centers for youth from economically
disadvantaged communities. Scratch's focus on media springs
from this initial situation, as clubhouse participants were
observed to be "creating and manipulating graphics, animations,
videos, and music". Thus Scratch emphasizes media
manipulation and supports programming activities that resonate
with interests of youth, such as creating animated stories,
games, and interactive presentations.

A Scratch project is built from a background and a number
of movable sprites. Programming is based on a metaphor of
building blocks, and, influenced by pervious systems such as
LegoBlocks, is accomplished by dragging blocks from a palette
and assembling them, like puzzle pieces, to create "stacks" of
blocks. These "stacks" then determine various behaviors of the
objects.

B. BlueJ from University of Kent

BlueJ is an integrated Java development environment
specifically designed for introductory teaching. BlueJ is a full
Java environment: it is built on top of a standard Java SDK and
thus uses a standard compiler and virtual machine. It presents,
however, a unique front-end that offers a different interaction
style than other environment.

The environment's interface facilitates the discussion of
object-oriented design and aids in using a true "object first"
approach. BlueJ provide an easy-to-use teaching environment

for the Java language that facilitates the teaching of Java to first
year students. Special emphasis has been placed on
visualization and interaction techniques to create a highly
interactive environment that encourage experimentation and
exploration.

C. Greenfoot from University of Kent

Greenfoot also come from University of Kent. It is a free,
cross-platform programming and simulation environment built
on BlueJ environment. The Greenfoot environment allows
users to easily create and explore classes, instances, and
members using a graphic interface.

A Greenfoot scenario divides user created classes into three
categories: World, Actor, and Utility. Users customize the
scenario by creating a subclass of the World class. Users then
create subclasses of Actor for each type of game entity. Utility
classes can be used to accomplish functionality.

IV. GAME BASED ENVIRONMENT

A. Fully Localized Interactive Environment

We use modified Greenfoot as our interactive development
environment. The main changes on this open source project
include translate the interface language from English to
Chinese, and rewrite the online help module for easier access
Chinese documents. We also made some wrapper class for the
error message output module, so the students can understand
how the program running.

FIGURE I. LOCALIZED INTERACTIVE ENVIRONMENT

B. Increase Interest by Game

To attract students to programming, and continued to
increase interest on software development, we use game based
examples in Java course.

After a brief introduce on Java language, the course enter
the game design session. Students are given a working
definition of games and then challenged to create a game in the
first lab project. They are introduced to the concept of critical
and reflective play as a way to assess the quality of the play
experience. Students are given opportunities to refine their
games and have replayed on next lab session.

304

In the programming sessions students start with playing a
pre-made game to get them comfortable using Greenfoot and
then create a simple game by adding one step of complexity at
a time. The Greenfoot API includes an Actor class and World
class that provide many needed methods including getLocation,
creating/removing entities, object intersection tests and
keyboard/mouse control. We first create sprites and move them
using Greenfoot API methods. Next, we make the sprites move
back and forth reflecting at boundaries this introduce if-
statements and adding data members for current direction
and/or velocity. We then solidify understanding of the
coordinate system by having students place sprites using code
to spell out block letters using for-loops. Next, students are
required to add keyboard control of sprites and use of the
Greenfoot provided intersection test for collision detection.
Finally, object members are added to keep track of game
counters such as timers and the number of objects remaining in
the game.

As a result, majority of students are interested to make their
“own” games. To solve the game problem, they discussed with
classmates and teacher assistants. This shows the power of
constructivist learning model.

FIGURE II. STUDENTS PLAYING OWN BALLOON GAME

C. Diving into Code

The Greenfoot implementation is based on the BlueJ
system, and many of the BlueJ tools – the editor, the debugger,
Javadoc generation – are available in Greenfoot in a very
similar form to BlueJ. The new version of BlueJ also has
version control support for manage student’s code.

The environment also supplies a view of the classes that
participate in the simulation on the right side of the main
window. These classes can be edited, compiled and instantiated.

These actions can be accessed from the popup menu of the
class.

There are two ways to creating new classes. Either by
selecting New subclass from the class' popup menu, or by
clicking the New Class button below the class icons. The class-
browser is divided into two sections.

GreenfootObject classes are the classes that are to be
visualised in the world. Their superclass – GreenfootObject –
will always be shown in the class browser. The
GreenfootObject class cannot be modified.

Subclasses of GreenfootObject will typically have an
individual icon. This icon is shown in the representation of the
class next to the class name. Greenfoot objects that do not
specify an appearance have a default look defined in their
superclass.

GreenfootWorld classes are classes that res are classes that
represent worlds. Different worlds may exist in a single project
(holding, for example, different initial populations of walls and
beepers). The superclass of these – GreenfootWorld – will
always be shown in the class browser.

The GreenfootWorld classes have popup menus exactly like
the ones described for GreenfootObject classes. When a
constructor is selected for a subclass of GreenfootWorld, the
new world object will automatically replace the existing world
in the main view of the Greenfoot user interface.

A class icon can be used to execute a constructor, which
results in an object being created and placed on the object
bench at the bottom of the main window. Once the object has
been created, any public method can be executed.

FIGURE III. CLASS HIERARCHY AND CODE EDIT WINDOW

D. Lab Projects

The projects involve programming a Java application based
on techniques learnt in weekly lab exercises. A wide range of
other applications can be fitted into the Greenfoot framework.
Since drawing capabilities on the world include the drawing of

305

text, some objects could display a behavior that displays textual
information on the screen. While this is not the main goal for
greenfoot, it extends its capabilities.

The Greenroom - Greenfoot Educators Community - has
many resources, and more important, the great idea. For
example, we encourage biology majors to develop a scenario
like the Marine Biology Case Study. This example is
structurally similar to Balloon game, and does not require
further detailed discussion here. One difference in use patterns
is that there are often many fish involved in such a simulation.
To add a larger number of fish, a constructor or a method of the
world can be used. It is great experience to biology majors that
the fishes join into game!

V. CONCLUSIONS

In this paper we conducted a literature review about tools
designed for supporting the instructional process of OO
programming. These tools are used in computer programming
course for non-CS majors. We consider that the BlueJ
environment and its extend Greenfoot project hold a lot of
advantages. We designed an interactive development
environment based on the Greenfoot.

The evaluation teaching practice showed that students
highly appreciated the environment, and showed great interest
on the game design. The students are impressed for its
simplicity and usability. They also commented that the
activities performed with this tool enhanced their knowledge
and skills.

Now, the Greenfoot does not enable students to design
software programs using model notation. So it cannot generate

classes’ code with code skeletons for further editing. On
another side, students have more interest on 3D objects in the
game. Our next develop plan will provide dynamic
visualization of the software programs. The next generation of
tools that support the instructional process of the OOP will
include these features.

ACKNOWLEDGMENT

This work supported by Zhejiang Provincial Natural
Science Foundation of China (Grant No. LY12F02038). And
thanks Zhejiang Key Lab of Visual Media.

REFERENCES

[1] Janet E. Burge , Gerald C. Gannod , Maureen Doyle , Karen C. Davis,
Girls on the go: a CS summer camp to attract and inspire female high
school students, Proceeding of the 44th ACM technical symposium on
Computer science education, March 06-09, 2013, Denver, Colorado,
USA

[2] Distasio, Joseph, Way, Thomas, P., Inclusive Computer Science
Education Using a Ready-made Computer Game Framework.
ITiCSE ’07, Dundee, Scotland, United Kingdom.

[3] Fajardo, R., Leutenegger, Scott T., Programming, Pixels and Play: A
University Summer Game Camp To Attract Under-represented
Populations to Game Development and Computer Science”, Proc. Of
Future Play, 2006.

[4] Ursula Wolz , Youwen Ouyang , Scott Leutenegger, Scratching the
subject surface: infusing computing into K-12 curriculum, Proceedings
of the 42nd ACM technical symposium on Computer science education,
March 09-12, 2011, Dallas, TX, USA.

[5] Amber Settle, Computational thinking in a game design course,
Proceedings of the 2011 conference on Information technology
education, October 20-22, 2011, West Point, New York, USA.

[6] The Greenfoot Programming Environment, www.greenfoot.org.

306

