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Abstract – If the market is incomplete, we have several choices 

of equivalent martingale measures to price contingent claims .Recall 

that we didn’t impose conditions on the preferences of the economic 

agents other than that they prefer more to less.  

So it is quite natural to specify the preferences further in order 

to select one of the equivalent martingale measures.The specification 

of the  investor’s attitude towards risk is done in terms of a utility 

function. 

Index Terms – Option, Credit risk, Martingale, Risk neutrality 

1.  Introduction 

Credit risk is increasingly being recognised as a 

significant area of risk and arbitrage, yet there exists relatively 

little research on it. In this paper we show that operational risk 

represents a fundamental risk to option hedging [1] and 

investigate it by proposing a new theoretical model. We derive 

an exposure indicator for the operational risk of option 

hedging and the resulting operational risk distribution. We 

obtain analytical results for various risk measures including the 

Value at Risk equation; this includes deriving a new analytical 

result for the option function of the half-normal distributions 

(which will be of interest to Statisticians in general). We 

determine an analytical solution to the price of options under 

operational risk [2]. We conduct numerical experiments on 

empirical option data to validate our model and estimate the 

operational Value at Risk for option hedging. 

There exists currently a good deal of literature on hedging 

methods for the pricing options. It is well known that in this 

case a straightforward Monte Carlo simulation algorithm will 

be time-consuming and yield unstable results for the prices and 

especially the sensitivities. The knock-in/out features in the 

barrier option payoffs lead to slower convergence of the 

Monte Carlo algorithm. To address this problem the following 

(semi-)analytical approaches have been developed for specific 

models. 

In any case, theoretically, long-run uncertainty about 

demographic changes and shocks restricts the land supply and 

raises the land price. The consequences for housingpolicies 

may be significant, especially in countries (likeFrance) where 

policymakers attempt to develop the housingstock and to make 

housing more affordable for the less well-off. Now, the spatial 

demographic risk is local by nature: a shortfall in one place 

entails a surplus somewhere else; therefore, it is an insurable 

risk. Consequently, a future insurance market may be a tool 

with which to improve the way the housing market works. 

Empirically, we conduct the analysis for a French department, 

Nord. The data base used in this study is made up of individual 

transactions for developable land for residential 

purposes(19,495observations) or secondary or tertiary 

activities (1,667 observations) between 1989 and 2002.The 

results show that, during the upward trend in the land market, 

the price of developable land is significantly higher when the 

change in population in the vicinity is more volatile, and so 

more difficult to predict. The plot price is 7.8% (housing 

market) or 15.3% (office and factory market) higher when 

population change in the 10 nearest communes increases by 

one standard deviation. 

2.  A General Option-Pricing Formula  

we compare our results with those given by Merton [3].We 

first explain Merton’s results. Merton restricted his discussion to 

discrete probability distributions. Let an asset have terminal 

value 
ix  with probability ( )if x , where the values of

ix with 

positive probability are 
1 2 mx x x  .In addition to the two 

well-known definitions of increase in risk, namely, a mean-

preserving spread and Rothschild and Stiglitz increase in risk, 

he pro-posed two more definitions of changes in risk which are 

called pointwise riskier and extremum riskier, respectively. 

The following are the two definitions. 

Definition 2 (Merton.[3]): A distribution g(x) is said to be 

pointwise riskier than distribution f (x) if s(x) ≡ g(x) − f (x) is 

a mean-preserving spread whosesupport contains the support 

of the original distribution f (x). 

Definition3(Merton[3]): Adistribution g(x) is said to be 

extremum riskier than distribution f (x) if the cumulative 

distribution G(x) is strictly larger thanF(x) at the immediate 

right of the left border of the support of f (x) and is strictly 

smaller than F(x) at the immediate left of the right border of 

the support of f (x). Rasmusen’s Proposition 1 states that a 

mean-preserving increase in risk does not reduce any option 

values, which is Merton’s (1973) Theorem .His Proposition 1a 

states that a mean-preserving increase in risk strictly increases 

all option values, which he proved to be false. His Proposition 

1b states that a mean-preserving increase in risk strictly 

increases some option values and reduces no option values. 

These two results are relatively straightforward. Thus, 

we focus on his main results. 
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3.   Hedging in Incomplete Markets 

3.1  The option pricing with risk neutrality argument 

We would like to present an alternative approach of 

deriving the Black-Scholes equation for the option pricing 

model, by which the argument of risk neutrality can be 

explained in a more succinct manner (Cox and Ross [7], 

1976). Suppose we write the stochastic process followed by 

the option price as  

dc
dt dZ

c
   . 

Where   is the expected  rate of return  of c and 
2  the  

corresponding variance of the rate of return . 
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The above statement of risk neutrality can be represented 

mathematically as ( , ) [max( ,0)]r

TC C S t e E S K   .The option 

pricing model takes the following form 
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The above call price formula can be interpreted using the 

language of probability. First ,
2( )N d  is been as the 

probability of the call option being in-the-money at expiry and 

so 
2( )KN d can be interpreted as the risk neutral expectation 

of the payment made by the holder of the call option at expiry  

on exercising the option. Hence, the expectation of the call 

value at expiry is 

1 2( ) ( )rSe N d KN d  , 

which is then discounted by the factor 
re 

 in the risk 

neutral world to give the present value of the call price. 

3.2  The option pricing in Incomplete Markets 

To model short-term option values [4](temporary price 

volatility) we look at `pure' price variability over time, that is, 

by controlling a set of variables X that affect this price and 

vary over the course of time. The starting equation is 

1 tdp dt dt   , where P is the change in the price of 

developable land over the period dt under the `pure' influence 

of time, that is, having expurgated factors of variation included 

in X and where  , is a random variable of zero mean and of 

unit variance;  is the trend and 2  the price variance. P is 

estimated by a random-effects model 

ijt ijt t t j ijtP X b bT         

where the price ijtP of transaction i in commune j and in the 

period t is explained by a set of variables X , by a continuous  

time variable T capturing the trend, by a random variable
t  

that is dependent on the period preceding t , a second  random 

variable depending on the commune j and by an individual 

error ijt . The variance of 
t is then introduced into the 

explanatory model of land price where 
n  is the standard 

deviation of variation of population change in the communes 

around j within a neighborhood w and 
n  is the change in 

population over this period. This standard deviation is 

calculated directly from population censuses. The standard 

deviation of population on which households' base their 

decision to purchase has to be observed over a long enough 

period.  

4.   Option Pricing Model Analysis 

In this paper, we presented an algorithm for pricing 

barrier options in one-dimensional Markovian models based 

on an approximation by continuous-time Markov chains. The 

generator of the approximating chain is constructed by the 

matching of instantaneous moments of the infinitesimal 

generator of the Markov process in question, on a suitable 

nonuniform grid. The approximate barrier option prices are 

then obtained by calculating the corresponding first-passage 

distributions for the approximating Markovchain. To illustrate 

the flexibility of the method we implemented the algorithm for 

a numberof models, including local volatility models with 

jumps and models with time-dependent jump-distributions. In 

the cases of the diffusion and jump-diffusion models where 

results had been obtained before in the literature, the algorithm 

produced outcomes that accurately matched those results, and 

we numerically investigated the order of decay of the error. 

We derived a theoretical upper bound for the error of the 

outcomes produced by the algorithm that is linear in the spatial 

mesh size and the truncation error. We showed that an 

additional logarithmic factor may arise in this error bound 

when the Lévy density has a pole of order two at the origin. In 

addition, this bound is also linear in the time mesh size if the 

model is time-inhomogeneous. Numerical experiments suggest 

that for a number of models the error of the outcomes 

generated by the algorithm actually decays quadratically in the 

spatial mesh size. Itwould be of interest to establish error 

bounds under weaker regularity assumptions, andobtain sharp 

rates of convergence for the specific models, which is a topic 

left for future research[5]. Although in principle the method 

also applies to higher-dimensional Markov processes, the size 

of the generator matrix would make straightforward 

application of the algorithm computationally infeasible. The 

investigation of efficient extensions of the approach to Markov 

processes of moderate dimension is another topic left for 

future research. 
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5. Conclusions 

 The price of Incomplete Markets follows a geometric 

Brownian motion in the Black-Scholes model. If the finance 

market is complete this paper gives an accurate hedging 

strategy by another method. Then we introduce a dynamic 

measure of risk to the incomplete market, under which we 

have acquired the optimal replication of a contingent claim in 

the finance market which is induced by a risk neutral 

probability measare. With an application of a generalized 

Clark formula[6] the paper provides the optimal hedging 

strategy for a contingent claim.The preferred spelling of the 

word “acknowledgment” in America is without an “e” after the 

“g.”. 
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